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Abstract. A series of 12 high volume air samples collected
from the S2 firn core during the North Greenland Eemian
Ice Drilling (NEEM) 2009 campaign have been measured
for mixing ratio and stable carbon isotope composition of
the chlorofluorocarbon CFC-12 (CCl2F2). While the mix-
ing ratio measurements compare favorably to other firn air
studies, the isotope results show extreme13C depletion at
the deepest measurable depth (65 m), to values lower than
δ13C= −80 ‰ vs. VPDB (the international stable carbon
isotope scale), compared to present day surface tropospheric
measurements near−40 ‰. Firn air modeling was used to in-
terpret these measurements. Reconstructed atmospheric time
series indicate even larger depletions (to−120 ‰) near 1950
AD, with subsequent rapid enrichment of the atmospheric
reservoir of the compound to the present day value. Mass-
balance calculations show that this change is likely to have
been caused by a large change in the isotopic composition
of anthropogenic CFC-12 emissions, probably due to tech-
nological advances in the CFC production process over the
last 80 yr, though direct evidence is lacking.

1 Introduction

Before it was banned under the Montréal protocol and subse-
quent amendments, the use of chlorofluorocarbon-12 (CFC-
12, CCl2F2) as a refrigerant and aerosol propellant world-
wide has resulted in significant atmospheric loading; at its
peak in 2003, the mean mixing ratio of this compound in
the troposphere was approximately 545 ppt (ppt= parts per
trillion = pmol mol−1), making it the most abundant anthro-
pogenic halocarbon compound in the atmosphere (McCul-
loch et al., 2003; Forster et al., 2007; Montzka et al., 2011).
Due to the buildup of this and other anthropogenic halocar-
bons, total chlorine loading in the troposphere has increased
from approximately 600 ppt (1900) to nearly 3400 ppt (2008)
(Forster et al., 2007; Montzka et al., 2011).

Trends in CFCs have been directly observed since the
1970s, when regular observations of atmospheric halocarbon
compounds started (e.g. ALE, GAGE and AGAGE projects,
AGAGE, 2011). The atmospheric mixing ratio history of
CFC-12 prior to this period has been reconstructed through
the measurement of firn air samples combined with firn
air modeling and emissions estimates (Butler et al., 1999;
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Sturrock et al., 2002; McCulloch et al., 2003; Martinerie et
al., 2009; Buizert et al., 2012). Firn air is extracted from
compacted snow to depths above bubble close off and ana-
lyzed on-site, or captured in sample vessels for later analysis.
The large volumes of air contained in compacted snow allow
for the extraction of tens to hundreds of liters of ancient air
(Schwander et al., 1993).

Interpretation of the measured data must be paired with
firn air modeling, which takes into account the physics of
trace gas transport in firn and allows the reconstruction of at-
mospheric histories of the compounds concerned (Trudinger
et al., 1997; Witrant et al., 2012; Buizert et al., 2012). Anal-
ysis of firn air combined with firn air modeling proved that
there is no natural source of CFC-12, as no trace of this com-
pound was found in samples from Antarctica and Greenland
corresponding to dates before 1930, when large-scale use be-
gan (Butler et al., 1999; McCulloch et al., 2003; Martinerie
et al., 2009).

CFC-12 is a very stable compound and has its only sink
in the middle and upper stratosphere, where ultraviolet radi-
ation is energetic enough to break the C-Cl bond (Reaction
R1). A minor sink (3–7 %) exists through Cl abstraction by
O(1D), which is produced from the photolysis of ozone in the
stratosphere (Reaction R2; Seinfeld and Pandis, 1998; Laube
et al., 2010a).

CCl2F2 + hν −→ CClF2 + Cl· (R1)

CCl2F2 + O(1D) −→ CClF2 + ClO (R2)

These reactions provide the initial release of chlorine, which
begins the now well-known catalytic decomposition of ozone
first proposed by Stolarski and Cicerone (1974) and Molina
and Rowland (1974). The fact that CFC-12 can only be re-
moved in the stratosphere causes its long atmospheric life-
time of approximately 100 yr (Montzka et al., 2011). Due
to this lifetime, the mixing ratio of CFC-12 has decreased
in the atmosphere only slowly after the Montréal protocol
came into effect, to approximately 530 ppt in 2010 (AGAGE,
2011).

