A second monoclinic polymorph of ethyl-enediammonium bis-(hydrogen squarate) monohydrate.

Louiza Zenkhri, Thierry Bataille, Nathalie Audebrand

To cite this version:

HAL Id: hal-00822077
https://hal.archives-ouvertes.fr/hal-00822077
Submitted on 14 May 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A second monoclinic polymorph of ethylenediammonium bis(hydrogen squarate) monohydrate

Louiza Zenkhri, Thierry Bataille and Nathalie Audebrand

*Faculté des Sciences et Technologie et Sciences de la Matière, Université Kasdi Merbah Ouargla, Route Gardaia, Ouargla, Algeria, and \(^{b}\)Laboratoire Sciences Chimiques de Rennes (CNRS, UMR 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Correspondence e-mail: louizazenkhri@yahoo.fr

Received 24 February 2011; accepted 9 March 2011

Key indicators: single-crystal X-ray study; \(T = 293 \text{K} \); mean \(\sigma(C-C) = 0.002 \text Å\); \(R\) factor = 0.044; \(wR\) factor = 0.116; data-to-parameter ratio = 15.6.

The title compound, \(\text{C}_7\text{H}_{14}\text{N}_2\text{O}^2+\cdot 2\text{HC}_4\text{O}_4^–\cdot \text{H}_2\text{O}\), a new polymorph of ethylenediammonium bis(hydrogen squarate) monohydrate, was synthesized by slow evaporation of an acid solution. The asymmetric unit contains two hydrogen squarate anions, two half-molecules of protonated ethylenediamine arranged around a twofold axis and one water molecule. In the crystal, \(\text{N}—\text{H} \cdots \text{O}\) and \(\text{O}—\text{H} \cdots \text{O}\) hydrogen bonds between the hydrogen squarate anions, protonated \(\text{N}\) atoms from the amine group and water molecules lead to a three-dimensional framework. In particular, the cohesion between the squarate groups is ensured by very short intermolecular hydrogen bonds. The title compound crystallized together with the previously reported polymorph [Mathew et al. (2002). J. Mol. Struct. 641, 263–279].

Related literature

For the previously reported polymorph, see: Mathew et al. (2002).

\[
\begin{align*}
\text{H}_2\text{N}^+ & \quad \text{H}_2\text{O} \quad \text{O}^2- \quad \text{H} \quad \text{O}\nn \text{NH}_3^+ & \quad \text{HO} \quad \text{O} \quad \text{O} \quad \text{H}_2\text{O}
\end{align*}
\]

\(\beta = 111.789 \text{ (1)}^\circ\)

\(V = 13007.7 (5) \text{ Å}^3\)

\(Z = 4\)

\(\text{Mo Kα radiation}\)

\(\mu = 0.14 \text{ mm}^{-1}\)

\(T = 293 \text{ K}\)

\(0.45 \times 0.44 \times 0.37 \text{ mm}\)

\(\beta = 111.789 \text{ (1)}^\circ\)

\(V = 13007.7 (5) \text{ Å}^3\)

\(Z = 4\)

\(\text{Mo Kα radiation}\)

\(\mu = 0.14 \text{ mm}^{-1}\)

\(T = 293 \text{ K}\)

\(0.45 \times 0.44 \times 0.37 \text{ mm}\)

Experimental

Crystal data

\[
\begin{align*}
\text{C}_7\text{H}_{14}\text{N}_2\text{O}^2+ \cdot 2\text{HC}_4\text{O}_4^– \cdot \text{H}_2\text{O} & \quad a = 14.1907 (3) \text{ Å} \\
M_r = 306.23 & \quad b = 9.0224 (2) \text{ Å} \\
\text{Monoclinic, P2/c} & \quad c = 10.9412 (2) \text{ Å}
\end{align*}
\]

Data collection

Nonius KappaCCD diffractometer

16099 measured reflections

2957 independent reflections

Refinement

\(R[F^2 > 2\sigma(F^2)] = 0.044\)

\(wR(F^2) = 0.116\)

\(S = 1.06\)

190 parameters

H-atom parameters constrained

\(\Delta \rho_{\text{max}} = 0.28 \text{ e Å}^{-3}\)

\(\Delta \rho_{\text{min}} = -0.24 \text{ e Å}^{-3}\)

Table 1

Hydrogen-bond geometry (Å, °).

