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Abstract:

Experimental results on the steady state viscadibarbon nanotubes water-based nanofluids
are presented considering the influence of paritcleme fraction and temperature ranging
from O to 40°C. The suspensions consist of mulliedacarbon nanotubes dispersed in de-
ionized water and they are stabilized by a surfactBhe aspect ratio of nanotubes is close to
160 and the particle volume fraction varies betw@®955% and 0.55%. It is shown that the
nanofluids behave as shear-thinning materials fgh Iparticle content. For lower particle
content, the nanofluids are quite Newtonian. lalso observed that the relative viscosity of
nanofluids at high shear rate does not vary withperature. Moreover, the evolution of
relative viscosity at high shear rate is well pcgelil by the Maron-Pierce model considering
the effect of nanoparticles agglomerates.
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Nomenclature

L length of nanotubes

d average diameter of nanotubes

r aspect ratio of nanotube, with r = L/d
Ups Viscosity of base fluid

Mt Viscosity of nanofluid

n intrinsic viscosity

M relative viscosity

@ nanopatrticle volume fraction

@n maximum packing volume fraction
@, effective volume fraction of aggregates
a radius of nanopatrticles

a, effective radii of aggregates

D fractal index

1. Introduction

Nanofluids are colloidal suspensions containingomagter-sized particles of metals, oxides,
carbides, nitrides, or nanotubes dispersed in & Wlasd. The base fluid is usually a
conventional fluid such as water, glycol, ethylegigcol, engine oil, etc. Over the past
decade, nanofluids have attracted much interestgta their high thermal conductivity and
thermal performance compared to base fluids [IFB¢ thermal enhancement effects and the
viscosity of nanofluids are strongly dependent artiple size and concentration, the nature of
the base fluid, temperature and the presence afchasters.

From a practical point of view, the viscosity ofneéluids is an important property for
applications involving fluid flow and it is used talculate the required pumping power. The
viscosity can change due to the addition of solidaparticles and can cause the increase of
pressure drops, affecting the efficiency of enesggtems. It is also closely related to the
stability and the structure of solid nanoparticleee nanoparticle can agglomerate even at
low concentration and also in the presence of tastant. In addition, it is well established
that the shear-thinning behavior of nanofluids isinty associated with the shape of

nanoparticles and it is enhanced with the presefinanoparticles agglomerates [7-11].
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Carbon nanotubes (CNTs) nanofluids have attractecdhmattention because of their
remarkable properties. Indeed, it was proved thaban nanotubes nanofluids have a high
thermal conductivity, high electrical conductiviti2,13] and efficient mechanical properties
[14]. The preliminary efforts were to treat and nipdhe surface of the CNTs to improve
their solubility and to investigate the effect afrfactant and methods to disperse the
nanotubes [15-18]. Nasiri et al. [18] have showat tthe CNT structure and stability are
strongly dependant on the functionalization anggration methods of the nanosuspensions.
The effect of chitosan as a dispersing agent orviseosity of multi-wall carbon nanotubes
(MWCNTSs) dispersed in water was investigated bydehet al. [19]. They showed that the
rheological behavior of nanofluids is affected mthbthe quantity of chitosan and the CNT
particle content.

Garg et al. [20] studied the effect of dispersimgrgy (ultra-sonication) on the viscosity of
MWCNT aqueous-based nanofluids. They showed thesethnanofluids exhibit a shear
thinning behavior which is not related to the preseof the surfactant used. They have also
shown that sonication time is first associated waéclustering of nanoclusters CNT
nanofluid. Then, increasing the sonication timeaksethe nanotubes leading to less marked
shear-thinning behavior of the nanofluid becausthefshorter sizes of the nanotubes. Yang
et al. [21] have also shown the effects of freqyemnd time of ultrasonication on
agglomerate size and aspect ratio of nanotubesrmdisp in oil. They reported that the aspect
ratio of the nanotubes decreases both the disetigne and the energy increase, resulting in
less viscous nanosuspensions. The shear-thinnihgvize of CNT nanofluids was also
observed by Kanagaraj et al. [22]. They have ingastd the rheological behavior of CNT
nanofluid under a CNT weight fraction of 1% and éotemperature range of 20 °C to 50°C
and shear rate ranging from 0 to 1080Rheological study of Ponmozhi et al [23] has also
demonstrated the shear-thinning behavior of CNTemwhased nanofluids and the viscosity
rise with CNT volume concentration at fixed sheaterand temperature. It was also shown
that CNT water-based nanofluids can behave as a $imee dependent material duethe
time dependency @&gglomeration and disagglomeration kinetics untieag which is linked

