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1. Introduction

Since their introduction in [12], Hawkes processes have been applied to a wide
range of research areas, from seismology in the original work by Hawkes, to credit
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risk [11], financial contagion [2] and more recently market microstructure mod-
elling [3, 4, 5, 19, 20, 21].

In market microstructure, and particularly order book modelling, the relevance
of these processes comes at least from two empirical properties of the order flow
of market and limit orders at the microscopic level:

(1) Time clustering: order arrivals are highly clustered in time.
(2) Mutual dependence: order flow exhibit non-negligible cross-dependences.

For instance, as documented in [19], market orders excite limit orders and
vice versa.

At the microscopic level, point process-based microstructure models capture by
construction the intrinsic discreteness of prices and volumes. A question of interest
in this context is the microscopic to macroscopic transition in the price dynamics.
This strand of research has attracted a lot of interest of late [1, 3, 4, 5, 8, 9, 14, 21].

In this note, we cast a Hawkes process-based order book model into a markovian
setting, and using techniques from the theory of Markov chains and stochastic
stability [16], show that the order book is stable and leads to a diffusive price limit
at large time scales.

Outline. Section 2 is a distillation of some mathematical results about Hawkes
processes and Markov chains stochastic stability. Section 3 contains three auxiliary
stability results which, apart from their own interest, are useful to prove the stability
of the order book; and section 4, the main contribution of this note, is an application
to a particular order book model.

Notations. The following notations appear frequently throughout this note, and
we recall them here for reference:

• (Xn): discrete-time process,
• (X(t)): continuous-time process,
• |x| =

∑p
i=1 |xi|,

• J1, pK = {1, 2, . . . p}.

2. Preliminary Remarks

We collect in this section several definitions and results that are useful for the
rest of this note. The presentation is rather informal.

2.1. Point Processes.

Definition 2.1 (Point process). A point process is an increasing sequence (Tn)n∈N

of positive random variables defined on a measurable space (Ω,F ,P).
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We will restrict our attention to processes that are nonexplosive, that is, for
which limn→∞ Tn = ∞. To each realization (Tn) corresponds a counting function
(N(t))t∈R+ defined by

N(t) = n if t ∈ [Tn,Tn+1[, n ≥ 0. (1)

(N(t)) is a right continuous step function with jumps of size 1 and carries the same
information as the sequence (Tn), so that (N(t)) is also called a point process.

Definition 2.2 (Multivariate point process). A multivariate point process (or marked
point process) is a point process (Tn) for which a random variable Xn is associated
to each Tn. The variables Xn take their values in a measurable space (E,E).

We will restrict our attention to the case where E = {1, . . . ,M}, m ∈ N∗. For
each m ∈ {1, . . . ,M}, we can define the counting processes

Nm(t) =
∑
n≥1

I(Tn ≤ t)I(Xn = i). (2)

We also call the process

N(t) = (N1(t), . . . ,NM(t))

a multivariate point process.

Definition 2.3 (Intensity of a point process). A point process (N(t))t∈R+ can be
completely characterized by its (conditional) intensity function, λ(t), defined as

λ(t) = lim
u→0

P [N(t + u) − N(u) = 1|Ft]
u

, (3)

where Ft is the history of the process up to time t, that is, the specification of all
points in [0, t]. Intuitively

P [N(t + u) − N(u) = 1|Ft] = λ(t) u + o(u), (4)

P [N(t + u) − N(u) = 0|Ft] = 1 − λ(t)u + o(u), (5)

P [N(t + u) − N(u) > 1|Ft] = o(u). (6)

This is naturally extended to the multivariate case by setting for each m ∈ {1, . . . ,M}

λm(t) = lim
u→0

P [Nm(t + u) − Nm(u) = 1|Ft]
u

. (7)

2.2. Hawkes Processes.

2.2.1. Hawkes Process.
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Definition 2.4. A Hawkes process (N(t))t∈R+
is a point process whose intensity is

specified by

λ(t) = µ + α

∫ t

0
e−β(t−s)dN(s) = µ + α

∑
0≤si≤t

e−β(t−si), (8)

for a triplet (µ, α, β) of positive real numbers1.

The process thus defined is self-excited: it has a base intensity µ, plus exponen-
tially decaying shocks due to previous jumps. The parameter α characterizes the
scale of the excitation and β, its decay in time.

Proposition 2.1. The process X(t) = (N(t), λ(t)) is Markov.