Whereas the mixing ratio of CFC-12 has been well es-
tablished by many studies, few studies of the stable iso-
tope ratio of this compound have been completed. Stable
isotope ratio studies can give insight into the budget of a
compound, i.e. its sources and sinks (Goldstein and Shaw,
2003). The stable isotope composition of quantities of com-
pounds can be altered by the mixing of molecules with dif-
fering isotope ratios, or through chemical reactions due to
differences in chemical bond strengths ascribed to isotopic
substitution. These cause fractionation between the different
isotopologues of a given molecule (e.g. Brenninkmeijer et
al., 2003). Isotope ratio values are conveniently expressed in
δ notation, in the case of13C:

δ13C=
13RSample
13RStandard

−1 (1)

where13R is the13C/12C ratio in a sample or standard ma-
terial. The internationally accepted reference material for
13C/12C ratios is Vienna Pee Dee Belemnite (VPDB). The
δ value is expressed in per mil (parts per thousand= ‰) for
readability.

Zuiderweg et al. (2012) recently reported a strong13C
fractionation associated with the photolytic destruction of
CFC-12 under stratospherically relevant conditions. Frac-
tionation constants (defined asε =

13J/12J, the ratio of the
photolysis rate constants of the heavy and light isotopologues
and similarly expressed in per mil) in the range−50 ‰
to −70 ‰ were determined in laboratory photolysis exper-
iments at temperatures between 288 K and 203 K. Such a
strong isotope effect in the removal process should result
in a continuous enrichment (increase in the isotope ratio)
of the atmospheric reservoir now that production and emis-
sions have decreased to approximately 10 % of peak levels
(Montzka et al., 2011; Zuiderweg et al., 2012). Air trapped
in polar firn is a valuable tool to investigate whether this iso-
tope signal is present.

Applications of stable isotope ratio studies of atmospheric
compounds in firn air are diverse.δ15N(N2) and δ18O(O2)

can be used for constraining the age of air trapped in firn
(Schwander et al., 1993; Bender et al., 1994; Severinghaus et
al., 2010). For methane (CH4), carbon dioxide (CO2), carbon
monoxide (CO), and nitrous oxide (N2O), historical isotope
scenarios have been derived to explore trends in emissions
(Trudinger et al., 1997; Etheridge et al., 1998; Francey et al.,
1999; Br̈aunlich et al., 2001; Sowers et al., 2001; Röckmann
et al., 2003; Monteil et al., 2011; Wang et al., 2012; Sapart et
al., 2012). However, to date, no isotope ratio history has been
reconstructed for CFC compounds, thoughδ13C CFC mea-
surements in urban and rural air do exist (Archbold et al.,
2005; Redeker et al., 2007; Mead et al., 2008; and Bahlmann
et al., 2011). Here we present the first measurements and in-
terpretation of a combined depth profile of CCl2F2 mixing
ratio and isotopic composition from the firn air campaign
at the North Greenland Eemian Ice Drilling (NEEM) site
(77◦25′54.93′′ N, 51◦03′19.89′′ W, 2484 m above sea level),
collected as part of the summer 2009 NEEM firn air program.

2 Method

2.1 Firn sampling

A series of 12 large volume firn air samples were obtained
from the S2 firn borehole at the NEEM site to a depth
of 73.6 m. Here, a firn air sampling device (FASD) con-
structed of a 3 m long rubber bladder, with sample lines pass-
ing through it, was lowered to the bottom of a borehole.
The FASD was expanded with surface air to provide an air-
tight seal to the walls of the borehole, and air was extracted
through the sampling lines from below the FASD. Once on-
site CO2 mixing ratio measurement confirmed that the seal
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of the FASD to the borehole wall was leak tight and surface
air had been pumped away, air was extracted from the firn in
large quantities. After sampling at each depth was completed
air pressure in the firn layer was allowed to re-equilibrate to
prevent surface air contamination of the firn. Following this,
the FASD was deflated, extracted, and the hole was bored to
the next depth to be sampled. The sampling continued down-
ward until a depth was reached where firn porosity decreases
to an extent that air can no longer be extracted from the firn
using this method, due to compression from the weight of the
firn above it. Further details of the sampling methods used are
described by Etheridge et al. (2009).