to the structural network of the nanofluids [24]erde, the rheological behavior of CNT
nanofluids can evolve following its preshear higt¢25]. The effects of base fluid and
concentration on the rheological behavior of MWCNueze investigated by Chen et al. [26].
They observed a Newtonian behavior for the stud\BICNTs dispersed in silicone oil,
glycerol or water for all concentrations and tenap@res. They also reported the effect of

temperature; the viscosity of nanofluids decreagen the temperature increases.
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As far as we know, there are few reports of theoldgical properties of aqueous CNT
nanofluids. To date, no attempts have been madetégoret the rheological data of such
nanofluids with the presence of particle agglome=atWVith this goal, the present paper
reports an experimental investigation of the rhegal properties of CNT water-based
nanofluids stabilized by SDBS as surfactant. Heeefacus our study on the influence of
particle concentration and temperature. In the fo@t, we present the CNT water-based
nanofluids used in the study. The experimentstieological measurements are then detailed
in section 3. In section 4, experimental results presented and discussed in terms of the
influence of particle content and temperature oa ¥iscosity of CNT suspensions. We
examine various theoretical viscosity models todjmte the relative viscosity of CNT
nanofluids at high shear rate and show that it el wepresented by the modified Maron-

Pierce equation considering the influence of nartab@s agglomerates.

2. Materials
2.1 Nanofluid

A CNT water-based suspension was provided by Ndr{Beygium). According to Nanocyl's
specification, this suspension consists of MWCNdarl§on purity 90%) dispersed in a base
fluid of de-ionized water and surfactant from wtaication, and was stable for several
months. The dimensions of the nanotubes are 1.Smuaverage length L and 9.2 nm in
average diameter d respectively. This leads tovarage aspect ratio r=12#d63. The density
of the nanotubes is 1800 kgnThe weight fraction of nanotubes is 1%. This esponds to a
volume fraction of 0.55%. The surfactant used @iwsm dodecyl benzene sulfonate (SDBS).
The quantity of surfactant represents 2% of thel takight of the nanosuspension. As it is
well known that carbon nanotubes have a hydrophshitace, the surfactant is used to
disperse and stabilize the particles and reducerésence of aggregates [15]. The base fluid
was also independently prepared and provided by&ian

2.2 Suspensions preparation

The suspension provided by Nanocyl was used aaréngt material to prepare suspensions
with various lower mass concentrations of 0.75,, @2, 0.1, 0.05 and 0.01%. This
corresponds to a volume fraction of 0.418, 0.278,1D, 0.055, 0.027 and 0.00555%
respectively. De-ionized water was used to dilutel grepare these suspensions. The
appropriate mass of water was precisely measuret then introduced in the initial
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suspension to reach the required mass (or voluraejidn in nanotubes. The mixture was
stirred with a mixer for 30min and then remainedredt. The 30min stirring of each

suspension was repeated 24hours later. Mechanitahg is used to ensure uniform

dispersion of nanoparticles and prevent initial laggration of nanoparticles in the base
fluid. Thereafter, all the suspensions were stoned container at ambient temperature. No
observable sedimentation was noticed before rhe@bgreasurements. Following the same
procedure, the initial base fluid was also dilute@btain the base fluids corresponding to the
different nanofluids previously prepared. The votufraction of both tested nanofluids and

corresponding base fluids are reported in Table 1.

3. Experiments

3.1 Characterization of nanofluids

Scanning Electron Microscopy (SEM) characterizaidrthe starting nanofluid suspension
was preliminary performed to investigate the disymer state of the nanoparticles within the
base fluid, and evaluate the presence and th@&the aggregates [25]. As reported in Figure
1, it is shown that the nanotubes are entangledtandtarting nanofluid suspension is mainly
in the form of aggregates with a maximal aggregate about 4 times higher than the average

length of the nanotubes.

3.2 Rheological measurements

Rheological measurements of nanofluid samples weréormed using a stress controlled
rheometer (Malvern Kinexus Pro) in a cone and pledafiguration under controlled
temperature. The temperature was controlled usingeltier temperature control device
located below the lower plate. Thermal clovers wadse used to ensure constant temperature
within the sample gap. For all experiments, theecdiameter was 60mm and the cone angle
was 1°.