Proof. From a straightforward calculation, we have for any t2 > t1

λ(t2) = µ + α

∫ t2

0
e−β(t2−s)dN(s) (10)

= µ + α

∫ t1

0
e−β(t2−s)dN(s) + α

∫ t2

t1
e−β(t2−s)dN(s) (11)

= µ + e−β(t2−t1)(λ(t1) − µ) +

∫ t2

t1
e−β(t2−s)dN(s), (12)

so that, in order to compute λ(t2), we only need to know λ(t1) and {N(t) : t1 ≤ t ≤ t2}
- the information contained in {N(t), λ(t) : 0 ≤ t < t1} is irrelevant. Hence

P [(N(t2), λ(t2)) ∈ A|{N(t), λ(t) : t ∈ [0, t1]}] = P [(N(t2), λ(t2)) ∈ A|N(t1), λ(t1)] ,
(13)

for any measurable set A ⊂ N × R+, and X is Markov. �

2.2.2. Multivariate Hawkes Process.

Definition 2.5. We say that N = (N1, . . . ,NM) is a multivariate Hawkes process
when

λm(t) = µm +

M∑
j=1

αm j

∫ t

0
e−βm j(t−s)dN j(s). (14)

Proposition 2.2. Let Y i j(t) = αi j
∫ t

0 e−βi j(t−s)dN j(s), 1 ≤ i, j ≤ M, and Y(t) =

{Y i j(t)}1≤i, j≤M. The process X(t) = (N(t),Y(t)) is Markov.

1A more general definition would have

λ(t) = µ +

∫ t

0
ϕ(t − s)ds, (9)

with an unspecified kernel ϕ > 0. But we only consider exponentially decaying kernels in this note.



STABILITY AND PRICE SCALING LIMIT OF A HAWKES PROCESS-BASED ORDER BOOK MODEL5

Proof. Let t2 > t1. Since

Ym j(t2) = e−βm j(t2−t1)Ym j(t1) +

∫ t2

t1
e−βm j(t2−s)dN j(s), (15)

and

λm(t2) = µm +

M∑
j=1

Ym j(t2), (16)

the law of (N(t2),Y(t2)) conditional on {(N(t),Y(t)) : 0 ≤ t ≤ t1} is the same as
when conditioning on (N(t1),Y(t1)) only—the information contained in {(N(t),Y(t)) :
0 ≤ t < t1} is irrelevant, and X is Markov. �

2.2.3. Stationarity.

Definition 2.6. A point process is stationary when for every r ∈ N∗ and all bounded
Borel subsets A1, . . . , Ar of the real line, the joint distribution of

{N(A1 + t), . . . ,N(Ar + t)}

does not depend on t.

In [13], Hawkes and Oakes show that:

Proposition 2.3. If
α

β
< 1 (17)

then there exists a (unique) stationary point process (N(t)), whose intensity is spec-
ified as in definition 2.4.

Brémaud and Massoulié generalize this to the multivariate case in [7]:

Proposition 2.4. Let the matrix A be defined by

Ai j =
αi j

βi j
, 1 ≤ i, j ≤ M. (18)

If
ρ(A) < 1

then there exists a (unique) multivariate point process N(t) = (N1(t), . . . ,Nm(t))
whose intensity is specified as in definition 2.5.
ρ(A) is the spectral radius of the matrix A, that is, its largest eigenvalue.

2.3. The embedded discrete-time Hawkes process. Throughout this note, we
will mostly work with processes sampled in discrete time. We show in this sec-
tion how to construct a discrete-time version (Xn)n∈N out of a multivariate Hawkes
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process X(t) = (N(t),Y(t))t∈R+ , where Y is defined by

Y i j(t) = αi j

∫ t

0
e−βi j(t−s)dN j(s), 1 ≤ i, j ≤ M, (19)

as in proposition 2.2.
First denote by (Tn)n≥1 the jump times of the process (and set T0 = 0), and

Xn = X(Tn) = (N(Tn),Y(Tn)), (20)

and define En = E(Tn) ∈ {1, . . . ,M} as the mark of the process. The value of
En indicates which component of N(t) has jumped at time Tn. We also define the
waiting times (τn)n≥1 between two successive jumps as

τn = Tn+1 − Tn. (21)

Given that (Nn,Yn) = (ξ, y), (Nn+1,Yn+1) is generated as follows: Set

τn+1 = min(τ1
n+1, . . . , τ

M
n+1) (22)

where, conditional on (Nn,Yn) = (ξ, y), the distribution of τ1
n+1, . . . , τ

M
n+1 is that

of independent positive random variables whose marginal distributions are deter-
mined by hazard rates

hm(t) := µm +

M∑
j=1

ym je−βi jt, t ≥ 0, 1 ≤ m ≤ M. (23)

Then set
En+1 = argmin1≤m≤Mτ

m
n+1, (24)

Nn+1 = (ξ1, . . . , ξEn + 1, . . . , ξM), (25)

and
Ym j

n+1 = ym j
n e−βm jτn+1 + αm jI(En+1 = j). (26)

2.4. Drift of a discrete-time Markov process.

Definition 2.7. The drift operatorD is defined to act on any nonnegative measur-
able function V by

DV(x) = E[V(Xn+1) − V(Xn)|Xn = x]. (27)

We will also use the notation

PV(x) = E[V(Xn+1)|Xn = x], (28)

hence
DV(x) = PV(x) − V(x). (29)
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As will become clear in the next section, the importance of this operator stems
from the existence of criteria based on the drift to establish properties of the pro-
cess. It can be interpreted as the analogue for a process of the derivative for a
function2.

