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Abstract—Knowing a user’s next cell allows more efficient
resource allocation and enables new location-aware services.
To anticipate the cell a user will hand-over to, we introduce
a new machine learning based prediction system. Therein, we
formulate the prediction as a classification problem based on
information that is readily available in cellular networks. Using
only Channel State Information (CSI) and handover history, we
perform classification by embedding Support Vector Machines
(SVMs) into an efficient pre-processing structure. Simulation
results from a Manhattan Grid scenario and from a realistic
radio map of downtown Frankfurt show that our system provides
timely prediction at high accuracy.

I. INTRODUCTION

Localizing a user and tracking its trajectory change today’s
cellular networks. At application layer, many services make
heavy use of the user’s current position. At the physical layer,
accurate tracking is crucial for many beamforming approaches.

In this paper, we focus on a coarse localization of the
wireless user. Instead of obtaining accurate geographical co-
ordinates, we are satisfied in expressing the user’s location
in terms of a cell index. However, rather than obtaining the
user’s current location or a short-term trajectory, we propose
a framework to predict the next cell the user will hand-over
to. Although this prediction is performed at low geographical
accuracy and at large time scale, it has to be provided early
enough to allow the system to adapt. This requires an accurate
prediction before the user enters the next cell, thus, rendering
simple, linear predictors inapplicable with many applications.

Such applications include various adaptation functions at
the medium access and network layer. New, context-aware
schedulers can provide seamless quality-of-service by knowing
in advance that a user will join a congested cell [1]. Interfer-
ence management schemes can blank subframes of interfering
users even before they join an interfered cell and context-aware
handover schemes can use our long-term prediction to make
faster and better decisions.

Unlike previous work, based on the Global Positioning
System (GPS) or Time Difference Of Arrival (TDOA) [2],
our solution combines Channel State Information (CSI) with
limited handover history. This combination of long-term han-
dover information with short-term CSI, has several benefits:
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o It is fully functional within buildings. This is not the case
for GPS-based solutions.

« It employs information that is readily available in cellular
networks. As handhelds perform frequent CSI feedback
and the network stores handover history, no signaling
costs are added to the radio link and implementation
effort is limited.

o It predicts the user’s next cell early and at high accuracy.
This high performance was observed in a synthetic and in
a realistic scenario, without strong assumptions on user
mobility.

Our paper is structured as follows. We discuss related
approaches in Sec. II and introduce the system model in
Sec. III. Sec. IV details the proposed prediction framework,
which is studied in Sec. V. Sec. VI concludes the paper.

II. RELATED WORK

Two fields in literature are related to our work: predicting
the user’s trajectory and estimating its current location. Some
work on localization [2], [3], [4] uses CSI as input or shares
the application of Support Vector Machines (SVMs) [5] with
our approach. In contrast to this work, we complement CSI
by the users’ handover history to predict the user’s next cell.
Thus, our approach differs in objective as well as in input from
the state-of-the-art in localization.

Following our objective, [6], [7] employ machine learning
to predict a user’s next cell. These predictors are solely based
on handover history, while our work combines this information
with CSI. Both types of information are efficiently available in
cellular networks but substantially differ in time scale. While
CSI is periodically reported within several milliseconds [8],
obtaining a sufficiently long vector of previous handovers
requires minutes or, for slow users, hours.

Unlike handover history, large CSI vectors can be obtained
quickly and capture the scatterers in a user’s propagation
environment. We will see that such CSI “fingerprints” provide
substantially higher prediction accuracy than handover history
alone.

III. SYSTEM MODEL

We study a cellular network withZ = {1, ..., I} users and a
base station (BS), under the following modeling assumptions.



A. Channel Model

We assume that the wireless communication channel of user
1 € T within a discrete time slot ¢ is characterized by the
channel gain

gi(t) = [ha(8)di(8) ~ ), (1)

To account for long-term propagation loss, d;(t) denotes the
distance between user ¢ and BS. The path-loss exponent is
denoted by «(z;(t)) and depends on the user’s geographical
position x;(t).

Fast fading is reflected by |h;(t)|?, which we assume
to be an exponentially distributed random variable that is
independent among the users. We adopt the Jakes-like fading
model where the time-correlation of d;(t) follows the zeroth-
order Bessel function of the first kind, which is parametrized
by the maximum Doppler shift defined by the user’s speed.
This model is widely used to reflect an isotropic scattering
environments or ensembles of multiple environments [9, Sec.
2.4.3].