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1—H1A···O5</td>
<td>0.89</td>
<td>2.14</td>
<td>2.9205 (17)</td>
<td>146</td>
</tr>
<tr>
<td>N1—H1B···O1Wii</td>
<td>0.88</td>
<td>1.99</td>
<td>2.8482 (18)</td>
<td>163</td>
</tr>
<tr>
<td>N1—H1C···O8</td>
<td>0.88</td>
<td>1.90</td>
<td>2.7717 (18)</td>
<td>169</td>
</tr>
<tr>
<td>N2—H2A···O2i</td>
<td>0.90</td>
<td>1.97</td>
<td>2.8222 (17)</td>
<td>162</td>
</tr>
<tr>
<td>N2—H2B···O1Wii</td>
<td>0.90</td>
<td>1.94</td>
<td>2.8279 (18)</td>
<td>171</td>
</tr>
<tr>
<td>N2—H2C···O1</td>
<td>0.90</td>
<td>1.92</td>
<td>2.8071 (17)</td>
<td>168</td>
</tr>
<tr>
<td>O4—H4···O3iii</td>
<td>1.05</td>
<td>1.42</td>
<td>2.4675 (15)</td>
<td>179</td>
</tr>
<tr>
<td>O7—H7···O6iii</td>
<td>1.06</td>
<td>1.41</td>
<td>2.4645 (14)</td>
<td>178</td>
</tr>
<tr>
<td>O1W···H1W···O6</td>
<td>0.92</td>
<td>2.10</td>
<td>2.8724 (17)</td>
<td>140</td>
</tr>
<tr>
<td>O1W···H1W···O8iv</td>
<td>0.92</td>
<td>2.40</td>
<td>3.0489 (18)</td>
<td>128</td>
</tr>
<tr>
<td>O1W···H2W···O3</td>
<td>0.93</td>
<td>1.88</td>
<td>2.8035 (19)</td>
<td>171</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(x, -y + 1, z + \frac{1}{2}\); (ii) \(x, y + 1, z\); (iii) \(-x, -y, z + \frac{1}{2}\); (iv) \(-x, y - \frac{1}{2}, z\).

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Grateful thanks are expressed to Dr T. Roisnel (Centre de Diffractionométrie X, UMR CNRS 6226) for his assistance with the single-crystal data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2662).

References

supplementary materials
A second monoclinic polymorph of ethylenediammonium bis(hydrogen squarate) monohydrate

L. Zenkhri, T. Bataille and N. Audebrand

Comment

In the course of a study on mixed squarate of amines and metals, the role of the amine group has been investigated in the topology of the organic-inorganic framework. The preparation did not lead to a mixed compound but to a new hydrogen squarate of ethylenediammonium.

The compound is a polymorph of the compound previously reported by Mathew et al., 2002, whose molecular framework is also stabilized by hydrogen bonds (Fig. 1, Table 1). In the title compound hydrogen bonds connect the hydrogen squarate units along the a axis in the form of zigzag chains, which are connected to each other along the c axis through hydrogen bonds implying the water molecules, then forming a layer. Amine groups are situated in between neighbour layers and connected to them along the b axis through hydrogen bonds leading to a molecular three-dimensional framework (Table 1, Fig. 2).

The main differences between the structures of the two polymorphs reside in the orientation of the amine groups related to that of the mean planes of the squarate groups. Indeed, in the title structure, the ethylenediammonium cations are perpendicular to the squarate groups, while the mean planes between these two molecules in the already reported polymorph deviate to 56.2 (2)°.