2.5. A digression on stochastic stability. Let (Xn)n∈N be a Markov process on a
sate space S and (Qn)n∈N∗ its transition probability function, that is

Qn(x, A) = P [Xn ∈ A|X0 = x] , (30)

for x ∈ S and A a measurable subset of S.

2.5.1. Ergodicity of a Markov process. Ergodicity is a strong form of “stability”:
To quote [16], it means that “there is an invariant regime described by a measure
π such that if the process starts in this regime (that is, if X0 has distribution π) then
it remains in the regime. And moreover if the process starts in some other regime,
then it converges in a strong probabilistic sense with π as a limiting distribution.”

Formally, a (aperiodic, irreducible) Markov process is ergodic if an invariant3

probability measure π exists and

lim
n→∞
||Qn(x, .) − π(.)|| = 0,∀x ∈ S, (32)

where ||.|| designates for a signed measure ν the total variation norm4 defined as

||ν|| := sup
f :| f |<1

|ν( f )| = sup
A∈B(S)

ν(A) − inf
A∈B(S)

ν(A). (34)

In (34), B(S) is the Borel σ-field generated by S, and for a measurable function f
on S, ν( f ) :=

∫
S

f dν.

2.5.2. V-uniform ergodicity. We say that a Markov process is V-uniformly ergodic
if there exists a coercive5 function V > 1, an invariant distribution π, and constants

2Cf. Dynkyn’s formula or its discrete-time formulation.
3That is, satisfying the invariance equations

π(A) =

∫
S

π(dx)Q(x, A), A ∈ B(S). (31)

4If the state space S is countable (this is not the case for (X(t),Y(t)) of proposition 2.2.), the conver-
gence in total variation norm implies the more familiar pointwise convergence

lim
n→∞
|Qn(x, y) − π(y)| = 0,∀x, y ∈ S. (33)

5That is, a function such that V(x) → ∞ as |x| → ∞. The condition V > 1 is of course arbitrary and
1 can be replaced by any positive constant.
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0 < r < 1, and R < ∞ such that

||Qn(x, .) − π(.)|| ≤ RrnV(x), x ∈ S. (35)

This is a strong form of ergodicity (note the geometric rate of convergence), and
it can be characterized in terms of the drift operator D. Indeed, it is shown in [16,
17] that it is equivalent to the existence of a coercive function V (the “Lyapunov
test function”) such that

DV(x) ≤ −K1V(x) + K2IC(x) (Geometric drift condition.) (36)

for some positive constants K1 and K2, and C ⊂ S a compact set. (Theorem 16.0.1
in [16].) Condition (36) is equivalent to

PV(x) ≤ θV(x) + K3IC(x) (37)

for some 0 < θ < 1. Intuitively, it says that the larger V(Xn) the stronger X is pulled
back towards the center of the state space S.

Interestingly, it is possible to develop central limit theorems for functionals of
V-uniformly ergodic Markov processes. This will be used to show that the price
process in a stable Hawkes process-based order book model is asymptotically dif-
fusive. Before that, we need the following auxiliary results.

3. Auxiliary Results

3.1. V−uniform ergodicity of the intensity of a Hawkes process. Let (N(t), λ(t))t∈R+

be a Hawkes process with parameters (µ, α, β), and (Nn, λn)n∈N its embedded discrete-
time process as constructed in section 2.3.

Proposition 3.1. If α < β, then the process (λn)n∈N is V−uniformly ergodic, with

V(λ) = eγλ, (38)

and γ a suitably chosen positive number.

Proof. If τn = Tn+1 − Tn be the waiting time between two successive jumps of
(X(t)). There holds, for t′ ∈ [Tn,Tn+1[,

λ(t′) = λn + (λn − µ)e−β(t′−Tn). (39)

The hazard rate associated to τn, conditional on λn = λ ∈ R+, is

h(t) := µ + (λ − µ)e−βt, (40)

and the p.d.f. of τn is

f (t) = h(t)e−
∫ t

0 h(s)ds =
(
µ + (λ − µ)e−βt

)
e−µt− λ−µβ (1−e−βt). (41)
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Let
V(λ) := eγλ (42)

be a Lyapunov test function with γ > 0 an arbitrary parameter. Then,

E [V (λn+1) |λn = λ] =

∫ ∞

0
V(λ(t+)) f (t)dt (43)

=

∫ ∞

0
V

(
µ + (λ − µ)e−βt + α

) (
µ + (λ − µ)e−βt

)
e−µt− λ−µβ (1−e−βt)dt

=

∫ ∞

0
eγ(µ+(λ−µ)e−βt+α) (

µ + (λ − µ)e−βt
)

e−µt− λ−µβ (1−e−βt)dt.