B. CSI Feedback

High-rate communication systems such as IEEE 802.16 and
LTE, adapt the modulation scheme, code rate, and allocated
time-frequency blocks to the current state of the wireless
channel. As in those systems the channel cannot be assumed
to be reciprocal, users perform periodic feedback of CSI.
To accurately adapt to a time-variant channel, this reporting
should be performed once per channel coherence time, i.e.,
between 1 and 20ms in many scenarios. While typically a
quantized channel state is reported, we assume the reporting
of the channel gain g;(t) for tractability.

C. Mobility Model

We assume that a user’s mobility is fully described by its
speed and its motion path. In each cell, we assume that there
is a finite amount of paths each user can take. Each path has
an entry point and an exit point in the cell, where the path is a
continuous line joining those points. Paths may have common
properties, such as the same entry point, same exit point, or
even complete sections.

To select a user’s path and speed, we adopt a random model.
Any time a users enters a cell it randomly chooses a speed
value from a given interval and a path value from a given set
(cp. Sec. V). The choices are independent among the users and
follow a uniform distribution. Consequently, path and speed
may change at any handover.

While moving on a given path in the cell, a user ¢« € 7
reports the channel gain g;(t) to the base station. According
to (1), g;(t) depends on |h;(t)|?, representing fast fading, and
on d;(t)~@:®) which accounts for slow fading. As this
slow fading term depends only on the user’s location, it is
fully determined by the user’s path. However, even if multiple
users travel on the same paths, it is very likely that their CSI
sequences differ due to different speeds and fast fading.

In Sec. V, two maps are used to perform simulations to test
the proposed trajectory prediction. The first map is a Manhat-
tan grid. It is an abstract map in which the path-loss exponent
« is set arbitrarily to model different shadowing effects in
different areas of the map. In the second map, however, this
function is not set arbitrarily since d;()~*(*i(!) is obtained
from real measurements in the German city Frankfurt am
Main.

IV. PROPOSED PREDICTION FRAMEWORK

We propose to predict the user’s next cell by solving a
classification problem via supervised learning. To do so, we
build classifiers from the user’s CSI sequence as it travels
through the current cell and from the index of its next cell.
While this index is used as a label, the CSI sequence serves
as an input vector. Before we describe the real-time prediction
during system operation, let us formulate the classification
problem.

A. Next Cell Prediction as Classification Problem

A user’s trajectory can be represented by a set of cells it
travels through. Focusing on the cell an arbitrary user 7 is
currently associated with, we define a user’s trajectory using
the index p; of its previous cell and index n; of its next cell.
Furthermore, the trajectory can be associated to CSI which is
reported periodically while the user is traversing its current
cell. Formally, this CSI sequence can be stated as

0 if t < ¢n;
Hy 29 (gi(t]),- o 0i(t)) i <t <ty (2)
(gi(t), -, gi(t5™)) if t > 2"

Here, CSI is represented as the channel gain g;(t), ¢ denotes
the time when user ¢ enters the current cell, and " is the
time when the users leaves this cell.

Given the input data H; and p;, we can predict the user’s
next cell by finding an accurate mapping between the tuple
(pi, H;) to the associated next cell n;. As there will only be
a limited number of possible combinations of adjacent cell
indices, this is a classification problem and can be solved by
supervised learning methods.

The benefit of using this input information is that it is
readily available in current cellular networks. The CSI vector
H; is known at the user and reported to the base station. The
previous cell index is known at user and base station after the
handover. This simplifies the implementation of our framework
either at the base station or at the handset.

In our approach, multiple classifiers are learned. Each
classifier corresponds to a possible previous cell and each
predicts a next cell out of all possible next cells. Consequently,
the number of classifiers is equal to the number of possible
previous cells. Compared to using only a single classifier, a
learning process using multiple classifiers is faster and the pre-
diction is more accurate. This is because each single classifier
only needs to perform a much smaller-scale classification task.

This idea combined with supervised learning is illustrated
in Fig. 1. The overall scheme consists of two phases, training
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Fig. 1. Concept of the proposed prediction scheme

phase and prediction phase. In the training phase, the first
input to the system is a set of training CSI sequences {H; :
© € Tiain}» their associated previous cell {p;} and their next
cell indices {n;}. Here, p; specify particular classifiers and
{n;} are the corresponding labels that the learning algorithm
aims to match the CSI sequences {H;} to. Note that a vector
normalization function applies subsampling and interpolation
to assure that the CSI sequences are of equal length.