Experimental

The title compound, \((\text{HC}_4\text{O}_4)_2(\text{C}_2\text{H}_{10}\text{N}_2)(\text{H}_2\text{O})\) was prepared from an aqueous solution (20 ml) of dissolved yttrium nitrate (0.5 mmol), ethylenediamine (0.1 mmol) and 3,4-dihydroxy-3-cyclobutene-1,2-dione, also named squaric acid (0.1 mmol). The slow evaporation at room temperature leads after some hours to the formation of both polymorphs. A metal salt seems to be necessary to the synthesis of the title compound even if its role has not been clearly established.

Refinement

All H atoms were found from Fourier difference maps but those attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.98 Å and N—H = 0.87 Å with \(U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{C})\) or \(U_{\text{iso}}(\text{H}) = 1.5U_{\text{eq}}(\text{N})\). The H attached to the water molecule and those of the hydroxyl groups were refined using restraints: O–H = 0.92 (1)Å and H···H = 1.42 (2)Å for the water and O—H = 1.05 (2)Å for the hydroxyl H with \(U_{\text{iso}}(\text{H}) = 1.5U_{\text{eq}}(\text{O})\). In the last cycles of refinement, they were treated as riding on their parent O atoms.
supplementary materials

Figures

Fig. 1. View of the molecular structure of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x+3/2, y, -z+1; (ii) -x+3/2, y, -z]

Fig. 2. Packing view of the title compound displaying the hydrogen bonds between protonated nitrogen of ethylenediamine, hydrogen squarate and water molecules. H atoms not involved in hydrogen bondings have been omitted for clarity.

Ethylenediammonium bis(hydrogen squarate) monohydrate

Crystal data

\[\text{C}_2\text{H}_{10}\text{N}_2^{2+} \cdot 2\text{C}_4\text{H}_4\text{O}_4^- \cdot \text{H}_2\text{O} \]

\[M_r = 306.23 \]

Monoclinic, \(P2/\text{c} \)

Hall symbol: -P 2yc

Cell parameters from 15363 reflections

\[a = 14.1907 \text{ (3) Å} \]

\[b = 9.0224 \text{ (2) Å} \]

\[c = 10.9412 \text{ (2) Å} \]

\[\beta = 111.789 \text{ (1)°} \]

\[V = 1300.77 \text{ (5) Å}^3 \]

\[Z = 4 \]

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube

horizontally mounted graphite crystal

CCD scans

16099 measured reflections

2957 independent reflections

2101 reflections with \(I > 2\sigma(I) \)

\[R_{\text{int}} = 0.039 \]

\[\theta_{\text{max}} = 27.5°, \theta_{\text{min}} = 3.7° \]

\[h = -13\rightarrow14 \]

\[k = -11\rightarrow11 \]

