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Abstract. A STIRAP-like scheme is proposed to exploit a three-photon resonance

taking place in alkaline-earth-metal ions. This scheme is designed for state transfer

between the two fine structure components of the metastable D-state which are two

excited states that can serve as optical or THz qu-bit. The advantage of a coherent

three-photon process compared to two-photon STIRAP lies in the possibility of exact

cancellation of the first order Doppler shift which opens the way for an application

to a sample composed of many ions. The transfer efficiency and its dependence with

experimental parameters are analyzed by numerical simulations. This efficiency is

shown to reach a fidelity as high as (1−8.10−5) with realistic parameters. The scheme

is also extended to the synthesis of a linear combination of three stable or metastable

states.

PACS numbers: 32.80.Qk,42.50.Dv,42.50.Ct
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1. Introduction

Atomic coherence has been demonstrated to be an efficient tool for achieving control

of the interaction between electromagnetic fields and an atomic sample. It is at the

heart of quantum computation techniques based on atomic systems such as cold atoms

in cavities or optical lattices as well as strings of trapped ions. For this last system,

quantum gates [1, 2] and many-qubit entanglement [3, 4] have been demonstrated, all

based on the building of coherent combinations of internal and/or vibrational states.

With trapped ions, two kinds of qubits have been implemented successfully : hyperfine

qubits, based on two hyperfine sub-states of the ground state, like in Be+, entangled by

means of stimulated Raman transitions [1], and optical qubits, based on two different

electronic states, a ground and a metastable one, like the S1/2 and D5/2 states of Ca+,

entangled by means of Rabi pulses [2]. In both cases, the laser pulses are designed to

be equivalent to Rabi pulses of exact and well controlled phase. Alternatively, rapid

adiabatic passage has been proposed [5] and demonstrated its ability to manipulate

internal and motional states, in the case of optical qubits [6, 7].

The advantage of adiabatic passage methods is their robustness against technical

imperfections of the laser parameters like intensity and phase, which has been studied

theoretically [8] and experimentally in the context of trapped ions [9]. Recent results [10]

show that robustness compatible with quantum information processing requirements can

be reached at the expense of large Rabi frequencies. Nevertheless, these methods remain

sensitive to the Doppler effect and the mentioned experimental realizations involve a

single ion, cooled to the Doppler limit in [6, 10] or to the vibrational ground state in [7].

Rapid adiabatic passage is well suited for two level systems; in three level

systems, an alternative to Rabi pulses for internal state manipulation is offered by

STIRAP (stimulated Raman adiabatic passage) [11, 12, 13, 14] which relies on coherent

population trapping (CPT) in a dark state, made of a linear combination of stable

or metastable states. The paradigmatic system exhibiting such an effect is the Λ

configuration where two (meta-)stable states are coupled by light fields to the same

excited short-lived state. When the wavelengths of the two involved transitions are very

close, for example for hyperfine states or Zeeman sub-levels, the first order Doppler effect

is nearly canceled when the two light fields are co-propagating. This cannot be achieved

in a Λ scheme involving three different electronic states. Actually, for very different

wavelengths, the contrast reduction of the dark line by Doppler effect can even be used

to characterize the motional state of the atom [15]. For coherent state manipulation, this

is a severe drawback and STIRAP transfer between electronic states was demonstrated

on systems larger than single ions only with very close wavelengths [16]. In that work,

STIRAP is driven between the two fine structure terms D3/2 and D5/2 of the metastable

state of laser cooled Ca+ ions, through the P3/2 state. Thanks to a relative wavelength

difference of 0.5% and the choice of large one-photon detunings [17], the authors report

a transfer efficiency of 90% with an ion string as well as with a small crystallized cloud

of up to 50 ions. Transfer between these two metastable states is of relevance for qubit
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readout [17] and quantum gate processing in the THz domain [18]. In this last paper,

the THz range of the D3/2 → D5/2 transition frequency in Ca+ is exploited to phase

lock the two laser sources on a passive-type optical comb. A simple stimulated Raman

scheme is then used for completing a Cirac-Zoller gate [19], but once again, on a single

trapped ion cooled to the vibrational ground state [18].