The large air samples used for the analysis presented here
were dried, and then compressed on-site to 120 bar pres-
sure into 5 L Scott-Marrin aluminium cylinders using a three-
stage oil free piston compressor (Mak and Brenninkmeijer,
1994).

2.2 Analytical procedure

The CFC-12 of each of the sample cylinders was measured
twice, non-sequentially and on different days to detect in-
strument drift, for mixing ratio andδ13C at the stable isotope
laboratory of the Institute for Marine and Atmospheric Re-
search Utrecht (IMAU). 35 L was used in each analysis. The
isotope measurement system used is described by Zuider-
weg et al. (2011). This instrument was originally designed
for the measurements of stable carbon isotope ratios of non-
methane hydrocarbons, and features a novel method of re-
moving unwanted compounds that would otherwise interfere
with analysis (e.g. CO2 and CH4) by use of a 3 m× 6.35 mm
Porapak Q column. Subsequent peak separation of com-
pounds prior to mass spectrometry is accomplished by using
a 52.5 m× 0.25 mm Poraplot Q column, the effluent of which
is split to (1) a HP 5970 quadrupole MS for compound identi-
fication and peak purity checking and (2) a Thermo Finnigan
Delta+ XL IRMS instrument by way of a Pt-Cu-Ni combus-
tor (for combustion to CO2) and open split. The scale of this
instrument was established by the use of two reference gases:
a multicompound nonmethane hydrocarbon gas as a work-
ing standard, and a CO2 direct reference. These were inde-
pendently calibrated to VPDB by external laboratories and
were consistent with each other. Further information about
these calibration procedures can be found in Zuiderweg et
al. (2011, 2012).

In this work, the system was extended for13C measure-
ments of monocarbon chlorofluorocarbons. Reproducibility
of the system was established with a PraxAir Inc. calibra-
tion mixture containing approximately 150 ppb± 5 % CFC-
12 among other compounds. The meanδ13C of CFC-12 in
this gas was established as−41.6 ‰ vs. VPDB. Testing re-
sults with various sample volumes showed that the instru-
ment was volume independent and stable for CFC measure-
ment, with nominalδ13C instrument repeatability (1σ , 34 ex-
periments) of 0.65 ‰ for CFC-12 above integrated peak ar-

eas of 0.5 Vs (Volt-seconds), corresponding to a carbon mass
of 2 ng. The instrument is linear with peak area above this
threshold (Fig. 1). Mixing ratio measurement precision is
±5 %. Sensitivity of the instrument per mass carbon is ap-
proximately 0.25 Vs ng−1 (Zuiderweg et al., 2012). This in-
strument behavior for CFC-12 is consistent in terms of stabil-
ity (in δ13C and mixing ratio), linearity, and sensitivity levels
with other measured compounds as reported in Zuiderweg et
al. (2011). Routine calibration of the instrument was accom-
plished by measuring the above standard before the start and
after the finish of the daily measurement series. Blank mea-
surements showed no remnant CFC or interfering peaks.

2.3 Data integration

Calculation (through peak integration) of allδ13C data pre-
sented here was accomplished via raw data processing us-
ing a custom made MATLAB code as described in Bock et
al. (2010) and Schmitt et al. (2011). For all firn samples,
CFC-12 peaks suffer from peak interference with the pre-
ceding methyl chloride peak (shoulder overlap), prohibiting
baseline-separated signals. The MATLAB routine extrapo-
lates the peak tail of methyl chloride via an exponentially
decaying function to distinguish the two gas species. This
technique is not possible with the standard ISODAT soft-
ware used for isotope ratio measurements. Figure 2 illustrates
the background removal in chromatograms of two samples
(30.2 m and 69.4 m depth, upper and lower traces, respec-
tively). Peaks are integrated with time between the expo-
nentially decaying background and the CFC-12 peak. Beside
this shoulder overlap, all CFC-12 peaks are free of artifacts
and interfering peaks after the removal of the sloping back-
ground. As all firn samples are treated identically, relative
differences reflect the true atmospheric trend combined with
firn effects.