The working temperature was varied from 0°C to 4@i an interval of 10°C. The higher
temperature was limited to 40°C because the sariacddition in nanosuspensions limits
applications at high temperatures [5,6]. It hasnbsbkown that above 60°C the bonding
between surfactant and nanoparticles can be danjaggd The nanofluid will also lose its
stability and sedimentation of nanoparticles widtor [3]. For example, SDBS was observed
to fail at elevated temperatures in [1]. This ws® @bserved from our experiments at 50°C,

as the measured shear viscosity, which varies fom@ stress to another, indicates the
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unstable structure under shear (not reported hehe)limitation of high temperature was also
used to prevent water evaporation from the sampke td the duration of the rheological
experiments.

Each tested volume sample was taken from its auertavith a syringe-type automatic pipette
and transferred to the lower plate, taking card tia air bubbles were entrapped in the
sample. Hence, the cone is displaced to achievadheired sample gap. The excess of
sample was eventually removed. The sample was etloiw equilibrate for 5 min before
starting the experiment. It should be mentioned thanew sample was used for each
measurement and that both cone and plate were ecleartween each measurement.
Moreover, no high mixing or sonification was apgli® the nanofluids before taking it for
rheological measurement. Therefore, no preshearappbed to the samples before testing
them. As a consequence, it is considered that saciple has been subjected to the same
shear history before being tested. Actually, rhgwlal properties of CNT nanofluids are
sensitive to preshear history effect [25].

Stress-controlled measurements were performed pgsimg a logarithmic stress ramp under
steady-state conditions with maximum step duratbri80s. Once a steady-state flow was
achieved and maintained for 10s, the shear ratememsured. The applicability of the shear
stress range was subject to a preliminary evalondtoensure steady-state flow at low shear
stress, and to avoid flow instability and samplkcepn at high shear stress, in particular for
suspensions with lower mass content in particleég. dnhd value of the shear stress ramp may
vary following the tested suspension, and wasrsetder to reach a shear rate of 100fig
each nanosuspension. The experiments were alsateepat least once to both verify the
repeatability of the shear viscosity measuremedtithe suspension stability with time.
Following the same experimental procedure, anatbges of experiments were conducted to
evaluate the rheological behavior of the base $luwidrresponding to the nanofluids with
different volume fraction. The torque resolutiontloé rheometer is 0.1 nNm. This means that
the uncertainty of shear stress with the cone date meometry used is 1.7 i0Pa. The
angular velocity resolution is at least 10 nrad/se uncertainty of shear rate, which only
depends on angular velocity and cone angle, is fless 5.73 10 s'. This leads to an

uncertainty in apparent viscosity less than 4% withe shear rate range investigated.
4. Results and discussion

4.1 Viscosity measurement validation and viscosityf base fluids
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To evaluate the rheometer uncertainty and the @rpeatal procedure, distilled water was
tested at 20°C following the procedure describerk Heefore and for two replicates. As
expected, distilled water exhibits a Newtonian b&bra within the shear rate range
investigated. The viscosity value of distilled wateas 1.0345, which closely matches with its
theoretical values at 20°C. The relative deviai®fess than 3.5%. This is of the same order
of magnitude as the experimental uncertainty.

Figure 2 reports the shear viscosity of the bagsiel flor the starting nanofluid at 0.55% in
volume concentration of nanoparticles. It is obsdnfrom figure 2 that this base fluid
behaves in Newtonian manner, as the apparent Wigi®sonstant within the shear rate range
investigated. The shear viscosity value of thisebifuid at 20°C is 1.129mPa.s. This is higher
than the viscosity of de-ionized water, showingitifeience of SDBS. It is also shown from
figure 1 that the viscosity of the base fluid deses when the temperature is increased.

The shear viscosity of the base fluid of the nandflat 0.0055% in volume fraction of
nanoparticles is reported in figure 3. We obsehantthis base fluid is also Newtonian as the
shear viscosity is constant within the shear ratege investigated and its viscosity is very
close to the one of de-ionized water. A similaeeffof temperature increase is also obtained
for the viscosity of this base fluid. Too, a Newtmbehavior for all tested base fluids is thus
observed.

In Table 1, the shear viscosities of all base #uicbrresponding to all tested nanofluids) are
given as a function of volume fraction in SDBS. Bali shows that, for all the tested
temperatures, the shear viscosity of base fluid&lgldecreases with the decrease of SDBS
volume fraction. This can be explained by the lutof the base fluids and the reduction of
the presence of SDBS. When the volume fraction@BS is lower than 0.169%, the shear
viscosity of the base fluid is quite constant aedds to the viscosity of water. As reported

before, when the temperature increases, the siszasity of the base fluids decreases.