\[l = -18\rightarrow18 \]
supplementary materials

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full

Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.044$

Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.116$

H-atom parameters constrained

$S = 1.06$

2957 reflections

$\Delta \sigma_{\text{max}} < 0.001$

190 parameters

$\Delta \rho_{\text{max}} = 0.28 \text{ e Å}^{-3}$

0 restraints

$\Delta \rho_{\text{min}} = -0.24 \text{ e Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{iso}/U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.13638 (12)</td>
<td>0.21953 (17)</td>
<td>0.23974 (14)</td>
<td>0.0274 (3)</td>
</tr>
<tr>
<td>C2</td>
<td>0.12945 (12)</td>
<td>0.22646 (17)</td>
<td>0.37292 (15)</td>
<td>0.0294 (3)</td>
</tr>
<tr>
<td>C3</td>
<td>0.13154 (12)</td>
<td>0.06345 (17)</td>
<td>0.37612 (14)</td>
<td>0.0280 (3)</td>
</tr>
<tr>
<td>C4</td>
<td>0.13514 (12)</td>
<td>0.05880 (16)</td>
<td>0.24889 (14)</td>
<td>0.0270 (3)</td>
</tr>
<tr>
<td>C5</td>
<td>0.37318 (12)</td>
<td>0.22227 (17)</td>
<td>0.53401 (14)</td>
<td>0.0282 (3)</td>
</tr>
<tr>
<td>C6</td>
<td>0.37820 (12)</td>
<td>0.05841 (17)</td>
<td>0.53440 (14)</td>
<td>0.0266 (3)</td>
</tr>
<tr>
<td>C7</td>
<td>0.37483 (12)</td>
<td>0.05424 (16)</td>
<td>0.66247 (14)</td>
<td>0.0264 (3)</td>
</tr>
<tr>
<td>C8</td>
<td>0.36698 (12)</td>
<td>0.21411 (17)</td>
<td>0.66793 (14)</td>
<td>0.0285 (3)</td>
</tr>
<tr>
<td>C9</td>
<td>0.45935 (12)</td>
<td>0.62029 (18)</td>
<td>0.68196 (15)</td>
<td>0.0310 (4)</td>
</tr>
<tr>
<td>H9A</td>
<td>0.4620</td>
<td>0.7123</td>
<td>0.6375</td>
<td>0.037*</td>
</tr>
<tr>
<td>H9B</td>
<td>0.4708</td>
<td>0.5391</td>
<td>0.6310</td>
<td>0.037*</td>
</tr>
<tr>
<td>C10</td>
<td>0.00261 (13)</td>
<td>0.36235 (19)</td>
<td>0.68282 (16)</td>
<td>0.0359 (4)</td>
</tr>
<tr>
<td>H10A</td>
<td>-0.0221</td>
<td>0.2683</td>
<td>0.6400</td>
<td>0.043*</td>
</tr>
<tr>
<td>H10B</td>
<td>-0.0408</td>
<td>0.4401</td>
<td>0.6300</td>
<td>0.043*</td>
</tr>
<tr>
<td>N1</td>
<td>0.35844 (10)</td>
<td>0.60417 (15)</td>
<td>0.69124 (14)</td>
<td>0.0330 (3)</td>
</tr>
<tr>
<td>H1A</td>
<td>0.3537</td>
<td>0.6630</td>
<td>0.7544</td>
<td>0.040*</td>
</tr>
<tr>
<td>H1B</td>
<td>0.3127</td>
<td>0.6300</td>
<td>0.6143</td>
<td>0.040*</td>
</tr>
<tr>
<td>H1C</td>
<td>0.3495</td>
<td>0.5112</td>
<td>0.7090</td>
<td>0.040*</td>
</tr>
</tbody>
</table>

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.
supplementary materials

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>0.10844 (11)</td>
<td>0.38656 (14)</td>
<td>0.69090 (13)</td>
<td>0.0343 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2A</td>
<td>0.1155</td>
<td>0.3480</td>
<td>0.6209</td>
<td>0.041*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2B</td>
<td>0.1534</td>
<td>0.3450</td>
<td>0.7642</td>
<td>0.041*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2C</td>
<td>0.1219</td>
<td>0.4842</td>
<td>0.6931</td>
<td>0.041*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>0.14176 (10)</td>
<td>0.31161 (12)</td>
<td>0.15936 (12)</td>
<td>0.0406 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>0.12416 (11)</td>
<td>0.32661 (14)</td>
<td>0.44601 (12)</td>
<td>0.0469 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td>0.13116 (11)</td>
<td>−0.03557 (13)</td>
<td>0.45842 (11)</td>
<td>0.0422 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4</td>
<td>0.13646 (10)</td>
<td>−0.05236 (12)</td>
<td>0.17443 (11)</td>
<td>0.0402 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>0.1339</td>
<td>−0.0164</td>
<td>0.0819</td>
<td>0.060*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5</td>
<td>0.37214 (10)</td>
<td>0.32156 (13)</td>
<td>0.45711 (11)</td>
<td>0.0411 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td>0.38111 (10)</td>
<td>−0.03993 (12)</td>
<td>0.45340 (10)</td>
<td>0.0365 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7</td>
<td>0.37617 (10)</td>
<td>−0.05505 (12)</td>
<td>0.73992 (11)</td>
<td>0.0366 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>0.3768</td>
<td>−0.0150</td>
<td>0.8313</td>
<td>0.055*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O8</td>
<td>0.35656 (10)</td>
<td>0.30475 (13)</td>
<td>0.43628 (12)</td>
<td>0.0436 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1W</td>
<td>0.24474 (9)</td>
<td>−0.28124 (14)</td>
<td>0.43628 (12)</td>
<td>0.0436 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1W</td>
<td>0.2960</td>
<td>−0.2370</td>
<td>0.4170</td>
<td>0.065*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2W</td>
<td>0.2063</td>
<td>−0.2050</td>
<td>0.4510</td>
<td>0.065*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Atomic displacement parameters (Å²)