Hence,

PV(λ)
V(λ)

= e−γλ E [V (λn+1) |λn = λ] (44)

=

∫ ∞

0
e−γ(λ−µ)(1−e−βt)+γα

(
µ + (λ − µ)e−βt

)
e−µt− λ−µβ (1−e−βt)dt

= eγαµ
∫ ∞

0
e−γ(1+ 1

β )(λ−µ)(1−e−βt)−µtdt

+ eγα(λ − µ)
∫ ∞

0
e−γ(1+ 1

β )(λ−µ)(1−e−βt)−(β+µ)tdt. (45)

Using lemma A.1, we get

PV(λ)
V(λ)

= eγαµ I
(
(γ +

1
β

)(λ − µ), β, µ
)

+ eγα(λ − µ) I
(
(γ +

1
β

)(λ − µ), β, β + µ

)
, (46)

where

I(a, b, c) :=
∫ ∞

0
e−a(1−e−bt)−ctdt. (47)

Then

lim
λ→∞

PV(λ)
V(λ)

= 0 +
eγα

β(γ + 1
β )

=
eγα

1 + γβ
(48)
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and

lim
λ→∞

DV(λ)
V(λ)

= lim
λ→∞

PV(λ)
V(λ)

− 1

=
eγα

1 + γβ
− 1

=
eγα − 1 − γβ

1 + γβ
. (49)

A Taylor expansion in γ around 0 yields

lim
λ→∞

DV(λ)
V(λ)

= γ(α − β) + o(γ), (50)

which has the sign of α − β. Finally, if α < β, one can choose γ > 0, λ0 ∈ R
∗
+ and

κ > 0 such that ∀λ > λ0

DV(λ) ≤ −κV(λ), (51)

and the V-uniform ergodicity of (λn) follows. �

3.2. V−uniform ergodicity of the intensity of a multivariate Hawkes process.
Consider now a multivariate setting. Let X(t) = (N(t),Y(t)) be a M-variate Hawkes
process with parameters

µ = (µ1, . . . , µM)t, (52)

α = (αi j)1≤i, j≤M, (53)

and
β = (βi j)1≤i, j≤M. (54)

Define also
αmax = max{αi j}1≤i, j≤M ∈ R+, (55)

and
βmin = min{βi j}1≤i, j≤M ∈ R

∗
+, βmax = max{βi j}1≤i, j≤M ∈ R

∗

+. (56)

We recall that Y(t) = (Y i j)1≤i, j≤M is defined by

Y i j(t) = αi j

∫ t

0
e−βi j sdN(s). (57)

As in the monovariate case, let (Nn) and (Yn) be the discrete time processes

Nn = N(T +
n ),

and Yn = Y(T +
n ), (58)

sampled at the jump times (Tn) of (X). We have the following stability result for
(Yn).
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Proposition 3.2. If
Mαmax

βmin
e1− Mαmax

βmax < 1, (59)

then the intensity of a multivariate Hawkes process is V-uniformly ergodic, with

V(y) = eγ
∑

1≤k,l≤M ykl
, (60)

and γ a suitably chosen positive number.

Proof. As in the monovariate case, let

V(y) = eγ
∑

1≤k,l≤M ykl
. (61)

Define the hazard rates

hi(t) = µi +

M∑
j=1

e−βi jtyi j, 1 ≤ i ≤ M, (62)

and

h(t) =

M∑
i=1

hi(t). (63)

We first note that, conditional on τn+1 = t, the probability that the next jump is on
Ni, i ∈ {1, . . . ,M}, is

P
[
En+1 = i|Yn = y, τn+1 = t

]
=

hi(t)
h(t)

. (64)

We have then

E
[
V(Yn+1)|Yn = y

]
=

∫ ∞

0

M∑
i=1

eγ
∑

1≤k,l≤M

(
e−βk,l tykl+I(l=i)αk,l

) hi(t)
h(t)
× h(t)e−

∫ t
0 h(s)dsdt

=

∫ ∞

0

M∑
i=1

eγ
∑M

k=1 αki+γ
∑

1≤k,l≤M e−βk,l tykl

µi +

M∑
j=1

yi je−βi jt

 e−
∑M

k=1 µkt−
∑

1≤k,l≤M(1−e−βklt) ykl
βkl dt.

