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Abstract:  22 
 23 
Experimental results on the steady state viscosity of carbon nanotubes water-based nanofluids 24 

are presented considering the influence of particle volume fraction and temperature ranging 25 

from 0 to 40°C. The suspensions consist of multi-walled carbon nanotubes dispersed in de-26 

ionized water and they are stabilized by a surfactant. The aspect ratio of nanotubes is close to 27 

160 and the particle volume fraction varies between 0.0055% and 0.55%. It is shown that the 28 

nanofluids behave as shear-thinning materials for high particle content. For lower particle 29 

content, the nanofluids are quite Newtonian. It is also observed that the relative viscosity of 30 

nanofluids at high shear rate does not vary with temperature. Moreover, the evolution of 31 

relative viscosity at high shear rate is well predicted by the Maron-Pierce model considering 32 

the effect of nanoparticles agglomerates. 33 

 34 
 35 
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 41 
 42 
Nomenclature 43 
 44 
L length of nanotubes 45 

d average diameter of nanotubes 46 

r aspect ratio of nanotube, with r = L/d 47 

µbf viscosity of base fluid 48 

µnf viscosity of nanofluid 49 

η intrinsic viscosity 50 

µr relative viscosity 51 

φ nanoparticle volume fraction 52 

φm maximum packing volume fraction 53 

φa effective volume fraction of aggregates 54 

a radius of nanoparticles 55 

aa effective radii of aggregates 56 

D fractal index 57 

 58 
1. Introduction 59 
 60 
Nanofluids are colloidal suspensions containing nanometer-sized particles of metals, oxides, 61 

carbides, nitrides, or nanotubes dispersed in a base fluid. The base fluid is usually a 62 

conventional fluid such as water, glycol, ethylene glycol, engine oil, etc. Over the past 63 

decade, nanofluids have attracted much interest owing to their high thermal conductivity and 64 

thermal performance compared to base fluids [1-6]. The thermal enhancement effects and the 65 

viscosity of nanofluids are strongly dependent on particle size and concentration, the nature of 66 

the base fluid, temperature and the presence of nanoclusters. 67 

From a practical point of view, the viscosity of nanofluids is an important property for 68 

applications involving fluid flow and it is used to calculate the required pumping power. The 69 

viscosity can change due to the addition of solid nanoparticles and can cause the increase of 70 

pressure drops, affecting the efficiency of energy systems. It is also closely related to the 71 

stability and the structure of solid nanoparticles. The nanoparticle can agglomerate even at 72 

low concentration and also in the presence of a surfactant. In addition, it is well established 73 

that the shear-thinning behavior of nanofluids is mainly associated with the shape of 74 

nanoparticles and it is enhanced with the presence of nanoparticles agglomerates [7-11]. 75 
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Carbon nanotubes (CNTs) nanofluids have attracted much attention because of their 76 

remarkable properties. Indeed, it was proved that carbon nanotubes nanofluids have a high 77 

thermal conductivity, high electrical conductivity [12,13] and efficient mechanical properties 78 

[14]. The preliminary efforts were to treat and modify the surface of the CNTs to improve 79 

their solubility and to investigate the effect of surfactant and methods to disperse the 80 

nanotubes [15-18]. Nasiri et al. [18] have shown that the CNT structure and stability are 81 

strongly dependant on the functionalization and preparation methods of the nanosuspensions. 82 

The effect of chitosan as a dispersing agent on the viscosity of multi-wall carbon nanotubes 83 

(MWCNTs) dispersed in water was investigated by Phuoc et al. [19]. They showed that the 84 

rheological behavior of nanofluids is affected by both the quantity of chitosan and the CNT 85 

particle content.  86 

Garg et al. [20] studied the effect of dispersing energy (ultra-sonication) on the viscosity of 87 