4.2 Viscosity of nanofluids: Influence of concentrion and temperature

Figure 4 reports the evolution of the shear viscosity deljpgg on shear rate for CNT
nanofluid at 0.278% in volume fraction and for tlé tested temperatures. Figure 4 shows
that the nanofluid behaves as a shear-thinning tsi the shear viscosity decreases when the
shear rate increases. The good agreement betweemreplhicates of rheological measurement
for this nanofluid at 10°C can also be noted irufeg4. This shows the repeatability of the
measurement and the stability of the nanofluid.il@mtrends were obtained for all nanofluids

and temperatures.
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In figure 5, the shear viscosity of CNT nanofluid0a0055% in volume fraction is plotted
against shear rate. Comparison of figure 4 and dwshthat the rheological behavior of
nanofluids is strongly dependent on the volumetimacof nanotubes within the nanofluids.
This trend can also be shown by figure 6, when wepare the shear viscosity of all
nanofluids at 20°C. In figure 6 we observe that ltigher the concentration, the higher the
shear-thinning behavior and the extent of the stieaning region. The transition between
shear-thinning behavior and Newtonian behaviohefrianofluids is for a volume fraction of
0.055%. Figure 5 also shows that the shear vigcositeases with CNT concentration for a
given shear rate. It should be noted that the raidofvith lower concentration have lower
shear viscosity that of the base fluid. This effiscprobably due to the lubricative effect of
nanoparticles [26].

It is shown from figures 4 and 5 that temperatuas A strong effect on the rheological
properties of CNT nanofluids. Actually, the nanadki viscosity decreases with increasing
temperature, as generally reported for a wide adsmnofluids and previously observed for
the base fluids.

As reported in the literature, the shear-thinniffgat, in addition to the effect of nanotubes
length, can be attributed to the disagglomeratioih@ nanotube clusters and the alignment of
the agglomerates and nanotubes during shear,ingsultless viscous force.

It can be noted that the shear-thinning behavighefstudied CNT nanofluids is stronger than
the one reported by Kanagaraj et al. [22], whiahdates a great effect of the aspect ratio and
the agglomerates network of the nanotubes on tharskiscosity. In the present work, the
aspect ratio of the nanotubes is higher than tpecgatio (r = L/é8) of the nanopatrticles
used in [22]. Our results are also consistent wWithwork of Ding et al. [27], which showed
the shear-thinning behavior of agueous suspengioarbon nanotubes at 20 and 40°C within
the shear rate range 1 to 1080Shear-thinning of MWCNT-based aqueous nanofluids
also observed by Garg et al. [20] at 15 and 30tdofw shear rate range between 0 and 80 s
and by Maré et al. [28] for temperatures rangiognfl0°C to 10°C.

Figure 7 reports the relative viscosity at a higha rate of 10005 defined as the ratio of the
CNT nanofluid viscosity at high shear rate to tiecosity of the base fluid at the same shear
rate, as a function of all tested temperatures.l&manofluids and base fluids are strongly
dependent on temperature, it is also observed figume 7 that the relative viscosity is quite
constant for the tested temperatures under theriexgretal uncertainty. The relative viscosity
of nanofluids at a high shear rate in function ahofluid volume fraction is plotted in Figure

8. This figure shows that the viscosity enhancentrég to the presence of nanotubes is
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mainly evidenced for nanoparticles volume fractimin0.055% and that the viscosity of
nanofluid is 6 times higher than the viscosity bé tbase fluid for nanoparticles volume
fraction of 0.55%. The influence of volume fraction the enhancement of relative viscosity
of nanofluids is investigated in the following Seaot considering first the shape of the

nanotubes and then the presence of agglomeraigeriket
4.3 Viscosity models: prediction and comparison wit experimental data

Some theoretical formulas have been developed laiereéhe relative viscosity of non-
aggregating colloidal suspensions or nanofluidgadicle volume fraction. They are derived
from the pioneering model of Einstein [29]. Thisdebis based on the assumption of viscous

fluid containing non-interacting hard spheres unmgticle volume fraction less than 1%.

#, =(1+25¢) (1)

wherey, is the relative viscosity as defined by the ratighe viscosity of the nanofluid, to
the viscosity of the base flujgy, and@is the volume fraction of nanoparticle in basedflu
Later, Einstein’s equation was extended by Brinknia®] to suspensions with moderate

particle volume fraction, typically less than 4%.