Based on this training data, a learning algorithm derives
multiple classifiers {f,,} corresponding to all the possible
previous cells. Using this result of the training phase, the
prediction phase now selects a specific classifier f;,, to match
a previously unknown CSI sequence H;,Vj € Zigy, to a
predicted index of the next cell 7.

B. Classification

We employ a multi-class Support Vector Machine (SVM)
as a classifier, using the LIBSVM [10] library.

SVMs [11] seek for the decision boundary between any two
classes by constructing a hyperplane in a high-dimensional
space such that the hyperplane has the largest distance to
the nearest training sample of either class. Although a linear
SVM is fast to train, in our case, it does not achieve an
accurate early prediction, when feature dimension is small.
This situation is common when users traverse the cells faster
(e.g., at vehicular speed). To this end, we choose a nonlinear
SVM with a Gaussian kernel K(x,y) = exp (—v|x —y|*)
that maps sample vectors X,y into a higher dimensional space.
The Gaussian kernel parameter v and the SVM slack variable
C are optimized with cross-validation on a subset of the
training set based on grid search.

C. Real-Time Prediction Scheme

Based on the above classification problem, we now describe
a system that predicts the user’s next cell in real time during
system operation. The main idea is to predict a user’s next
cell from current classifiers that are learned from all user’s
traversing the cell. After a user has left the cell, the true
next cell index is known and the classifier can be updated.
This feedback approach includes more and more users in the
training set and increases prediction accuracy over time. By
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Fig. 2. Real-time system integration of the proposed prediction scheme

frequently renewing the training set and re-training the clas-
sifiers, the prediction is continuously updated during system
operation.

We illustrate this online prediction scheme in Fig. 2 for an
arbitrary user . The user enters the current cell at entering
time #i" and exits at time t2*". Additionally, we define the time
when the prediction is performed at ¢7.

This leads to two time intervals. Interval [t 7] defines
the duration over which the input data is obtained until the
prediction is performed. Interval [t?, "] represents the time
the predictor can look ahead.

When the prediction is performed at ¢, the CSI sequence
H,; observed during [t, tf’ ] is used with classifier f,, to derive
the index of the next cell ;. After user ¢ exits the current cell
at time ¢, the true next cell index n; as well as CSI sequence
H; will be fed back to the learning algorithm and thus update
the corresponding classifier f, .

The smaller ¢, the less input data is required and the earlier
the prediction can be used by network adaptation algorithms.
Performing the adaptation at ¢! + ¢ — allowing a very small €
for computation time — assures that prediction and adaptation
are performed in real time. We will study these timing aspects
in the following section.

V. SIMULATION RESULTS

To obtain tractable results, we first study our system in a
simple Manhattan grid scenario. Then, we move to a realistic
radio map for the German city Frankfurt am Main. For both
scenarios, our results consistently show high performance and
fast convergence for our prediction framework.

A. Manhattan Grid Scenario

We design this simple scenario based on quadratic cells,
as illustrated in Fig. 3. Each cell is of 75m X 75m size and
includes 16 distinct paths. As all cells are assumed to be equal,
we can focus on a single cell without loss of generality. This
exemplary cell is surrounded by 4 neighboring cells at each
cardinal direction. Hence we have four different labels for the
users moving through this cell.
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Fig. 3. Illustration of the Manhattan Grid scenario: A quadratic area of

5625m? size

The paths within the studied cell traverse the cell either
horizontally, vertically, or diagonally. The users choose the
path randomly when they enter the cell and follow the path at a
speed, randomly chosen from between 5 m/s and 40 m/s. This
random choice follows a uniform distribution and all users
make independent choices, as described in Sec. III-C.

To evaluate the accuracy of the proposed solution, we first
generate classifiers in the learning phase. To assure accurate
learning of the classifiers, we collect 500 data samples per
path and use 90% for training and 10% for testing.

Fig. 4(a) presents the prediction accuracy for each label,
i.e., the next cell the user is predicted to go to. The results are
shown for a varying sample length ratio, which represents the
fraction of input data used from the available data. For our
scheme, this is the proportion of CSI values used out of all
CSI values that a user reports in the current cell.