MWCNT aqueous-based nanofluids. They showed that these nanofluids exhibit a shear 88 

thinning behavior which is not related to the presence of the surfactant used. They have also 89 

shown that sonication time is first associated with declustering of nanoclusters CNT 90 

nanofluid. Then, increasing the sonication time breaks the nanotubes leading to less marked 91 

shear-thinning behavior of the nanofluid because of the shorter sizes of the nanotubes. Yang 92 

et al. [21] have also shown the effects of frequency and time of ultrasonication on 93 

agglomerate size and aspect ratio of nanotubes dispersed in oil. They reported that the aspect 94 

ratio of the nanotubes decreases both the dispersing time and the energy increase, resulting in 95 

less viscous nanosuspensions. The shear-thinning behavior of CNT nanofluids was also 96 

observed by Kanagaraj et al. [22]. They have investigated the rheological behavior of CNT 97 

nanofluid under a CNT weight fraction of 1% and for a temperature range of 20 °C to 50°C 98 

and shear rate ranging from 0 to 1000s-1. Rheological study of Ponmozhi et al [23] has also 99 

demonstrated the shear-thinning behavior of CNT water-based nanofluids and the viscosity 100 

rise with CNT volume concentration at fixed shear rate and temperature. It was also shown 101 

that CNT water-based nanofluids can behave as a shear time dependent material due to the 102 

time dependency of agglomeration and disagglomeration kinetics under shear, which is linked 103 

to the structural network of the nanofluids [24]. Hence, the rheological behavior of CNT 104 

nanofluids can evolve following its preshear history [25]. The effects of base fluid and 105 

concentration on the rheological behavior of MWCNTs were investigated by Chen et al. [26]. 106 

They observed a Newtonian behavior for the studied MWCNTs dispersed in silicone oil, 107 

glycerol or water for all concentrations and temperatures. They also reported the effect of 108 

temperature; the viscosity of nanofluids decreases when the temperature increases. 109 
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As far as we know, there are few reports of the rheological properties of aqueous CNT 110 

nanofluids. To date, no attempts have been made to interpret the rheological data of such 111 

nanofluids with the presence of particle agglomerates. With this goal, the present paper 112 

reports an experimental investigation of the rheological properties of CNT water-based 113 

nanofluids stabilized by SDBS as surfactant. Here we focus our study on the influence of 114 

particle concentration and temperature. In the first part, we present the CNT water-based 115 

nanofluids used in the study. The experiments for rheological measurements are then detailed 116 

in section 3. In section 4, experimental results are presented and discussed in terms of the 117 

influence of particle content and temperature on the viscosity of CNT suspensions. We 118 

examine various theoretical viscosity models to predict the relative viscosity of CNT 119 

nanofluids at high shear rate and show that it is well represented by the modified Maron-120 

Pierce equation considering the influence of nanoparticles agglomerates.  121 

 122 
2. Materials 123 
 124 
2.1 Nanofluid 125 
 126 
A CNT water-based suspension was provided by Nanocyl (Belgium). According to Nanocyl’s 127 

specification, this suspension consists of MWCNTs (carbon purity 90%) dispersed in a base 128 

fluid of de-ionized water and surfactant from ultrasonication, and was stable for several 129 

months. The dimensions of the nanotubes are 1.5 µm in average length L and 9.2 nm in 130 

average diameter d respectively. This leads to an average aspect ratio r=L/d≈163. The density 131 

of the nanotubes is 1800 kg/m3. The weight fraction of nanotubes is 1%. This corresponds to a 132 

volume fraction of 0.55%. The surfactant used is sodium dodecyl benzene sulfonate (SDBS). 133 