3 Results and discussion

3.1 NEEM firn dataset

Duplicate measurements of vertical profiles of CFC-12 mix-
ing ratio andδ13C in the firn air column and their arithmetic
mean with 98 % confidence intervals are shown in Figs. 3 and
4, respectively. All data are summarized in Table 1. Mixing
ratio results from our instrument show the expected decrease
with depth, from present values near 550 ppt in the top part
of the firn to approximately 14 ppt at 71.9 m depth; at and
below this depth CFC-12 peak areas were far below the limit
of 0.5 Vs required for isotope measurements: at 71.9 m by at
least factor of 10 less; at 73.6 m the CFC-12 peak was en-
tirely absent.

In general, both sets of mixing ratio measurements are
close together, and the series as a whole agree well (within
instrument and calibration error of 10 %) with NEEM 2008
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Table 1.Firn air CFC-12δ13C and mixing ratio against depth, measurement series 1, 2 and mean.

Isotope Ratio Mixing Ratio

Depth (m) δ13C δ13C δ13C
Meas. 1a Meas. 2 Meanb [Meas. 1]c [Meas. 2] [Mean]d

10.5 −40.2 −41.3 −40.75 530 570 550
20.4 −42.5 −42 −42.25 536 540 538
30.2 −43.2 −43.1 −43.15 550 540 545
39.2 −43.8 −44.9 −44.35 527 527 527
50.7 −42.4 −41.2 −41.8 539 555 547
60.3 −44 −46.3 −45.15 530 527 528.5
62 −43.8 −46.4 −45.1 531 545 538
63.8 −44.4 −45.4 −44.9 460 473 466.5
66.8 −52.3 −53.3 −52.8 309 318 313.5
69.4 −78.3 −86.6 −82.45 168 169 168.5
71.9 −

e
− − 10 17 13.5

a δ13C Meas.: isotope ratio in ‰ vs. VPDB.
b 98 % confidence interval= 2.3 ‰.
c [Meas.]: mixing ratio in ppt= 10−12 mol mol−1.
d 98 % confidence interval= 10 ppt.
e δ13C not measurable; peak area below acceptable threshold.
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Fig. 1. Plot of δ13C (CFC-12, vs. VPDB) against peak area shows
sample size linearity of isotope ratio measurements of the calibra-
tion mixture (34 samples). Horizontal lines indicate mean (solid)
and instrument±2σ (dashed).

campaign CFC-12 firn air data from Buizert et al. (2012),
indicated as a trace in Fig. 3 for reference.

The CFC-12δ13C profile (Fig. 4) down to 63 m is rel-
atively stable at approximately−40 to −45 ‰, reflecting
recent atmospheric values (see also Fig. 5). These values
are somewhat more depleted in13C than mean values re-
ported from Belfast, Northern Ireland (−37.0± 1.3) ‰ (in
2004, Archbold et al., 2005, no mixing ratio reported) and
(−37.2± 3.9) ‰ at (567± 54) ppt (in 2006, Redeker et al.,
2007); and (−37.9± 1.1) ‰ at (614± 60) ppt in Hamburg,
Germany in 2010 (Bahlmann et al., 2011). However, these
values were measured at urban locations where local emis-
sions may have had an impact, as isotope ratio uncertain-
ties are large and mixing ratios somewhat elevated over
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Fig. 2. Chromatograms of CH3Cl and CFC-12 detected as ions of
CO2 atm/z 44, 45, and 46 signals (mV) from 30.2 m (upper traces)
and 69.4 m (lower traces) depth samples, showing sloping back-
ground calculation (dashed). Traces have been aligned through a
+10 s time shift to the 30.2 m sample; additionally, the 30.2 m
traces have been offset by 600 mV for presentation purposes.

remote measurements, suggesting spatial heterogeneity. By
contrast, Bahlmann et al. (2011) report (−41.2± 0.2) ‰ at
(554± 88) ppt from a set of 3 samples obtained on the
North Sea Coast on the Island of Sylt, Germany in 2010.
Also, CARIBIC project flight 26 measurements (Male, Mal-
dives, to D̈usseldorf, Germany, 17 August 2000; Zuider-
weg, 2012) give (−44.7± 0.6) ‰. These aircraft samples
were collected from the temperate to tropical upper tropo-
sphere region (9–11 km), well below the altitude where pho-
tolytic removal takes place (14–34 km, Laube et al., 2010a).
This is corroborated by the mean mixing ratio measured of
(550± 50) ppt, very similar to remote surface measurements.
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For reference the model results from Buizert et al. (2012) (NEEM
2008, grey trace) are also included.
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3rd degree polynomial firn air model best scenario (red trace) is in-
cluded for reference.