We form a baseline by applying SVM only on the user’s
handover history. Here, the sample length ratio is the length
of the used handover history divided by the absolute length of
the history. We generate handover history using the random
mobility model from Sec. III-C. With this model, all possible
next cells have the same probability of being part of a
trajectory, if the history length is sufficiently large. We, thus,
consider no history length smaller than 2, i.e., a sample length
ratio below 0.25.

As shown in Fig. 4(a), our method substantially outperforms
the handover history-based approach. This illustrates that older
handover values do not accurately reflect the decision of the
user’s current trajectory. Also, our method is shown to profit
quickly from more input CSI data, it only requires a small
fraction of input data to reach a certain accuracy threshold.

In Fig. 4(a), we notice several intervals with slowly in-
creasing accuracy. We mark those phases by (1) and use
(2) to mark phases where the accuracy even decreases for
higher sample ratios. Studying the Euclidean distance among
the paths explains both effects as a result of the overlapping
sections of different paths. As different paths can use the same
section of a street, the long-term average of the CSI values for
this section is similar. Unless the paths separate, using a large
sample length ratio does not increase prediction accuracy.

Nonetheless, the prediction accuracy reaches 1 when the
sample length ration exceeds 0.6. This means that once a user
travels 60% of its path through the cell, maximum prediction
accuracy is reached. With the considered speeds, this allows
to predict the next cell at 100% accuracy between 1 s and 20s
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Fig. 4. Prediction accuracy of the proposed scheme and the baseline in the
Manhattan Grid scenario

in advance. This provides sufficient time for many adaptation
schemes before the user leaves the cell.

Fig. 4(b) shows prediction accuracy per label for varying
simulated time. These results where generated for the real-
time prediction scheme with users entering the current cell
with Poisson distributed inter-arrival times at A\ = 1s. We
notice that prediction accuracy converges very fast. With
approximately 100 samples per path, our learning scheme
obtains stable classifiers. This fast convergence to 100%
accuracy shows, again, the advantage of our proposed CSI-
based prediction over using handover history alone.

B. Frankfurt Scenario

In this scenario, we study an area of 4km x 4km in the
downtown area of the German city Frankfurt am Main. A
map and the 16 base station locations are shown in Fig. 5(a).
As each base station has 3 sectors, drive tests in this area
recorded the average channel gain from 48 cells. Using those
measurements to parametrize our fast fading model, Sec. III-A
provides the channel gain H; for user ¢ € 7.

This scenario differs from Manhattan grid by its more
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Fig. 6. Prediction accuracy of the proposed scheme in the Frankfurt scenario

complicated cell geometry and trajectories. However, the re-
maining parts of the systtem model are not changed. The
baseline could not have been studied in this scenario due to
insufficient handover data.

We test our predictor for two different cells, which are
marked in Fig. 5(b). The first cell with index 37 includes 26
paths. Here, 100% prediction accuracy is reached when more
than 70% of the CSI input values are used; cp. Fig. 6(a). With
the second cell, number 20, we study a complicated example.
This cell contains 46 paths and has a more complex geometry
than Cell 37. As shown in Fig. 6(b), the prediction accuracy
does not reach 100% even when the complete CSI sequence
is used. However, considerable high accuracy is reached when
more than 75% of the input is employed. This accuracy of
more than 95% should suffice for many practical purposes.

VI. CONCLUSION

We described a system to predict a user’s next cell. Formu-
lating this prediction as a classification problem allowed us to
apply Support Vector Machines (SVMs) on the last handover
event and a CSI vector. This interesting combination of (i)
long-term handover information and (ii) short-term CSI shows
promising results for a synthetic Manhattan grid scenario and
for a realistic radio map of Downtown Frankfurt. From these
simulation results, we conclude that

1) A realistic number of users is sufficient to train the
system. In the studied scenarios, 100 users per path
sufficed to build accurate classifiers.

2) SVMs predict the next cell substantially more accurately
with CSI than with handover history alone. In the studied
scenarios, our method more than doubled the accuracy
of the classic handover history-based approach.

3) This high accuracy is already reached with a small
fraction of the CSI input vector. In the studied scenarios,
not more than 60 % of the CSI vector was required to
reach 100 % prediction accuracy.

From these observations, we can conclude immediate practical
benefits. Using only a small part of the input vector allows
early but accurate prediction. Fast training makes the system
reactive to changes in the environment. Finally, the prediction
accuracy is high under various practical conditions. To this
end, the proposed prediction framework is highly promising
and deserves further study in realistic scenarios.
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