<table>
<thead>
<tr>
<th></th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U¹²</th>
<th>U¹³</th>
<th>U²³</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.0324 (9)</td>
<td>0.0254 (7)</td>
<td>0.0260 (7)</td>
<td>0.0044 (6)</td>
<td>0.0127 (6)</td>
<td>0.0034 (6)</td>
</tr>
<tr>
<td>C2</td>
<td>0.0340 (9)</td>
<td>0.0287 (8)</td>
<td>0.0284 (7)</td>
<td>0.0042 (7)</td>
<td>0.0152 (7)</td>
<td>0.0008 (7)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0331 (9)</td>
<td>0.0274 (8)</td>
<td>0.0245 (7)</td>
<td>−0.0015 (6)</td>
<td>0.0119 (6)</td>
<td>0.0003 (6)</td>
</tr>
<tr>
<td>C4</td>
<td>0.0328 (9)</td>
<td>0.0261 (8)</td>
<td>0.0227 (8)</td>
<td>−0.0002 (6)</td>
<td>0.0110 (6)</td>
<td>−0.0001 (6)</td>
</tr>
<tr>
<td>C5</td>
<td>0.0339 (9)</td>
<td>0.0283 (8)</td>
<td>0.0242 (7)</td>
<td>−0.0034 (6)</td>
<td>0.0130 (6)</td>
<td>−0.0006 (6)</td>
</tr>
<tr>
<td>C6</td>
<td>0.0310 (8)</td>
<td>0.0284 (8)</td>
<td>0.0228 (7)</td>
<td>−0.0033 (6)</td>
<td>0.0128 (6)</td>
<td>−0.0015 (6)</td>
</tr>
<tr>
<td>C7</td>
<td>0.0338 (8)</td>
<td>0.0255 (7)</td>
<td>0.0220 (7)</td>
<td>−0.0013 (6)</td>
<td>0.0128 (6)</td>
<td>−0.0011 (6)</td>
</tr>
<tr>
<td>C8</td>
<td>0.0377 (9)</td>
<td>0.0257 (7)</td>
<td>0.0250 (7)</td>
<td>−0.0033 (7)</td>
<td>0.0149 (7)</td>
<td>−0.0019 (6)</td>
</tr>
<tr>
<td>C9</td>
<td>0.0310 (9)</td>
<td>0.0318 (8)</td>
<td>0.0315 (8)</td>
<td>−0.0005 (7)</td>
<td>0.0132 (7)</td>
<td>0.0010 (7)</td>
</tr>
<tr>
<td>C10</td>
<td>0.0392 (9)</td>
<td>0.0397 (9)</td>
<td>0.0304 (8)</td>
<td>0.0039 (8)</td>
<td>0.0147 (7)</td>
<td>−0.0019 (7)</td>
</tr>
<tr>
<td>N1</td>
<td>0.0330 (8)</td>
<td>0.0299 (7)</td>
<td>0.0359 (7)</td>
<td>0.0010 (6)</td>
<td>0.0123 (6)</td>
<td>−0.0002 (6)</td>
</tr>
<tr>
<td>N2</td>
<td>0.0462 (9)</td>
<td>0.0273 (7)</td>
<td>0.0354 (7)</td>
<td>−0.0004 (6)</td>
<td>0.0221 (7)</td>
<td>−0.0003 (6)</td>
</tr>
<tr>
<td>O1</td>
<td>0.0643 (9)</td>
<td>0.0280 (6)</td>
<td>0.0374 (6)</td>
<td>0.0064 (6)</td>
<td>0.0281 (6)</td>
<td>0.0086 (5)</td>
</tr>
<tr>
<td>O2</td>
<td>0.0751 (10)</td>
<td>0.0337 (7)</td>
<td>0.0416 (7)</td>
<td>0.0100 (6)</td>
<td>0.0328 (7)</td>
<td>−0.0038 (6)</td>
</tr>
<tr>
<td>O3</td>
<td>0.0740 (9)</td>
<td>0.0308 (6)</td>
<td>0.0279 (6)</td>
<td>−0.0068 (6)</td>
<td>0.0260 (6)</td>
<td>0.0024 (5)</td>
</tr>
<tr>
<td>O4</td>
<td>0.0723 (9)</td>
<td>0.0261 (6)</td>
<td>0.0277 (6)</td>
<td>−0.0030 (6)</td>
<td>0.0249 (6)</td>
<td>−0.0033 (5)</td>
</tr>
<tr>
<td>O5</td>
<td>0.0632 (9)</td>
<td>0.0314 (6)</td>
<td>0.0341 (6)</td>
<td>−0.0034 (6)</td>
<td>0.0241 (6)</td>
<td>0.0061 (5)</td>
</tr>
<tr>
<td>O6</td>
<td>0.0591 (8)</td>
<td>0.0299 (6)</td>
<td>0.0272 (6)</td>
<td>−0.0046 (5)</td>
<td>0.0239 (6)</td>
<td>−0.0059 (5)</td>
</tr>
<tr>
<td>O7</td>
<td>0.0646 (8)</td>
<td>0.0243 (6)</td>
<td>0.0283 (6)</td>
<td>0.0017 (5)</td>
<td>0.0260 (6)</td>
<td>0.0031 (5)</td>
</tr>
<tr>
<td>O8</td>
<td>0.0776 (10)</td>
<td>0.0254 (6)</td>
<td>0.0366 (6)</td>
<td>−0.0007 (6)</td>
<td>0.0334 (7)</td>
<td>−0.0046 (5)</td>
</tr>
<tr>
<td>O1W</td>
<td>0.0384 (7)</td>
<td>0.0416 (7)</td>
<td>0.0464 (7)</td>
<td>−0.0044 (6)</td>
<td>0.0106 (6)</td>
<td>0.0083 (6)</td>
</tr>
</tbody>
</table>