(2)

Considering the Brownian motion of nanoparticlesl dhe interaction between a pair of

particles, Batchelor [31] proposed the followingiation.

p, =+ np+k, g +..) 3)

In equation (3)n is the intrinsic viscosity andykis the Huggins’ coefficient. The valuespf

and k; are 2.5 and 6.5, respectively, for spherical pladi

For higher particle volume fraction, the Kriegeridterty relationship is considered as an
efficient model to relate the viscosity of non-aggating colloidal suspensions or nanofluids

to particle volume fraction. This relationship isitten as follows [32]:
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—1%n
u = [1—5] (4)

wheren is the Einstein coefficienfj=2.5, andq,, is the particle volume fraction when the
viscosity is infinite, defined as the maximum vokinfraction. Typically,@, = 0.65 for
random packing of hard spheres.

An equation with the same functional form was dedivby Maron and Pierce from
consideration of the Ree-Eyring flow equations 333, Noting that equation 5 was obtained
from a minimum principle applied to the energy ghased by viscous effects.

“, {1—3] (5)

m

The previous two equations reduce to the EinsteinBatdhelor equations at first and second
order, respectively. The Maron-Pierce equation cimo de used to predict the relative
viscosity of fiber suspensions, the maximum voldraetion ¢, depending also on the aspect
ratio of the fibers [35]. So, the value of the nmaxm volume fraction decreases with
increasing aspect ratio. A value @f~ 0.0361 is here obtained due to the aspect ratibeof
nanotubes used [35]. This is very low in comparisbrihe maximum volume fraction of
spheres, thus showing the effect of nanoparticipsh

As mentioned before, many nanoparticles have aspberical shape. So Brenner and
Condiff [36] have also developed a viscosity mottekconsider the shape effects in dilute
suspension. So, for rod-like particles, the Brerldendiff equation is applicable for a volume
fraction up to 1/ (this corresponds here to 0.004% in volume) amdicosity at high shear
rate, where r is the aspect ratio of nanopatrticles.

4, =1+n¢) (6)
with

0312 05 1872
n= +2- -
In2r -1.5 In2r -1.5 r

(7)

10
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In the presence of agglomerates, it was reportatl ttie relative viscosity of aggregating
suspensions or nanofluids can be modelled fromagiication of the fractal concept [37].
So, the geometry of the aggregates can be desaibedfractal like structure with a fractal
index D. Assuming that the aggregates density ahamigh the radial position and is not
uniform in the nanofluid [8], the effective voluniection of nanoparticles, denoteg, is

written as follows

o = w[a—j (8)
a

where gand a are the aggregates and primary nanopantadégespectively.

This leads to the modified Krieger-Dougherty forendiven by equation (9) which was
successfully applied to model the viscosity enharere of aggregating nanofluids made of
spherical particles [11,38] and rod-like partide®,39].

—11%n
u = [1—%] 9)

As a consequence, the modified Maron-Pierce equata also be written [40]:

“, =(1—ﬁj_ (10)

m

As previously reported [8], the fractal index D aepend on the type of aggregation, particle
size and shape and shear flow condition. So, fgremgting nanofluids with spherical
particles, D has been reported to be between &a&h[41-43]. However, a value of 1.8 is
typically used [40,44]. For aggregating nanofluidgh nanorods or nanotubes, D varies
between 1.5 and 2.45 as reported by [39]. Mohraal.€45] showed that the fractal index
depends on the aspect ratio of nanorods. Theytexptnat D increases from 1.8 to 2.3 for r
ranging from 1 to 30.6 respectively. A value of B enerally taken [8,45,46]. Such a value
was also obtained by Chatterjee and Krishnamodj for single walled carbon nanotubes
(SWCNTSs) dispersed in PEO, and by Khalkhal and €2ar{48] for MWCNTSs dispersed in

11
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epoxy resin, and a value of 2.05 was reported bgnGit al. [49] for SWCNTSs dispersed in
aqueous supensions. Based on the above, a vaflu& ofas taken for the fractal index in the
present work.

Comparison of the experimental data with the ptediaata from the above formulas is
shown in figure 8. It is clear that the EinsteinjnBman, Brenner and Condiff and Maron-
Pierce formulas cannot predict the relative visoesiof the CNT water based nanofluids for
volume concentration exceeding 0.027%. In additibe,difference between the experimental
and the computed values increases with the voluaidn. This result shows the strong
influence of agglomerates which significantly irese the effective volume of the nanotubes
and thus the relative viscosity of the nanofluithisTalso confirms the conclusions reported
previously from the steady state apparent viscasityes.