The quantity of surfactant represents 2% of the total weight of the nanosuspension. As it is 134 

well known that carbon nanotubes have a hydrophobic surface, the surfactant is used to 135 

disperse and stabilize the particles and reduce the presence of aggregates [15]. The base fluid 136 

was also independently prepared and provided by Nanocyl.  137 

 138 

2.2 Suspensions preparation 139 

The suspension provided by Nanocyl was used as a starting material to prepare suspensions 140 

with various lower mass concentrations of 0.75, 0.5, 0.2, 0.1, 0.05 and 0.01%. This 141 

corresponds to a volume fraction of 0.418, 0.278, 0.111, 0.055, 0.027 and 0.00555% 142 

respectively. De-ionized water was used to dilute and prepare these suspensions. The 143 

appropriate mass of water was precisely measured and then introduced in the initial 144 
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suspension to reach the required mass (or volume) fraction in nanotubes. The mixture was 145 

stirred with a mixer for 30min and then remained at rest. The 30min stirring of each 146 

suspension was repeated 24hours later. Mechanical stirring is used to ensure uniform 147 

dispersion of nanoparticles and prevent initial agglomeration of nanoparticles in the base 148 

fluid. Thereafter, all the suspensions were stored in a container at ambient temperature. No 149 

observable sedimentation was noticed before rheological measurements. Following the same 150 

procedure, the initial base fluid was also diluted to obtain the base fluids corresponding to the 151 

different nanofluids previously prepared. The volume fraction of both tested nanofluids and 152 

corresponding base fluids are reported in Table 1. 153 

 154 

3. Experiments 155 

3.1 Characterization of nanofluids 156 

Scanning Electron Microscopy (SEM) characterization of the starting nanofluid suspension 157 

was preliminary performed to investigate the dispersion state of the nanoparticles within the 158 

base fluid, and evaluate the presence and the size of the aggregates [25]. As reported in Figure 159 

1, it is shown that the nanotubes are entangled and the starting nanofluid suspension is mainly 160 

in the form of aggregates with a maximal aggregate size about 4 times higher than the average 161 

length of the nanotubes. 162 

 163 
 164 
3.2 Rheological measurements 165 
 166 
Rheological measurements of nanofluid samples were performed using a stress controlled 167 

rheometer (Malvern Kinexus Pro) in a cone and plate configuration under controlled 168 

temperature. The temperature was controlled using a Peltier temperature control device 169 

located below the lower plate. Thermal clovers were also used to ensure constant temperature 170 

within the sample gap. For all experiments, the cone diameter was 60mm and the cone angle 171 

was 1°. 172 

The working temperature was varied from 0°C to 40°C with an interval of 10°C. The higher 173 

temperature was limited to 40°C because the surfactant addition in nanosuspensions limits 174 

applications at high temperatures [5,6]. It has been shown that above 60°C the bonding 175 

between surfactant and nanoparticles can be damaged [2,4]. The nanofluid will also lose its 176 

stability and sedimentation of nanoparticles will occur [3]. For example, SDBS was observed 177 

to fail at elevated temperatures in [1]. This was also observed from our experiments at 50°C, 178 

as the measured shear viscosity, which varies from one stress to another, indicates the 179 
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unstable structure under shear (not reported here). The limitation of high temperature was also 180 

used to prevent water evaporation from the sample due to the duration of the rheological 181 

experiments. 182 

Each tested volume sample was taken from its container with a syringe-type automatic pipette 183 

and transferred to the lower plate, taking care that no air bubbles were entrapped in the 184 

sample. Hence, the cone is displaced to achieve the required sample gap. The excess of 185 

sample was eventually removed. The sample was allowed to equilibrate for 5 min before 186 

starting the experiment. It should be mentioned that a new sample was used for each 187 

measurement and that both cone and plate were cleaned between each measurement. 188 