Geometric parameters (Å, °)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1—O1</td>
<td>1.2326 (18)</td>
<td>C9—C9</td>
<td>1.508 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1—C4</td>
<td>1.454 (2)</td>
<td>C9—H9A</td>
<td>0.9700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1—C2</td>
<td>1.498 (2)</td>
<td>C9—H9B</td>
<td>0.9700</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C2—O2 1.2273 (19) C10—N2 1.487 (2)
C2—C3 1.471 (2) C10—C10ii 1.499 (3)
C3—O3 1.2699 (18) C10—N2 1.487 (2)
C3—C4 1.412 (2) C10—H10A 0.9700
C4—O4 1.2966 (18) C10—H10B 0.9700
C5—O5 1.2253 (18) N1—H1A 0.8933
C5—C6 1.480 (2) N1—H1B 0.8824
C6—O6 1.2655 (18) N2—H2A 0.8805
C6—C7 1.420 (2) N2—H2B 0.9002
C7—O7 1.2958 (18) N2—H2C 0.9002
C7—C8 1.450 (2) O4—H4 1.0509
C8—O8 1.2380 (18) O7—H7 1.0597
C9—N1 1.480 (2) O1W—H1W 0.9203
O1—C1—C4 136.62 (14) C9i—C9—H9A 109.7
O1—C1—C2 135.22 (15) N1—C9—H9B 109.7
C4—C1—C2 88.16 (12) C9i—C9—H9B 109.7
O2—C2—C3 136.56 (15) H9A—C9—H9B 108.2
O2—C2—C1 134.96 (15) N1—C9—H9C 109.3
C3—C2—C1 88.47 (12) C9i—C9—H9C 109.7
O3—C3—C4 133.57 (14) N2—C10—C10ii 110.98 (17)
O3—C3—C2 135.63 (14) N2—C10—H10A 109.4
C4—C3—C2 90.81 (12) N2—C10—H10B 109.4
O4—C4—C3 131.03 (14) C10ii—C10—H10A 109.4
O4—C4—C1 136.44 (14) C10ii—C10—H10B 109.4
C3—C4—C1 88.47 (12) N2—C10—H10B 109.4
O5—C5—C6 136.10 (14) C10i—C10—H10A 109.4
O5—C5—C8 135.69 (15) N1—C9—H9A 109.0
C6—C5—C8 88.19 (11) C9—N1—H1A 109.3
O6—C6—C5 133.96 (14) H1A—N1—H1B 110.0
O6—C6—C7 135.43 (14) H1A—N1—H1C 109.7
C7—C6—C5 90.58 (12) H1B—N1—H1C 110.3
O7—C7—C6 131.89 (14) N2—C10—H10B 109.3
O7—C7—C8 135.48 (14) O4—H4 111.0
C6—C7—C8 88.59 (12) H2B—N2—H2C 109.8
O8—C8—C7 135.81 (14) C4—O4—H4 111.3
O8—C8—C5 135.57 (14) C7—O7—H7 110.5
C7—C8—C5 88.89 (12) H1W—O1W—H2W 106.5
N1—C9—C9i 109.73 (16) H1A—N1—H1B 109.0
N1—C9—H9A 109.7
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1—H1A···O5ii</td>
<td>0.89</td>
<td>2.14</td>
<td>2.9205 (17)</td>
<td>146.</td>
</tr>
<tr>
<td>N1—H1B···O1Wiv</td>
<td>0.88</td>
<td>1.99</td>
<td>2.8482 (18)</td>
<td>163.</td>
</tr>
</tbody>
</table>
supplementary materials

