Predicting a User's Next Cell With Supervised Learning Based on Channel States

Abstract : Knowing a user's next cell allows more efficient resource allocation and enables new location-aware services. To anticipate the cell a user will hand-over to, we introduce a new machine learning based prediction system. Therein, we formulate the prediction as a classification problem based on information that is readily available in cellular networks. Using only Channel State Information (CSI) and handover history, we perform classification by embedding Support Vector Machines (SVMs) into an efficient pre-processing structure. Simulation results from a Manhattan Grid scenario and from a realistic radio map of downtown Frankfurt show that our system provides timely prediction at high accuracy.
Type de document :
Communication dans un congrès
IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2013), Jun 2013, Darmstadt, Germany. pp.1-5, 2013, 〈10.1109/spawc.2013.6612007 〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00821207
Contributeur : François Mériaux <>
Soumis le : lundi 13 mai 2013 - 15:30:46
Dernière modification le : mardi 28 août 2018 - 16:33:35
Document(s) archivé(s) le : mardi 4 avril 2017 - 06:02:33

Fichiers

csi_ml_fingerprinting.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Xu Chen, François Mériaux, Stefan Valentin. Predicting a User's Next Cell With Supervised Learning Based on Channel States. IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2013), Jun 2013, Darmstadt, Germany. pp.1-5, 2013, 〈10.1109/spawc.2013.6612007 〉. 〈hal-00821207〉

Partager

Métriques

Consultations de la notice

878

Téléchargements de fichiers

191