To extend these adiabatic passage schemes to many-atom samples, they must be

made insensitive to the first order Doppler effect. This is accomplished if we extend

the concept of STIRAP to a three-photon scheme where the Doppler effect can be

exactly canceled by geometric considerations. This is possible with the three-photon

CPT identified and analyzed in [20]. This CPT gives rise to a dark line in the fluorescence

spectrum which can be made very narrow and may be used as a THz frequency standard

in an ion cloud [21]. In the scheme described in this manuscript, we propose to take

advantage of the trapping in a coherent superposition of S1/2, D3/2 and D5/2 state to

transfer efficiently the atomic state between the D3/2 and D5/2 levels and even create

any desired combination of these basic states. Thanks to the exact cancellation of the

Doppler effect, the scheme can be applied to a large sample with many ions, provided

that the available laser power is sufficient to reach the required laser coupling for the

complete sample. This is a major advantage compared to pulse sequence proposed in

[22, 23] to transfer population by STIRAP inspired method in multilevel systems. In

these works, alternating STIRAP schemes are compared to straddling STIRAP schemes

to transfer population along a chain-wise coupling scheme. In both cases, the study

assumes that all the couplings are resonant and there is no apparent resonance involving

more than two photons which could lead to a cancellation of the Doppler effect.

The present article is organized as follows. In section 2, the concept of coherent

population trapping by three-photon resonance is introduced with a focus on the main

results useful for our demonstration. For a full understanding of this coherent process

readers are referred to [20]. In section 3, the efficiency of the three-photon STIRAP

is analyzed through numerical simulations of the internal state evolution under pulsed

laser couplings. The extension of this method to the synthesis of a three-state linear

combination is presented in section 4.

2. Coherent population trapping by three-photon resonance

The scheme we propose can be applied to any atomic system composed of four electronic

levels which are coupled by laser fields, according to the N -shaped scheme depicted in

Fig. 1 and where states |S〉, |D〉 and |Q〉 are (meta)stable while state |P 〉 is short-

lived and decays radiatively into |S〉 and |D〉. This level configuration is realized, for

instance, in alkaline-earth atoms with hyperfine structure and in alkaline-earth metal

ions with a metastable d-orbital, such as Ca+, Sr+, or Ba+. In this manuscript we

focus on the ion case where the levels can be identified with the states |S〉 = |S1/2〉,
|P 〉 = |P1/2〉, |D〉 = |D3/2〉, and |Q〉 = |D5/2〉. As our experiments are realized

using Ca+-ions, we use Ca+ parameters as numerical inputs in the simulations, but the
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described scheme does not rely on a specific value and transposal to other ions sharing

the same internal structure is straightforward. The transitions |S1/2〉 ↔ |P1/2〉 (labeled

B) and |D3/2〉 ↔ |P1/2〉 (labeled R) are electric-dipole allowed and are commonly used

for Doppler cooling and detection by induced fluorescence. The coupling scheme also

implies the electric quadrupole transition |S1/2〉 ↔ |D5/2〉 (labeled C), which has a

spontaneous emission rate of the order of 1 s−1 for Ca+. The spontaneous emission

rate of the magnetic-dipole transition |D3/2〉 ↔ |D5/2〉 is of the order of 10−6 s−1 and is

neglected.

0

∆R

∆B

∆B −∆C

ΩR/2 ΩB/2

ΩC/2

|S〉

|Q〉

|P 〉

|D〉

Figure 1. N -level scheme in the dressed state picture: The states |D〉, |P 〉, |S〉 coupled

by laser couplings ΩR and ΩB form a Λ-configuration, state |S〉 couples weakly to the

metastable state |Q〉 by ΩC . The wavy lines indicate the radiative decay. Parameters

and possible atomic species are discussed in the text.

The three-photon resonance is theoretically introduced in [20]. It results in a

coherent population trapping that is well explained in the dressed state picture where

the non-coupled eigenstates are defined by the hamiltonian

H0 = ~∆R|D〉〈D|+ ~∆B|S〉〈S|+ ~(∆B −∆C)|Q〉〈Q| (1)

with detunings defined as ∆B = ωB − ωPS, ∆R = ωR − ωPD, and ∆C = ωC − ωQS.

ωX is the laser frequency on the X labelled transition and ωIJ is the Bohr frequency

of the atomic transition |I〉 ↔ |J〉. ΩR,B,C are the corresponding Rabi frequencies

characterizing the laser couplings. In practice, the dipole and the quadrupole couplings

differ by a few orders of magnitude and our description assumes that the |Q〉 state is

weakly coupled to the Λ-scheme formed by the two strong laser couplings involving |S〉,
|P 〉, and |D〉. Considering that |Q〉 is weakly coupled to |S〉, the subsystem (|S〉, |Q〉)
can be diagonalized and solved analytically to first order in αC = ΩC/2∆C ≪ 1. The

new eigenstates are then

|SQ〉 = N (|S〉+ αC |Q〉) ; |QS〉 = N (|Q〉 − αC |S〉) (2)

(where N is the normalization factor) with eigenfrequencies light-shifted by ±αCΩC/2.
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The new eigenstate |QS〉 is coupled to |P 〉 by a coupling strength quantified by

the Rabi frequency −αCΩB and the dressed state configuration ends up in a Λ-scheme

based on |QS〉,|P 〉 and |D〉 state (see Fig.2). The radiative processes taken into account

couple |P 〉 to states |S〉 and |D〉 by the decay rate γP and branching ratio βPS/βPD.