Moreover, no high mixing or sonification was applied to the nanofluids before taking it for 189 

rheological measurement. Therefore, no preshear was applied to the samples before testing 190 

them. As a consequence, it is considered that each sample has been subjected to the same 191 

shear history before being tested. Actually, rheological properties of CNT nanofluids are 192 

sensitive to preshear history effect [25]. 193 

Stress-controlled measurements were performed by imposing a logarithmic stress ramp under 194 

steady-state conditions with maximum step duration of 180s. Once a steady-state flow was 195 

achieved and maintained for 10s, the shear rate was measured. The applicability of the shear 196 

stress range was subject to a preliminary evaluation to ensure steady-state flow at low shear 197 

stress, and to avoid flow instability and sample ejection at high shear stress, in particular for 198 

suspensions with lower mass content in particles. The end value of the shear stress ramp may 199 

vary following the tested suspension, and was set in order to reach a shear rate of 1000s-1 for 200 

each nanosuspension. The experiments were also repeated at least once to both verify the 201 

repeatability of the shear viscosity measurement and the suspension stability with time.  202 

Following the same experimental procedure, another series of experiments were conducted to 203 

evaluate the rheological behavior of the base fluids corresponding to the nanofluids with 204 

different volume fraction. The torque resolution of the rheometer is 0.1 nNm. This means that 205 

the uncertainty of shear stress with the cone and plate geometry used is 1.7 10-3 Pa. The 206 

angular velocity resolution is at least 10 nrad/s. The uncertainty of shear rate, which only 207 

depends on angular velocity and cone angle, is less than 5.73 10-7 s-1. This leads to an 208 

uncertainty in apparent viscosity less than 4% within the shear rate range investigated. 209 

 210 

4. Results and discussion 211 

 212 

4.1 Viscosity measurement validation and viscosity of base fluids 213 
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To evaluate the rheometer uncertainty and the experimental procedure, distilled water was 214 

tested at 20°C following the procedure described here before and for two replicates. As 215 

expected, distilled water exhibits a Newtonian behavior within the shear rate range 216 

investigated. The viscosity value of distilled water was 1.0345, which closely matches with its 217 

theoretical values at 20°C. The relative deviation is less than 3.5%. This is of the same order 218 

of magnitude as the experimental uncertainty.  219 

Figure 2 reports the shear viscosity of the base fluid for the starting nanofluid at 0.55% in 220 

volume concentration of nanoparticles. It is observed from figure 2 that this base fluid 221 

behaves in Newtonian manner, as the apparent viscosity is constant within the shear rate range 222 

investigated.  The shear viscosity value of this base fluid at 20°C is 1.129mPa.s. This is higher 223 

than the viscosity of de-ionized water, showing the influence of SDBS. It is also shown from 224 

figure 1 that the viscosity of the base fluid decreases when the temperature is increased. 225 

The shear viscosity of the base fluid of the nanofluid at 0.0055% in volume fraction of 226 

nanoparticles is reported in figure 3. We observe than this base fluid is also Newtonian as the 227 

shear viscosity is constant within the shear rate range investigated and its viscosity is very 228 

close to the one of de-ionized water. A similar effect of temperature increase is also obtained 229 

for the viscosity of this base fluid. Too, a Newtonian behavior for all tested base fluids is thus 230 

observed. 231 

In Table 1, the shear viscosities of all base fluids (corresponding to all tested nanofluids) are 232 

given as a function of volume fraction in SDBS. Table 1 shows that, for all the tested 233 

temperatures, the shear viscosity of base fluids slowly decreases with the decrease of SDBS 234 

volume fraction. This can be explained by the dilution of the base fluids and the reduction of 235 

the presence of SDBS. When the volume fraction of SDBS is lower than 0.169%, the shear 236 

viscosity of the base fluid is quite constant and tends to the viscosity of water. As reported 237 

before, when the temperature increases, the shear viscosity of the base fluids decreases. 238 

 239 

4.2 Viscosity of nanofluids: Influence of concentration and temperature 240 

Figure 4 reports the evolution of the shear viscosity depending on shear rate for CNT 241 

nanofluid at 0.278% in volume fraction and for all the tested temperatures. Figure 4 shows 242 

that the nanofluid behaves as a shear-thinning fluid as the shear viscosity decreases when the 243 

shear rate increases. The good agreement between two replicates of rheological measurement 244 

for this nanofluid at 10°C can also be noted in figure 4. This shows the repeatability of the 245 

measurement and the stability of the nanofluid. Similar trends were obtained for all nanofluids 246 

and temperatures. 247 
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In figure 5, the shear viscosity of CNT nanofluid at 0.0055% in volume fraction is plotted 248 

against shear rate. Comparison of figure 4 and 5 shows that the rheological behavior of 249 

nanofluids is strongly dependent on the volume fraction of nanotubes within the nanofluids. 250 