(65)
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Dividing by V(y) and rearranging the terms we get

PV(y)
V(y)

=

∫ ∞

0

M∑
i=1

eγ
∑M

k=1 αkieγ
∑

1≤k,l≤M(γ+ 1
βkl

)(1−e1−βk,l t)ykl

µi +

M∑
j=1

yi je−βi jt

 dt

=

M∑
i=1

eγ
∑M

k=1 αkiµiIM2

((γ +
1
βkl

)ykl

)
1≤k,l≤M

; (βkl)1≤k,l≤M ;
M∑

k=1

µk


+

M∑
i=1

eγ
∑M

k=1 αki

M∑
j=1

yi jIM2

((γ +
1
βkl

)ykl

)
1≤k,l≤n

;
(
βkl

)
1≤k,l≤M

;
n∑

k=1

µk + βi j

 ,
(66)

where

Ip(a1, . . . , ap; b1, . . . , bp; c) :=
∫ ∞

0
e−a1(1−e−b1t)−···−ap(1−e−bpt)−ctdt (67)

is defined in lemma A.2. The first term in the r.h.s of (66) vanishes when |y| → ∞
by lemma A.2. Again using lemma A.2, as |y| → ∞, ∀1 ≤ i, j ≤ M,

IM2

((γ +
1
βkl

)ykl

)
1≤k,l≤M

; (βkl)1≤k,l≤M ;
M∑

k=1

µk + βi j

 ≤
1

βmin
∑

1≤k,l≤M(γ + 1
βkl

)ykl

≤
1

βmin(γ + 1
βmax

)
∑

1≤k,l≤M ykl

(68)

Hence, the second term in the r.h.s of (66) is bounded by∑M
i=1 eγ

∑M
k=1 α

ki
|y|

βmin(γ + 1
βmax

)|y|
≤

eMαmaxγ

βmin(γ + 1
βmax

)
.

And for large |y| we have

PV(y)
V(y)

≤
eMαmaxγ

βmin(γ + 1
βmax

)
. (69)

In order to conclude the proof, it is enough to show that there exists a suitably
chosen γ > 0 such that

h(γ) =
eMαmaxγ

βmin(γ + 1
βmax

)
< 1. (70)

Minimizing h with respect to γ, the minimum is reached at

γ∗ =
1

Mαmax
−

1
βmax

> 0. (71)
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and is equal to

h(γ∗) =
Mαmax

βmin e1− Mαmax
βmax . (72)

Note that for γ∗ to be positive (and V to be coercive) we need

αmax ≤
βmax

M
, (73)

which we assume. Finally if

Mαmax

βmin e1− Mαmax
βmax < 1, (74)

then (Yn)n∈N is V−uniformly ergodic. �

Remark 3.1. Note that for M = 1 the condition is
α

β
e1− αβ < 1, (75)

which is satisfied i.i.f.
α

β
< 1. (76)

(x 7→ x(1 − ex) is strictly increasing from 0 to 1 on [0, 1]). We get the result in the
monovariate case.

Remark 3.2. A sufficient condition is

αmax <
βmin

M
. (77)

Remark 3.3. The stability condition (74) is not sharp: it is too stringent on the
parameters αi, j and βi, j, and we suspect the stationarity condition of proposition
2.4 to be sufficient for V-uniform ergodicty.

3.3. V-uniform ergodicity of a “birth-death” Hawkes process. Let (N1(t),N2(t))
be a bivariate Hawkes process with intensities:

λ1(t) = µ1 + α11

∫ t

0
e−β11 sdN1(s) + α12

∫ t

0
e−β12 sdN2(s), (78)

λ2(t) = µ2 + α21

∫ t

0
e−β21 sdN1(s) + α22

∫ t

0
e−β22 sdN2(s), (79)

and define the queue (X(t)) by

• X(t) → X(t) + 1 when N1(t) jumps. This happens with (infinitesimal)
probability λ1(t)dt.
• X(t) → X(t) − 1 when N2(t) jumps and X(t) , 0. This happens with

probability λ2(t)dt.
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• X(t) → X(t) − 1 with probability λ3X(t)dt for a constant λ3 > 0. This
corresponds to a proportional death rate, or in the context of order book
modelling, to a proportional cancellation rate.

We also denote by N3(t) a counting process with intensity λ3X(t) that jumps by 1
when X(t) jumps by -1 due to a “cancellation”.

The queue X(t), albeit peculiar, is the building block of the order book model
we present in the next section: N1 represents the flow of limit orders, N2 that of
market orders and N3 cancellations.

The following result is the key to the proof of the stability of the order book.