Therefore these values can reasonably be considered as rep-
resentative of the well-mixed and undisturbed troposphere.
The CARIBIC flight sample set was measured using the
same instrument as for the firn samples reported here. Pho-
tolytic fractionation processes cannot explain the relative iso-
tope ratio depletion of these remote samples, as compared
to the urban samples reported above; these processes would
have an enriching effect (Laube et al., 2010a; Zuiderweg et
al., 2012).

The relative stability ofδ13C in the top 30 m of the firn
implies little seasonality, which is expected given the long
atmospheric lifetime of CFC-12. Below 63 m (the lock-in
depth at NEEM; Buizert et al., 2012), where firn diffusivity
decreases rapidly and older air is found (see Fig. 5), CFC-
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Fig. 5. Age (prior to 2009) distribution in the firn air column as a
function of depth from the forward model. Red diamonds indicate
sampling depths for reference.

12 becomes increasingly depleted in13C with depth. Mea-
surements indicate a large13C/12C depletion of 40 to 50 ‰
for the lowest measured sample (69.4 m) with respect to the
surface. Theδ13C separation of the repeat measurements at
the deepest point is larger than for the other sampling depths
(Table 1 and Fig. 4). Both measurements at this depth had a
signal above the instrument linearity threshold mentioned in
Sect. 2.2, at 0.59 and 0.55 Vs respectively, excluding instru-
ment nonlinearity effects. However, the neighboring methyl
chloride (see Fig. 2) peaks for these samples were relatively
large and therefore the uncertainties associated with shoul-
der overlap induce the larger error in these measurements.
The observed isotope depletions are much larger in magni-
tude than the expected firn fractionation effects (see discus-
sion below). Thus, they most likely reflect that real changes
exist in the isotope history in the atmosphere.

3.2 Atmospheric trend reconstruction

In order to interpret these data in terms of temporal variation
we use a forward model of trace gas transport in firn pro-
posed by Witrant et al. (2012). It takes into account diffusion
and gravitational fractionation, which play a significant role
in the measured isotope ratio of compounds in the firn ver-
sus that observed in the atmosphere (Trudinger et al., 1997).
Thermal fractionation due to varying temperature with depth
is not taken into account in the model, but this is of no detri-
ment to the results as a whole as all but one of the measured
samples are from below 15 m depth. Thermal fractionation
is generally considered to be important in the upper 10–15 m
only due to temperature gradients (Severinghaus et al., 2001).
Similarly, eddy diffusion in the upper firn should be neg-
ligible as this affects only the uppermost levels of the firn
(to 20 m at NEEM), and was noted to be small in magni-
tude at this site and would only serve to reduce fractionation
(Witrant et al., 2012; Buizert et al., 2012).

The physical parameters (e.g. diffusivity) for the NEEM
firn sampling site were reconstructed from a suite of gases
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with known histories (Buizert et al., 2012). More specifically,
two gases in particular (CO2 and CH4) measured at CSIRO
were used for the NEEM 2009 firn air experiment to tune
the diffusivity profile. The diffusion coefficients used were
D(CFC-12)/D(CO2) = 0.596 and D(13CFC-12)/D(12CFC-
12)= 0.9992, derived from Buizert et al. (2012).

Because of the relative coarseness and the magnitude of
scatter of our mixing ratio data, no independent CFC-12 mix-
ing ratio scenario was modeled from our data. Instead a best
estimate CFC-12 scenario based on atmospheric measure-
ments combined with atmospheric chemistry model results
is used (Martinerie et al., 2009; Buizert et al., 2012).

Figure 5 shows the age distributions for CFC-12 calculated
by the forward model: mean, 15th percentile and 85th per-
centile (±1σ). As expected, below 60 m the mean age with
depth increases rapidly. In the so-called lock in zone, the
transition from firn to ice begins and further vertical diffu-
sion slows, as firn is compacted by the weight above it. From
samples collected in 2008, Buizert et al. (2012) identified the
lock-in zone between 63 and 78 m at the NEEM site. At the
bottom of this layer, permeability is zero, and no further trace
gas transport can occur.