This trend can also be shown by figure 6, when we compare the shear viscosity of all 251 

nanofluids at 20°C. In figure 6 we observe that the higher the concentration, the higher the 252 

shear-thinning behavior and the extent of the shear-thinning region. The transition between 253 

shear-thinning behavior and Newtonian behavior of the nanofluids is for a volume fraction of 254 

0.055%. Figure 5 also shows that the shear viscosity increases with CNT concentration for a 255 

given shear rate. It should be noted that the nanofluid with lower concentration have lower 256 

shear viscosity that of the base fluid. This effect is probably due to the lubricative effect of 257 

nanoparticles [26].  258 

It is shown from figures 4 and 5 that temperature has a strong effect on the rheological 259 

properties of CNT nanofluids. Actually, the nanofluids viscosity decreases with increasing 260 

temperature, as generally reported for a wide class of nanofluids and previously observed for 261 

the base fluids. 262 

As reported in the literature, the shear-thinning effect, in addition to the effect of nanotubes 263 

length, can be attributed to the disagglomeration of the nanotube clusters and the alignment of 264 

the agglomerates and nanotubes during shear, resulting in less viscous force.  265 

It can be noted that the shear-thinning behavior of the studied CNT nanofluids is stronger than 266 

the one reported by Kanagaraj et al. [22], which indicates a great effect of the aspect ratio and 267 

the agglomerates network of the nanotubes on the shear viscosity. In the present work, the 268 

aspect ratio of the nanotubes is higher than the aspect ratio (r = L/d≈8) of the nanoparticles 269 

used in [22]. Our results are also consistent with the work of Ding et al. [27], which showed 270 

the shear-thinning behavior of aqueous suspension of carbon nanotubes at 20 and 40°C within 271 

the shear rate range 1 to 1000s-1. Shear-thinning of MWCNT-based aqueous nanofluids was 272 

also observed by Garg et al. [20] at 15 and 30°C for low shear rate range between 0 and 80 s-1 273 

and by Maré et al. [28] for temperatures ranging from 0°C to 10°C. 274 

Figure 7 reports the relative viscosity at a high shear rate of 1000s-1, defined as the ratio of the 275 

CNT nanofluid viscosity at high shear rate to the viscosity of the base fluid at the same shear 276 

rate, as a function of all tested temperatures. While nanofluids and base fluids are strongly 277 

dependent on temperature, it is also observed from figure 7 that the relative viscosity is quite 278 

constant for the tested temperatures under the experimental uncertainty. The relative viscosity 279 

of nanofluids at a high shear rate in function of nanofluid volume fraction is plotted in Figure 280 

8. This figure shows that the viscosity enhancement due to the presence of nanotubes is 281 
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mainly evidenced for nanoparticles volume fraction of 0.055% and that the viscosity of 282 

nanofluid is 6 times higher than the viscosity of the base fluid for nanoparticles volume 283 

fraction of 0.55%. The influence of volume fraction on the enhancement of relative viscosity 284 

of nanofluids is investigated in the following section, considering first the shape of the 285 

nanotubes and then the presence of agglomerates network.  286 

 287 

4.3 Viscosity models: prediction and comparison with experimental data 288 

 289 

Some theoretical formulas have been developed to relate the relative viscosity of non-290 

aggregating colloidal suspensions or nanofluids to particle volume fraction. They are derived 291 

from the pioneering model of Einstein [29]. This model is based on the assumption of viscous 292 

fluid containing non-interacting hard spheres under particle volume fraction less than 1%.  293 