Proposition 3.3. Provided βmin is large (specified precisely below), (Xn,Yn) is V-
uniformly ergodic, where

V(x, y) = eωx+γ
∑

1≤k,l≤2 ykl , (80)

and ω > 0 and γ > 0.

Proof. As usual we write

PV(x, y)
V(x, y)

= eω+γ(α11+α12)
∫ ∞

0
e−

∑
1≤k,l≤2(γ+ 1

βkl
)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt(µ1 + y11e−β11t + y12e−β12t)dt

+ e−ω+γ(α21+α22)
∫ ∞

0
e−

∑
1≤k,l≤2(γ+ 1

βkl
)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt(µ2 + y21e−β21t + y22e−β22t)dt

+ e−ω
∫ ∞

0
e−

∑
1≤k,l≤2(γ+ 1

βkl
)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt

λ3x dt

= (eω+γ(α11+α12)µ1 + eω+γ(α21+α22)µ2 + e−ωλ3x)
∫ ∞

0
e−

∑
1≤k,l≤2(γ+ 1

βkl
)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xtdt

+ eω+γ(α11+α21)y11

∫ ∞

0
e−

∑
1≤k,l≤2(γ+ 1

βkl
)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt−β11tdt

+ eω+γ(α11+α21)y12

∫ ∞

0
e−

∑
1≤k,l≤2(γ+ 1

βkl
)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt−β12tdt

+ e−ω+γ(α12+α22)y21

∫ ∞

0
e−

∑
1≤k,l≤2(γ+ 1

βkl
)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt−β21tdt

+ e−ω+γ(α12+α22)y22

∫ ∞

0
e−

∑
1≤k,l≤2(γ+ 1

βkl
)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt−β22tdt. (81)

As |x| + |y| → ∞,

PV(x, y)
V(x, y)

≤ e−ω +
2

βmin(γ + 1
βmax

)
(eω+γ(α11+α21) + e−ω+γ(α12+α22)). (82)

This quantity can be made smaller than 1 if βmin is large enough, hence the stated
result. �
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Remark 3.4. Intuitively, a large β corresponds to a short memory for the process
(Xn,Yn).

4. Application to order book modelling

4.1. Model setup. We present a stylized order book model whose dynamics is
governed by Hawkes processes. A similar Poissonian order book model has been
already discussed at length in [1], so the description provided here is brief.

Assume that each side of the order book is fully described by a finite number of
limits K, ranging from 1 to K ticks away from the best available opposite quote.
We use the notation

X(t) = (a(t); b(t)) = (a1(t), . . . , aK(t); b1(t), . . . , bK(t)) , (83)

where a = (a1, . . . , aK) designates the ask side of the order book and ai the number
of shares available i ticks away from the best opposite quote, and b = (b1, . . . , bK)
designates the bid side of the book.

Three types of events can happen:

• arrival of a new limit order;
• arrival of a new market order;
• cancellation of an already existing limit order.

Arrival of limit and market orders are described by four self- and mutually exciting
Hawkes processes:

• L±(t): arrival of a limit order, with intensity λL±(t);
• M±(t): arrival of new market order, with intensity λM±(t).

Cancellations are modelled by a doubly stochastic Poisson process whose intensity
is proportional to the number of shares on each side of the order book, that is

λC± |x±|. (84)

We denote by q the size of any new incoming order, and the superscript “+” (re-
spectively “−”) refers to the ask (respectively bid) side of the book. Buy limit or-
ders L−(t) arrive below the ask price PA(t), and sell limit orders L+(t) arrive above
the bid price PB(t).

Once a limit order arrives, its position is chosen randomly between 1 and K.
Similarly, once a cancellation order arrives, the order to be cancelled is chosen
randomly among the outstanding orders.

Furthermore, we impose constant boundary conditions outside the moving frame
of size 2K: every time the moving frame leaves a price level, the number of shares
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7b

6b

5b

1b2b3b4b

APBP S

Figure 1. Order book dynamics: in this example, K = 9, q = 1,
a∞ = 4, b∞ = −4. The shape of the order book is such that
a(t) = (0, 0, 0, 0, 1, 3, 5, 4, 2) and b(t) = (0, 0, 0, 0,−1, 0,−4,−5,−3).
The spread S (t) = 5 ticks. Assume that at time t′ > t a sell
market order dM−(t′) arrives, then a(t′) = (0, 0, 0, 0, 0, 0, 1, 3, 5),
b(t′) = (0, 0, 0, 0, 0, 0,−4,−5,−3) and S (t′) = 7. Assume instead
that at t′ > t a buy limit order dL−1 (t′) arrives one tick away from
the best opposite quote, then a(t′) = (1, 3, 5, 4, 2, 4, 4, 4, 4), b(t′) =

(−1, 0, 0, 0,−1, 0,−4,−5,−3) and S (t′) = 1.

at that level is set to a∞ (or b∞ depending on the side of the book). The quantities
a∞ and b∞ represent two “reservoirs of liquidity”.