The recently developed scenario reconstruction method
based on the separation of the effects of the major and mi-
nor isotopologues (Wang et al., 2012) is not suitable for use
here as it has difficulty in reconciling large gradients in iso-
tope ratio, leading to inconsistent results. Instead, we system-
atically explore scenarios with “smooth” variations ofδ13C
(e.g. Br̈aunlich et al., 2001). Where both methods are suit-
able, they provide consistent results (Laube et al., 2010b).
A large number of hypothetical scenarios are run with the
forward model. Atmospheric scenarios with polynomial pa-
rameterizations ofδ13C as a function of time were run in
monthly time steps from 1933 (the start of CFC-12 emis-
sions) to 2009. In detail, we use 3rd and 4th degree polyno-
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Fig. 7. CFC-12δ13C 3rd (red shades) and 4th (blue shades) degree
polynomial forward model results and mean firn data (green) with
depth. The envelopes show the overall minimum and maximum val-
ues of all selected scenarios.

mials with coefficients varying randomly within pre-defined
limits (see below).

In order to reduce computing time, modeling proceeded in
two steps for each polynomial setup. First, generated poly-
nomials were evaluated with predetermined maximum and
minimum values with an intentionally large interval to ex-
clude unfeasible scenarios: scenarios with 2009δ13C values
outside the range−43 to−38 ‰ and any scenarios withδ13C
values outside the range−400 to−30 ‰ are excluded. Se-
lected scenarios were subsequently tested through the for-
ward model, which is computationally expensive. In total,
50 000 000 and 78 125 000 individual scenarios using 3rd and
4th degree polynomials were evaluated, respectively. The re-
sults of the firn modeling can be found in Fig. 6 for both
the 3rd and 4th degree results. The best scenario is the one
leading to the smallest root mean squared deviation (RMSD)
between modeled and observedδ13C (mean of two measure-
ments at each depth) in the firn, which is shown in Fig. 7.
Best RMSDs are 3.7 ‰ and 3.6 ‰ with the 3rd and 4th de-
gree polynomial setups respectively. The envelopes shown
on Figs. 6 and 7 show the overall minimum and maximum
values of all selected scenarios (6809 and 8280 selected sce-
narios for 3rd and 4th degree polynomials, respectively). For
reference, the equation of the best fit 3rd degree polynomial
is as follows (Eq. 2):

δ13C=c0 + c1x + c2x
2
+ c3x

3 (2)

with

x = t − t0 (3)

wheret0 = 1933.5, and with parametersc0 to c3 in Table 2.
In Fig. 6, an increase ofδ13C with time is seen, at approx-

imately 5 ‰ per year from model start to 1960, but thereafter
increasing less rapidly and leveling out to 0 ‰ per year by
2000, and remaining more or less constant until model end
date. The best solutions obtained with the 3rd and 4th degree
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Table 2. Equation coefficients for 3rd degree best-fit polynomial
(Eq. 2), as shown in Fig. 6.

Coeff. Value

c0 265.4280
c1 4.8315
c2 7.8555× 105

c3 −3.3070× 10−4

polynomials are consistent. Envelopes are somewhat larger
for the 4th degree as compared to the 3rd degree polynomial
scenarios. This is expected, as the 4th degree polynomial has
an additional degree of freedom.

To assess the magnitude of induced fractionation from dif-
fusion and gravitational effects in the firn, we run the forward
model with a constant atmosphericδ13C value with time of
−40 ‰ (see e.g. Trudinger et al., 1997). The results (Fig. 8)
show that the cumulative fractionation with depth due to dif-
fusion and gravitational effects is limited to less than 1 ‰.
This is not unexpected as the high molecular weight of CFC-
12 leads to small fractional mass differences between the
two isotopologues (0.8 %), and thus reduces the magnitude
of these effects. By contrast, forδ13C (CH4), where the frac-
tional mass difference is much larger (6 %), diffusion and
gravitational effects are more significant (Bräunlich et al.,
2001; Sapart et al., 2012). Furthermore, the uncertainty in
the modeled fractionation in the lock-in zone forδ13C (CO2)

in Buizert et al. (2012), which uses the same diffusive param-
eters as this study, is of no consequence as this is damped by
the small mass difference in the CFC-12 isotopologues. As
such, since the effect of fractionation in firn is small com-
pared to observed variations ofδ13C of CFC-12 with depth,
large variations of atmosphericδ13C (CFC-12) must have oc-
curred in the past.