 294 

( )φµ 5.21+=r     (1) 295 

 296 
where µr is the relative viscosity as defined by the ratio of the viscosity of the nanofluid µn to 297 

the viscosity of the base fluid µbf, and φ is the volume fraction of nanoparticle in base fluid.  298 

Later, Einstein’s equation was extended by Brinkman [30] to suspensions with moderate 299 

particle volume fraction, typically less than 4%. 300 

( ) 5.21

1

φ
µ

−
=r     (2) 301 

 302 

Considering the Brownian motion of nanoparticles and the interaction between a pair of 303 

particles, Batchelor [31] proposed the following equation. 304 

 305 

( )...1 2 +++= φηφµ Hr k    (3) 306 

 307 
In equation (3), η is the intrinsic viscosity and kH is the Huggins’ coefficient. The values of η 308 

and kH are 2.5 and 6.5, respectively, for spherical particles. 309 

 310 

For higher particle volume fraction, the Krieger-Dougherty relationship is considered as an 311 

efficient model to relate the viscosity of non-aggregating colloidal suspensions or nanofluids 312 

to particle volume fraction. This relationship is written as follows [32]: 313 
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 314 

m

m
r

ηφ

φ
φµ

−









−= 1 (4) 315 

 316 

where η is the Einstein coefficient, η=2.5, and φm is the particle volume fraction when the 317 

viscosity is infinite, defined as the maximum volume fraction. Typically, φm ≈ 0.65 for 318 

random packing of hard spheres. 319 

An equation with the same functional form was derived by Maron and Pierce from 320 

consideration of the Ree-Eyring flow equations [33,34]. Noting that equation 5 was obtained 321 

from a minimum principle applied to the energy dissipated by viscous effects. 322 

 323 

2

1
−









−=

m
r φ

φµ (5) 324 

 325 

The previous two equations reduce to the Einstein and Batchelor equations at first and second 326 

order, respectively. The Maron-Pierce equation can also be used to predict the relative 327 

viscosity of fiber suspensions, the maximum volume fraction φm depending also on the aspect 328 

ratio of the fibers [35]. So, the value of the maximum volume fraction decreases with 329 

increasing aspect ratio. A value of φm ≈ 0.0361 is here obtained due to the aspect ratio of the 330 

nanotubes used [35]. This is very low in comparison of the maximum volume fraction of 331 

spheres, thus showing the effect of nanoparticle shape. 332 

As mentioned before, many nanoparticles have a non-spherical shape. So Brenner and 333 

Condiff [36] have also developed a viscosity model to consider the shape effects in dilute 334 

suspension. So, for rod-like particles, the Brenner-Condiff equation is applicable for a volume 335 

fraction up to 1/r2 (this corresponds here to 0.004% in volume) and for viscosity at high shear 336 

rate, where r is the aspect ratio of nanoparticles. 337 

 338 

( )ηφµ += 1r     (6) 339 
 340 
with 341 
 342 

rrr

r 872.1

5.12ln

5.0
2

5.12ln

312.0 −
−

−+
−

=η   (7) 343 

 344 
 345 
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In the presence of agglomerates, it was reported that the relative viscosity of aggregating 346 

suspensions or nanofluids can be modelled from the application of the fractal concept [37]. 347 

So, the geometry of the aggregates can be described as a fractal like structure with a fractal 348 

index D. Assuming that the aggregates density change with the radial position and is not 349 

uniform in the nanofluid [8], the effective volume fraction of nanoparticles, denoted φa, is 350 

written as follows 351 

 352 

D

a
a a

a
−








=
3

φφ  (8) 353 

 354 

where aa and a are the aggregates and primary nanoparticles radii respectively.  355 

 356 

This leads to the modified Krieger-Dougherty formula given by equation (9) which was 357 

successfully applied to model the viscosity enhancement of aggregating nanofluids made of 358 

spherical particles [11,38] and rod-like particles [8,9,39]. 359 

 360 

m

m

a
r

ηφ

φ
φµ

−









−= 1  (9) 361 

 362 

As a consequence, the modified Maron-Pierce equation can also be written [40]: 363 