Our choice of a finite moving frame and constant boundary conditions has three
motivations: firstly, it assures that the order book does not become empty and that
PA, PB are always well defined. Secondly, it keeps the spread S = PA − PB and the
increments of PA, PB and P = (PA + PB)/2 bounded - this will be important when
addressing the scaling limit of the price. Thirdly, it makes the model markovian,
as we do not need to keep track of the price levels that have been visited by the
moving frame at some prior time.

Figure 1 is a schematic representation of the order book.
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4.2. Stability of the order book. We first specify the notations for the 4-variate
Hawkes process. We set

λi(t) = µi +

4∑
j=1

αi je−βi j sdN j(s), i ∈ J1, 4K, (85)

and by convention the index 1 corresponds to L+, 2 to M+, 3 to L− and 4 to M−.

Proposition 4.1. Provided βmin is large (specified precisely below), the order book
(Xn,Yn) is V-uniformly ergodic, where

V(x, y) = eω
∑K

i=1 x±i +γ
∑

1≤k,l≤4 ykl , (86)

and ω > 0 and γ > 0.

Proof. We follow the same pattern as the proof of proposition 3.3, and only modify
it to account for the fact that the order book is formed from multiple queues, and
the role of the boundary conditions a∞ and b∞:

PV(x, y)
V(x, y)

≤ eωq+ωa∞+γ
∑4

k=1 αk1

∫ ∞

0
e−

∑
1≤k,l≤4(γ+ 1

βkl
)(1−e−βklt)ykl−

∑4
k=1 µkt−λC+ ∑K

k=1 x+
k t

µ1 +

4∑
j=1

y1 je−β1 jt

 dt

+ e−ωq+γ
∑4

k=1 αk2

∫ ∞

0
e−

∑
1≤k,l≤4(γ+ 1

βkl
)(1−e−βklt)ykl−

∑4
k=1 µkt−λC+ ∑K

k=1 x+
k t

µ2 +

4∑
j=1

y2 je−β2 jt

 dt

+ e−ωq
∫ ∞

0
e−

∑
1≤k,l≤4(γ+ 1

βkl
)(1−e−βklt)ykl−

∑4
k=1 µkt−λC+ ∑K

k=1 x+
k t

λC+
K∑

k=1

x+
k

 dt

+ similar terms for the bid side of the book

=

eωq+ωa∞+γ
∑4

k=1 αk1µ1 + e−ωq+ωa∞+γ
∑4

k=1 αk2µ2 + e−ωqλC+
K∑

k=1

x+
k


×

∫ ∞

0
e−

∑
1≤k,l≤4(γ+ 1

βkl
)(1−e−βklt)ykl−

∑4
k=1 µkt−λC+ ∑K

k=1 x+
k tdt

+ eωq+ωa∞+γ
∑4

k=1 αk1

4∑
j=1

y1 j

∫ ∞

0
e−

∑
1≤k,l≤4(γ+ 1

βkl
)(1−e−βklt)ykl−

∑4
k=1 µkt−λC+ ∑K

k=1 x+
k t−β1 jdt

+ e−ωq+γ
∑4

k=1 αk2

4∑
j=1

y2 j

∫ ∞

0
e−

∑
1≤k,l≤4(γ+ 1

βkl
)(1−e−βklt)ykl−

∑4
k=1 µkt−λC+ ∑K

k=1 x+
k t−β2 jdt

+ similar terms for the bid side of the book. (87)
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Again, as |x| + |y| → ∞,

PV(x, y)
V(x, y)

≤ e−wq

+
4

βmin(γ + 1
βmax

)

(
eωq+ωa∞+γ

∑4
k=1 αk1 + e−ωq+γ

∑4
k=1 αk2 + eωq+ωb∞+γ

∑
k=1 4αk3 + e−ωq+γ

∑4
k=1 αk4

)
.

(88)

This quantity can be made smaller than 1 if βmin is large enough, and this concludes
the proof of the proposition. �

4.3. Large scale limit of the price process. Given the state (Xn−1,Yn−1) of the
order book at time n − 1 and the event En, the price increment at time n can be
determined. We define the sequence of random variables

ηn = Ψ(Xn−1,Yn−1, En),= Φ(Zn,Zn−1), (89)

as the price increment at time n, where

Zn = (Xn,Yn). (90)

Ψ is a deterministic function giving the elementary “price-impact” of event En on
the order book at state Xn−1. Let µ be the stationary distribution of (Zn), and M its
transition probability function. We are interested in the random sums

Pn :=
n∑

k=1

ηk =

n∑
k=1

Φ(Zk,Zk−1), (91)

where
ηk := ηk − Eµ[ηk] = Φk = Φk − Eµ[Φk], (92)

and the asymptotic behavior of the rescaled-centered price process

P̃(n)(t) :=
Pbntc
√

n
, (93)

as n goes to infinity.