Besides fractionation, the transport of gases through the
firn also induces mixing by molecular diffusion: concentra-
tion gradients between the top of the firn and the bottom of
the diffusive zone are smoothed (Bräunlich et al., 2001; Buiz-
ert et al., 2012). Therefore, the strongδ13C depletion at the
deepest level in the firn where mixing ratios are low implies
extreme depletions in the atmosphere (to−265 and−250 ‰
for the 3rd and 4th degree best scenarios, respectively).

3.3 Isotope mass-balance interpretation

In order to aid interpretation of atmospheric trends ofδ13C as
indicated by the scenario in terms of CFC-12 production (un-
knownδ13C source signature) and loss (photochemical frac-
tionation measured as enrichment), we use an isotope mass-
balance calculation (Eqs. 4–7, Röckmann et al., 2003). The
overall mass balance for CFC-12 is:

dn

dt
= P − Jn (4)

-41 

-40.8 

-40.6 

-40.4 

-40.2 

-40 

-39.8 

-39.6 

0 10 20 30 40 50 60 70 

δ1
3 C

 (‰
 v

s.
 V

P
D

B
) 

Depth (m) 

Total Fractionation 

Gravitational Fractionation 

Diffusional Fractionation 

Fig. 8.CFC-12δ13C Modeled fractionation effects from gravitation
(red) and diffusion (blue) and the sum thereof (black) based on a
constant atmosphericδ13C (−40 ‰) with time scenario input to the
forward model.

wheren is the number of moles of the compound in the at-
mosphere, andP is the magnitude of the emission rate of
CFC-12 to the atmosphere.J , the stratospheric photolysis
(first order) rate constant, is equal to 1/τ whereτ is the at-
mospheric lifetime.

Additionally, the heavy isotopologue equivalent of Eq. (4)
describes the contributions of the source and the sink to the
atmospheric stable isotope signature as follows (Röckmann
et al., 2003):

d[(1+ δ)n]

dt
= P(1+ δP) − Jn(1+ δ)(1+ ε) (5)

whereδ andδP are the atmospheric and emission stable car-
bon isotope ratios of the CFC-12, respectively;ε is the frac-
tionation inherent in the sink.

We expand Eq. (5) to:

dn

dt
+ δ

dn

dt
+ n

dδ

dt
= P(1+ δP) − Jn(1+ δ + ε + δε) (6)

Substituting Eq. (4) we derive:

n
dδ

dt
= P(δP− δ) − Jn(1+ δ)ε (7)

Solving forδP gives:

δP =

[
ndδ

dt
+ Jn(1+ δ)ε

]
P

+ δ (8)

To initialize the calculation based on this equation,n is
based on mean atmospheric mixing ratio reconstructed from
emissions estimates verified with ALE/GAGE/AGAGE data
where available (Walker et al., 2009).P is back calculated
from dn/dt . J is based on an atmospheric lifetime of 100 yr
(Forster et al., 2007). Forδ, the 4th degree-polynomial best-
fit scenario is used. dδ/dt is the CFC-12 atmospheric isotope
ratio change per timestep.
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Finally, ε is assumed to be−35 ‰, approximately half
of the laboratory measured isotopic fractionation at strato-
spheric temperatures (Zuiderweg et al., 2012). The magni-
tude of the fractionation directly observed in photolysis ex-
periments is suppressed by the effect of mixing in the strato-
sphere. It has been shown through the stable isotope mea-
surement of stratospheric samples that apparent (observed)
fractionations inδ13C of CH4 and δ15N and δ18O in N2O
(which is similarly removed through UV photolysis) are ap-
proximately half of fractionations obtained from laboratory
experiments (R̈ockmann et al., 2003, 2011; Kaiser et al.,
2006).

The parameterization was run in yearly intervals, from
1955 to 2000, to estimateδP, the reconstructed stable car-
bon isotope ratio of the CFC-12 source. The start date was
chosen because it is the mean age plus 1σ of the deepest
sample. Results from the mass balance calculation are shown
in Fig. 9. The value ofδP changes considerably during the
period concerned; it starts very depleted near 1950 and in-
creases strongly. The increase slows down with time and dur-
ing the last 10 yr of the parameterizationδP begins to de-
crease. However, this decrease may not be significant given
the small changes in the mixing ratio and the correspondingly
large uncertainties in the net emissions.