Nevertheless, figure 8 shows excellent agreemetwdss the prediction of the modified
model of Maron-Pierce and experimental data whgm~a4.41, as the average deviation of
experimental relative viscosity compared to the ebad less than 5%. If a is taken as the
average lenght of the nanotubes, this leads toanmuan aggregates size close to 6.6 nm,
which is in quite good agreement with the maximume ©f CNT aggregates determined from
SEM analyses [25]. A comparison of our results wite data of Chen et al. [38] (EG-
spherical TiQ, d=25nm ga=3.34, D=1.8,=0.605), the data of Kole and Dey [11] (gear oil-
spherical CuO, d=40nmya=7.15, D=1.7(,=0.605) and the data of Chen et al. [8] (EG-
TNT, r=10, @/a=9.46, D=2.1,0,=0.3), suggests that the size and the aspect aatican
important factor in the formation of nanoclustenshim the nanofluids in spite of the use of
surfactant. This shows the influence of particleigla on the entanglement of the

nanoparticles, the presence and the size of agghtese

5. Conclusion

We have presented an experimental investigatidheofheological properties of water-based
nanofluids containing carbon nanotubes (CNT) wdlhgé aspect ratio. The influence of
particle concentration and temperature on the sisgof the nanofluids was discussed and
the nanofluids were shown to behave as a shearitiggnmaterial at high particle content. For
lower particle content, the nanofluids behave imwbd@mian manner. It was also reported that
temperature affects the viscosity of nanofluids base fluids but that the relative viscosity of
nanofluids at high shear rate is independent ofptgature. The relative viscosity of

nanofluids at high shear rate is strongly enhaneghl their particle content showing the

12
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presence of aggregates, and can be modelled byldhen-Pierce equation considering the
influence of nanoparticles agglomerates. An averag&imum size of aggregates was thus
evaluated and favourably compared with SEM chariaetion previously done. The results
of this experimental study also show the relevan€ethe rheological characterization
concerning the presence and the structural infoomadf nanofluids aggregates and can

contribute to the understanding of the thermal progs of such materials.
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Figure Captions

Figure 1. SEM image taken from dried starting nandf{25] (This figure was reprinted with
the permission of Bentham Science Publishers)

Figure 2. Apparent shear viscosity of the basedfleorresponding to the nanofluid with
0.55% in CNT volume fraction — Influence of temgara.

Figure 3. Apparent shear viscosity of the basedfleorresponding to the nanofluid with
0.0055% in CNT volume fraction— Influence of tengiare.

Figure 4. Apparent shear viscosity of nanofluidhamd.278% in CNT volume fraction —
Influence of temperature.

Figure 5. Apparent shear viscosity of nanofluidhaM@.0055% in CNT volume fraction —
Influence of temperature.

Figure 6. Viscosity of nanofluids at 20°C as a timt of shear rate for different volume
fraction of nanotubes.

Figure 7. Relative viscosity of nanofluids as adhion of particle volume content and
temperature.

Figure 8. Relative viscosity of nanofluids as achion of particle volume content and
temperature - Comparison of experimental data aswbsity models.
Table Caption

Table 1. Volume fraction of tested nanofluids amaresponding base fluids, and shear
viscosity of base fluids as a function of SDBS wo&ufraction and temperatures.
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Figure 1. SEM image taken from dried starting nandf{25] (This figure was reprinted with
the permission of Bentham Science Publishers)
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661 Table 1. Volume fraction of tested nanofluids araresponding base fluids, and shear

662 viscosity of base fluids as a function of SDBS wo&ufraction and temperatures.
663

Volume fraction (%) Shear viscosity of base flujdsPa.s)
CNT SDBS 0 (°C) 10 (°C) 20 (°C) 30 (°C) 40 (°C)
0.557 1.697 1.98 1.478 1.129 0.877 0.665
0.418 1.272 1.975 1.454 1.102 0.852 0.657
0.278 0.847 1.97 1.401 1.077 0.828 0.648
0.111 0.338 1.964 1.391 1.046 0.799 0.637
0.055 0.169 1.962 1.386 1.036 0.789 0.633
0.0277 0.084 1.961 1.383 1.027 0.784 0.632
0.0055 0.0169 1.96 1.382 1.026 0.780 0.630
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