 364 

2

1
−









−=

m

a
r φ

φµ  (10) 365 

 366 

As previously reported [8], the fractal index D can depend on the type of aggregation, particle 367 

size and shape and shear flow condition. So, for aggregating nanofluids with spherical 368 

particles, D has been reported to be between 1.6 and 2.3 [41-43]. However, a value of 1.8 is 369 

typically used [40,44]. For aggregating nanofluids with nanorods or nanotubes, D varies 370 

between 1.5 and 2.45 as reported by [39]. Mohraz et al. [45] showed that the fractal index 371 

depends on the aspect ratio of nanorods. They reported that D increases from 1.8 to 2.3 for r 372 

ranging from 1 to 30.6 respectively. A value of 2.1 is generally taken [8,45,46]. Such a value 373 

was also obtained by Chatterjee and Krishnamoorti [47] for single walled carbon nanotubes 374 

(SWCNTs) dispersed in PEO, and by Khalkhal and Carreau [48] for MWCNTs dispersed in 375 
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epoxy resin, and a value of 2.05 was reported by Chen et al. [49] for SWCNTs dispersed in 376 

aqueous supensions. Based on the above, a value of 2.1 was taken for the fractal index in the 377 

present work. 378 

Comparison of the experimental data with the predicted data from the above formulas is 379 

shown in figure 8. It is clear that the Einstein, Brinkman, Brenner and Condiff and Maron-380 

Pierce formulas cannot predict the relative viscosities of the CNT water based nanofluids for 381 

volume concentration exceeding 0.027%. In addition, the difference between the experimental 382 

and the computed values increases with the volume fraction. This result shows the strong 383 

influence of agglomerates which significantly increase the effective volume of the nanotubes 384 

and thus the relative viscosity of the nanofluid. This also confirms the conclusions reported 385 

previously from the steady state apparent viscosity curves. 386 

Nevertheless, figure 8 shows excellent agreement between the prediction of the modified 387 

model of Maron-Pierce and experimental data when aa/a ≈ 4.41, as the average deviation of 388 

experimental relative viscosity compared to the model is less than 5%. If a is taken as the 389 

average lenght of the nanotubes, this leads to a maximum aggregates size close to 6.6 nm, 390 

which is in quite good agreement with the maximum size of CNT aggregates determined from 391 

SEM analyses [25]. A comparison of our results with the data of Chen et al. [38] (EG-392 

spherical TiO2, d=25nm aa/a=3.34, D=1.8, φm=0.605), the data of Kole and Dey [11] (gear oil-393 

spherical CuO, d=40nm, aa/a=7.15, D=1.7, φm=0.605) and the data of Chen et al. [8] (EG-394 

TNT, r≈10, aa/a=9.46, D=2.1, φm=0.3), suggests that the size and the aspect ratio are an 395 

important factor in the formation of nanoclusters within the nanofluids in spite of the use of 396 

surfactant. This shows the influence of particle length on the entanglement of the 397 

nanoparticles, the presence and the size of agglomerates. 398 

 399 

5. Conclusion 400 

We have presented an experimental investigation of the rheological properties of water-based 401 

nanofluids containing carbon nanotubes (CNT) with large aspect ratio. The influence of 402 

particle concentration and temperature on the viscosity of the nanofluids was discussed and 403 

the nanofluids were shown to behave as a shear-thinning material at high particle content. For 404 

lower particle content, the nanofluids behave in Newtonian manner. It was also reported that 405 

temperature affects the viscosity of nanofluids and base fluids but that the relative viscosity of 406 

nanofluids at high shear rate is independent of temperature. The relative viscosity of 407 

nanofluids at high shear rate is strongly enhanced with their particle content showing the 408 
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presence of aggregates, and can be modelled by the Maron-Pierce equation considering the 409 