In order to illustrate the influence of the sink fractionation
effect in the model, the mass balance model was run to sim-
ulate the atmosphericδ13C assuming a constant source delta,
δP, of −45 ‰, the median value during the period 1955–
2000.P , L, andε are the same as above, and the starting
(1955) δ13C is set as−45 ‰. The resulting trend (Fig. 9,
green trace) shows that our firn air measurements can be ex-
plained only if we assume that the isotope signature of the
sources changed significantly over time. Furthermore, mod-
eling of a hypothetical scenario withP set to 0 (thus indi-
cating atmospheric trends in the future when atmospheric re-
lease has ceased and the sink fractionation drives CFCδ13C
evolution) indicated a systematic increase of only 0.29 ‰ per
year. Future atmospheric measurements likely cannot mea-
sure this directly as production has not ceased completely
and remains at approximately 10 % of peak amounts, and
thus will dominate the resulting enrichment (Montzka et al.,
2011).

The consistent increase inδP from the mass balance cal-
culation prior to 1990 can potentially be explained by tech-
nological and industrial chemistry changes in the synthesis
of CFC-12, though there is no direct evidence. Monocarbon
chlorofluorocarbons may be synthesized by the following
generalized reaction, either in the liquid, or more recently,
in the gas phase at high temperatures and pressures:

CCl4 + HF
catalyst
−→ CCl3F+ CCl2F2 + CClF3 + HCl (R3)

The catalysts used for this reaction included SbCl5 (first
industrialization), or, more recently, various metallic and car-
bon compounds that promote chlorine-fluorine exchange. By
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contrast, the first CFC synthesis experiments in the 1890s
used SbF3Br2 or SbF3Cl2 as a reagent (Daudt and Youker,
1935; Siegemund et al., 2003).

In addition to the above, the synthesis of the primary feed-
stock of CFC production, CCl4, has changed significantly.
Initially, synthesis was accomplished through the chlorina-
tion of CS2. This was replaced within the last 50 yr by the
sequential chlorination of methane, which is a less polluting,
though more technically challenging, process. Despite this,
the older process was still in use, though at relatively small
scale, in several locations (Rossberg et al., 2003).

Furthermore, the release of CFC to the atmosphere under-
goes variable time delays due to its diverse uses (e.g. Mc-
Culloch et al., 2003). Produced CFC was released promptly
(within a short time scale, 1 to 4.5 yr) into the atmosphere
through aerosol propellant use. On the other hand, the de-
lay in CFC release to the atmosphere from non-hermetically
sealed refrigeration and leakage from hermetically sealed re-
frigeration is difficult to quantify, with mean manufacturing
to complete release times (total refrigerant release) approach-
ing 10 yr or more. As the production (and consequently sale
and usage) of CFC is now restricted, release to the atmo-
sphere in more recent times is leakage-based, which clouds
the global source picture considerably due to the introduced
time lag. This could only be clarified by refining emissions
functions by directly measuring leakage rates and surveying
produced CFC forδ13C.

4 Conclusions

We have presentedδ13C (CF2Cl2) results from firn air col-
lected in 2009 at the NEEM site in Greenland, the recon-
structed atmospheric trend of which implies very depleted
δ13C values in the middle of the last century, and a rapid
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enrichment (nearly 80 ‰) to the present day value near
−40 ‰. Mass balance modeling implies that changes in pro-
duction processes of this compound should be responsible for
most of this enrichment. Indeed, process changes in the syn-
thesis of both CFC-12 itself and the feedstock used in CFC
production have occurred over the last 80 yr, due to techno-
logical advances, that could be responsible for the change
though direct proof is absent.
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Langer, E., Rassaerts, H., Kleinschmidt, P., Strack, P., Cook, R.,
Beck, U., Lipper, K., Torkelson, T. R., L̈oser, E., Beutel, K. K.,
and Mann, T.: Chlorinated Hydrocarbons, Ullmann’s Encyclope-
dia of Industrial Chemistry, 6th edition, Wiley-VCH, 2003.

Sapart, C. J., Martinerie, P., Chappellaz, J., van de Wal, R. S.
W., Sperlich, P., van der Veen, C., Bernard, S., Sturges, W.
T., Blunier, T., Witrant, E., Schwander, J., Etheridge, D., and
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