<table>
<thead>
<tr>
<th>Bond</th>
<th>d (Å)</th>
<th>e (Å)</th>
<th>r (Å)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1—H1C···O8</td>
<td>0.88</td>
<td>1.90</td>
<td>2.7717</td>
<td>169.</td>
</tr>
<tr>
<td>N2—H2A···O2</td>
<td>0.88</td>
<td>1.97</td>
<td>2.8222</td>
<td>162.</td>
</tr>
<tr>
<td>N2—H2B···O1W</td>
<td>0.90</td>
<td>1.94</td>
<td>2.8279</td>
<td>171.</td>
</tr>
<tr>
<td>N2—H2C···O1iii</td>
<td>0.90</td>
<td>1.92</td>
<td>2.8071</td>
<td>168.</td>
</tr>
<tr>
<td>O4—H4···O3vi</td>
<td>1.05</td>
<td>1.42</td>
<td>2.4675</td>
<td>179.</td>
</tr>
<tr>
<td>O7—H7···O6v</td>
<td>1.06</td>
<td>1.41</td>
<td>2.4645</td>
<td>178.</td>
</tr>
<tr>
<td>O1W—H1W···O6</td>
<td>0.92</td>
<td>2.10</td>
<td>2.8724</td>
<td>140.</td>
</tr>
<tr>
<td>O1W—H1W···O8vi</td>
<td>0.92</td>
<td>2.40</td>
<td>3.0489</td>
<td>128.</td>
</tr>
<tr>
<td>O1W—H2W···O3</td>
<td>0.93</td>
<td>1.88</td>
<td>2.8035</td>
<td>171.</td>
</tr>
</tbody>
</table>

Symmetry codes: (iii) x, −y+1, z+1/2; (iv) x, y+1, z; (v) x, −y, z+1/2; (vi) x, −y, z−1/2.
supplementary materials

Fig. 2