D. S. Wen and Y. L. Ding, Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids), Journal of Thermophysics and Heat Transfer, vol.18, issue.4, pp.481-485, 2004.
DOI : 10.2514/1.9934

M. J. Assael, I. N. Mataxa, J. Arvanitidis, D. Christophilos, and C. Lioutas, Thermal 426 conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled 427 nanotubes in the presence of two different dispersants, Int. J. Thermophys, pp.26-647, 2005.

X. Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, vol.46, issue.1, p.431
DOI : 10.1016/j.ijthermalsci.2006.06.010

S. M. Murshed, K. C. Leong, and C. Yang, Investigations of thermal conductivity and 434 viscosity of nanofluids, Int. J. Therm. Sci, pp.47-560, 2008.

D. Wen, S. Lin, S. Vafaei, and K. Zhang, Review of nanofluids for heat transfer applications, Particuology, vol.7, issue.2, pp.141-150, 2009.
DOI : 10.1016/j.partic.2009.01.007

D. Wu, H. Zhu, L. Wang, and L. Liua, Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity, Current Nanoscience, vol.5, issue.1, pp.103-112, 2009.
DOI : 10.2174/157341309787314548

H. Chen, W. Yang, Y. He, Y. Ding, L. Zhang et al., Heat 443 transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids), pp.444-183, 2008.

H. Chen, Y. Ding, A. A. Lapkin, and X. Fan, Rheological behaviour of ethylene glycol-titanate nanotube nanofluids, Journal of Nanoparticle Research, vol.48, issue.4, pp.1513-1520, 2009.
DOI : 10.1007/s11051-009-9599-9

H. Chen, Y. Ding, and A. A. Lapkin, Rheological behaviour of nanofluids containing tube/rod- 450 like nanoparticles, Powder Tech, pp.132-141, 2009.

S. Q. Zhou, R. Ni, D. Funfschilling, M. Kole, T. K. Dey12-]-p et al., Effect of aggregation on the viscosity of copper oxide-gear oil 456 nanofluids Carbon nanotubes and related structures: new materials for the 21 st century, 459 Cambridge Shear-thickening flow of suspensions 462 of carbon nanofibers in aqueous PVA solutions Tensile loading of ropes of single wall carbon 465 nanotubes and their mechanical properties The role of surfactants in dispersion of carbon 468 nanotubes, Nanofluids containing carbon nanotubes treated by 471 mechanochemical reaction, pp.1741-1747, 1999.

H. Wang, Dispersing carbon nanotubes using surfactants, Current Opinion in Colloid & Interface Science, vol.14, issue.5, p.474
DOI : 10.1016/j.cocis.2009.06.004

]. A. Nasiri, M. Shariaty-niasar, A. Rashidi, A. Amrollahi, and R. Khodafarin, Effect of 477 dispersion method on thermal conductivity and stability of nanofluid, Exp. Thermal Fluid Sci, vol.478, pp.35-717, 2011.

]. T. Phuoc, M. Massoudi, and R. H. Chen, Viscosity and thermal conductivity of nanofluids 481 containing carbon nanotubes stabilized by chitosan An 484 experimental study on the effect of ultrasonication on viscosity and heat transfer performance 485 of multi-wall carbon nanotube-based aqueous nanofluids, Int. J. Thermal Sci. Int. J. Heat Mass Transfer, vol.5020, issue.486, pp.12-18, 2009.

Y. Yang, E. A. Grulke, Z. G. Zhanh, and G. Wu, Thermal and rheological properties of carbon 489 nanotube-in-oil dispersions, J. Appl. Phys, vol.99, issue.490, pp.491-492, 2006.

. Oliveira, Rheological study of nanofluids at different concentration of carbon nanotubes, 493 19th National & 8th ISHMT-ASME Heat Mass Transfer Conf, pp.494-501, 2008.

M. S. Martins and . Oliveira, Thermodynamic and transport properties of CNT water based 498 nanofluids, J. Nano Res, vol.11, pp.101-106, 2010.

S. Aladag, N. Halelfadl, T. Doner, S. Maré, P. Duret et al., Experimental 501 investigations of the viscosity of nanofluids at low temperatures Shear flow history effect on the viscosity of 505 carbon nanotubes water based nanofluid The rheological behaviors of nanofluids containing multi- 508 walled carbon nanotube, Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of 511 carbon nanotubes (CNT nanofluids), pp.97-876, 2006.

]. T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret et al., Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger, Experimental Thermal and Fluid Science, vol.35, issue.8, pp.1535-1543, 1952.
DOI : 10.1016/j.expthermflusci.2011.07.004

G. M. Batchelor32-]-i, T. J. Krieger, S. H. Dougherty, P. E. Maron, and . Pierce, The effect of Brownian motion on the bulk stress in a suspension of 524 spherical particles A mechanism for non-Newtonian flow in suspension of 527 rigid spheres Application of Ree-Eyring generalized flow theory to 530 suspensions of spherical particles, J. Fluid Mech. J. Trans. Soc. Rheol. J. Colloid Sci, vol.83, issue.11, pp.97-117, 1956.

M. M. Cross, Viscosity-concentration-shear rate relations for suspensions The rheology of suspensions of solid particles, Rheol. Acta, vol.14, issue.534, pp.533-402, 1975.

H. Brenner and D. W. Condiff, Transport mechanics in systems of orientable particles. IV. convective transport, Journal of Colloid and Interface Science, vol.47, issue.1, pp.199-264, 1974.
DOI : 10.1016/0021-9797(74)90093-9

W. Wolthers, M. H. Duits, D. Van-den-ende, and J. Mellema, Shear history dependence of 542 aggregated colloidal dispersions, J. Rheol, pp.40-799, 1996.

H. Chen, Y. Ding, C. Tan, H. Chen, S. Witharana et al., Rheological behavior of nanofluids, Ding, Predicting thermal conductivity of 548 liquids suspensions of nanoparticles (nanofluids) based on rheology, pp.151-157, 2007.

J. Chevalier, O. Tillement, and F. Ayela, Structure and rheology of SiO 2 nanoparticle 552 suspensions under very high shear rates Aggregation kinetics and fractal structure of 555 gamma-alumina assemblages, Phys Rev E J. Colloid Int. Sci, vol.80, issue.553, pp.554-241, 2001.

B. X. Wang, L. P. Zhou, and X. F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer, vol.46, issue.14, pp.2665-2672, 2003.
DOI : 10.1016/S0017-9310(03)00016-4

]. R. Prasher, P. E. Phelan, P. Bhattacharya45, ]. A. Mohraz, D. B. Moler et al., Effect of aggregation kinetics on the thermal 565 conductivity of nanoscale colloidal solutions (nanofluid) Effect of monomer geometry on the 568 fractal structure of colloidal rod aggregates, Fractal aggregates of the Pt 571 nanoparticles synthesized by the polyol process and poly(N-vinyl-2-pyrrolidone) reduction, pp.567-572, 1529.

. Appl, F. Crystallogr, P. J. Khalkhal, and . Carreau, Krishnamoorti, Dynamic consequences of the fractal network of 575 nanotube-poly(ethylene oxide) nanocomposites, Phys. Rev. E Stat. Nonlinear Soft Matter 576 Phys Scaling behavior of the elastic properties of non-dilute 579 MWCNT-epoxy resine, Saltiel, S. Manickavasagam, L.S. Schadler, R.W. Siegel, H. Yang, pp.540-543, 2007.