Proposition 4.2. In event time, the large-scale limit of the price process is a Brow-
nian motion. Formally, the series

σ2 = Eµ[η2
0] + 2

∞∑
n=1

Eµ[η0ηn] (94)

converges absolutely, and
P̃(n)(t)

n→∞
−→ σB(t), (95)

where (B(t)) is a standard Brownian motion.
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Proof. This is an application of the functional central limit theorem for (stationary
and ergodic) sequences of weakly dependent random variables with finite variance,
and is identical to the proof of theorem 6.1 in [1]. Firstly, we note that the variance
of the price increments ηn is finite since it is bounded by K + 1. Secondly, the
V-uniform ergodicity of (Zn) is equivalent to

||Mn(z, .) − µ(.)|| ≤ RρnV(z), n ∈ N, (96)

for some R < ∞ and ρ < 1. This implies thanks to theorem 16.1.5 in [16]6 that for
any g, h such that Max(g2, h2) ≤ V , k, n ∈ N, and any initial condition z

|Ez[g(Zk)h(Zn+k)] − Ez[g(Zk)]Ez[h(Zk)]| ≤ Rρn[1 + ρkV(z)], (97)

where Ez[.] means E[.|Z0 = z]. This in turn implies

|Ez[h(Zk)g(Zk+n)]| ≤ R1ρ
n[1 + ρkV(z)] (98)

for some R1 < ∞, where h = h − Eµ[h], g = g − Eµ[g]. By taking the expectation
over µ on both sides of (98) and noting that Eµ[V(Z0)] is finite by theorem 14.3.7
in [16], we get

|Eµ[g(Zk)h(Zk+n)]| ≤ R2ρ
n = ρ(n), k, n ∈ N. (99)

Hence the stationary version of (Zn) satisfies a geometric mixing condition, and in
particular ∑

n

ρ(n) < ∞. (100)

Theorems 19.2 and 19.3 in [6] on functions of mixing processes allow us to con-
clude that

σ2 := Eµ[η2
0] + 2

∞∑
n=1

Eµ[η0ηn] (101)

is well-defined - the series in (101) converges absolutely - and coincides with the
asymptotic variance

lim
n→∞

1
n
Eµ

 n∑
k=1

(ηk)2

 = σ2. (102)

Moreover
P̃(n)(t)

n→∞
−→ σB(t), (103)

where (B(t)) is a standard Brownian motion. The convergence in (103) happens
in D[0,∞), the space of R-valued càdlàg functions, equipped with the Skorohod
topology. �

6We refer to §16.1.2 “V-geometric mixing and V-uniform ergodicity” in [16] for more details.
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Appendix A. Technical Lemmas

Lemma A.1. Let a, b, c > 0 be three positive real numbers. Then

I(a, b, c) =

∫ ∞

0
e−a(1−e−bt)−ctdt

=
(−a)−c/b

b
e−a

(
Γ(

c
b

) − Γ(
c
b
,−a)

)
, (104)

(105)

where the Gamma function is defined for all complex numbers p such that R[p] > 0
as

Γ(p) =

∫ ∞

0
tp−1e−tdt, (106)

and the incomplete Gamma function is defined for all p ∈ C, R[p] > 0 and all
z ∈ C as

Γ(p, z) =

∫ ∞

z
tp−1e−tdt. (107)

In particular, for all b > 0, c > 0

lim
a→∞
I(a, b, c) = 0, (108)

and
lim
a→∞

a I(a, b, c) =
1
b
. (109)

Proof. This representation and the limits can be obtained with a symbolic compu-
tation system such as Mathematica. �

Lemma A.2. More generally, if

Ip(a1, . . . , ap; b1, . . . , bp; c) =

∫ ∞

0
e−a1(1−e−b1t)−···−ap(1−e−bpt)−ctdt, (110)

with ai > 0, bi > 0 ∀i ∈ J1, pK, and c > 0. Let

bmin = min{bi}1≤i≤p. (111)

Then

Ip(a1, . . . , ap; b1, . . . , bp; c) ≤
∫ ∞

0
e−

∑p
i=1 ai (1−e−bmint)−ct

= I(|a|, bmin, c), (112)

whith

|a| =
p∑

i=1

ai. (113)
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Hence
Ip(a; b; c) ≤

1
bmin|a|

, as |a| → ∞. (114)
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