influence of nanoparticles agglomerates. An average maximum size of aggregates was thus 410 

evaluated and favourably compared with SEM characterization previously done. The results 411 

of this experimental study also show the relevance of the rheological characterization 412 

concerning the presence and the structural information of nanofluids aggregates and can 413 

contribute to the understanding of the thermal properties of such materials. 414 

 415 
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Figure Captions 586 
 587 
Figure 1. SEM image taken from dried starting nanofluid [25] (This figure was reprinted with 588 
the permission of Bentham Science Publishers) 589 
 590 
Figure 2. Apparent shear viscosity of the base fluid corresponding to the nanofluid with 591 
0.55% in CNT volume fraction – Influence of temperature. 592 
 593 
Figure 3. Apparent shear viscosity of the base fluid corresponding to the nanofluid with 594 
0.0055% in CNT volume fraction– Influence of temperature. 595 
 596 
Figure 4. Apparent shear viscosity of nanofluid with 0.278% in CNT volume fraction – 597 
Influence of temperature.  598 
 599 
Figure 5. Apparent shear viscosity of nanofluid with 0.0055% in CNT volume fraction – 600 
Influence of temperature.  601 
 602 
Figure 6. Viscosity of nanofluids at 20°C as a function of shear rate for different volume 603 
fraction of nanotubes. 604 
 605 
Figure 7. Relative viscosity of nanofluids as a function of particle volume content and 606 
temperature. 607 
 608 
Figure 8. Relative viscosity of nanofluids as a function of particle volume content and 609 
temperature - Comparison of experimental data and viscosity models. 610 
 611 
 612 
Table Caption 613 
 614 
Table 1. Volume fraction of tested nanofluids and corresponding base fluids, and shear 615 
viscosity of base fluids as a function of SDBS volume fraction and temperatures. 616 
 617 

618 
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 619 
 620 
Figure 1. SEM image taken from dried starting nanofluid [25] (This figure was reprinted with 621 
the permission of Bentham Science Publishers) 622 
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Figure 2. Apparent shear viscosity of the base fluid corresponding to the nanofluid with 628 
0.55% in volume fraction – Influence of temperature. 629 
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Figure 3. Apparent shear viscosity of the base fluid corresponding to the nanofluid with 633 
0.0055% in volume fraction– Influence of temperature. 634 
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Figure 4. Apparent shear viscosity of nanofluid with 0.278% in CNT volume fraction – 639 
Influence of temperature.  640 
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Figure 5. Apparent shear viscosity of nanofluid with 0.0055% in CNT volume fraction – 644 
Influence of temperature.  645 
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Figure 6. Viscosity of nanofluids at 20°C as a function of shear rate for different volume 649 
fraction of nanotubes. 650 
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Figure 7. Relative viscosity of nanofluids as a function of particle volume content and 654 
temperature.655 
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 657 
Figure 8. Relative viscosity of nanofluids as a function of particle volume content and 658 
temperature - Comparison of experimental data and viscosity models. 659 
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Table 1. Volume fraction of tested nanofluids and corresponding base fluids, and shear 661 
viscosity of base fluids as a function of SDBS volume fraction and temperatures. 662 
 663 

Volume fraction (%) Shear viscosity of base fluids (mPa.s) 
CNT SDBS 0 (°C) 10 (°C) 20 (°C) 30 (°C) 40 (°C) 
0.557 1.697 1.98 1.478 1.129 0.877 0.665 
0.418 1.272 1.975 1.454 1.102 0.852 0.657 
0.278 0.847 1.97 1.401 1.077 0.828 0.648 
0.111 0.338 1.964 1.391 1.046 0.799 0.637 
0.055 0.169 1.962 1.386 1.036 0.789 0.633 
0.0277 0.084 1.961 1.383 1.027 0.784 0.632 
0.0055 0.0169 1.96 1.382 1.026 0.780 0.630 

 664 