Λ-schemes are well known to give rise to coherent population trapping into a dark state

when the dressed metastable states supporting the Λ ( |QS〉 and |D〉 in our case) are

degenerated [25] and are fed by spontaneous emission from the short lived state. The

degeneracy condition is fulfilled on the light-shifted three-photon resonance condition

∆eff = ∆R +∆C −∆B + αCΩC/2 = 0. (3)

The spontaneous emission rate from |P 〉 to |QS〉 is in second order in αC . For appropriate

αC values, this rate is sufficient to lead to effective population trapping but sets a

minimum time scale boundary for its efficiency.

Provided that the three-photon and two-photon (∆R = ∆B) resonance conditions

are sufficiently split apart (i. e. ∆C is larger than the relevant dark line widths, see [20]

for justification), the atomic system is then pumped into the dark state

|ΨD〉 = N ′ (E|D〉+ |QS〉) (4)

with E = αCΩB/ΩR and normalization factor N ′. The dark state stability is

fundamentally limited by the radiative decay of states |Q〉 and |D〉 which is of the

order of 1 s for Ca+, 350 ms for Sr+ and more than 10 s for Ba+. The reduction of the

dark state lifetime by the first order Doppler effect can be cancelled in the Doppler-free

configuration [26] which is defined by the phase matching condition

∆k = kR + kC − kB = 0. (5)

where kX is the wave vector of laser X. In the following, we assume this matching

condition is satisfied and we neglect any Doppler effect including the second order

Doppler effect which results in a line broadening and shift which are not relevant here

[21].

Inspired by the original STIRAP method [11, 12, 14], we want to coherently transfer

atomic population between the two qu-bit states |D〉 = |D3/2〉 and |Q〉 = |D5/2〉 by

adiabatic following of the dark state. One of the main concerns comes from the definition

of the dark state itself (Eq. 4) which includes a small part of the |S1/2〉 state. This issue as

well as the identification of the relevant parameters which offers a compromise between

a small enough coupling on the C transition and a fast STIRAP are addressed in the

following section. Population transfer along a chain of 4 states coupled in a N -scheme

was already studied in [24] in the assumption of three-photon resonance. The delayed

pulse method analyzed in [24] does not rely on a three-photon dark state but rather on

successive two-photon Raman transfers and the process remains sensitive to the Doppler

effect.
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Figure 2. Part of the dressed state picture relevant for the three-photon resonance

condition, giving rise to the coherent dark state. The straight lines stand for laser

couplings and the wavy lines for radiative decay (see text for details).

3. STIRAP with Gaussian pulses

Numerical simulations of the internal dynamics of the atomic state are made by

integrating the master equation for the density matrix resulting from the optical Bloch

equations. We first consider that the weak coupling on the quadrupole electric transition

is always on and is kept constant. The laser detunings are fixed all along the state

transfer and, in a first step, we assume that the three involved lasers are phase-locked

to the same frequency comb such that their relative phase drift is negligible. The laser

intensities on the B and R transitions are modulated in order to have a complete overlap

between the dark state and the desired atomic state at the beginning and end of the

transfer. The commonly used Gaussian shape for STIRAP laser pulses are not the

optimal choice and can be optimized to reach better fidelity by minimization of non-

adiabatic losses [27]. Nevertheless, to focus on the atomic system response and compare

to previous theoretical [17] and experimental works [16], we keep a simple Gaussian

profile for the time dependence of the pulses, which is a relevant representation of

what can be experimentally produced using first order diffraction from acousto-optical

modulators :

ΩB(t) = Ω0

B exp

[

−
(

t±∆t/2

τ

)2
]

,

ΩR(t) = Ω0

R exp

[

−
(

t∓∆t/2

τ

)2
]

. (6)

The width of the laser pulses is defined by τ and ∆t is their time delay. The order

of application of the pulses (the ± sign) depends on the desired transfer and follows

the non-intuitive STIRAP requirement : the first choice drives a transfer from D3/2 to

D5/2, the second choice from D5/2 to D3/2. To follow the internal dynamics, we solve
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the master equation for the density matrix ρ

∂

∂t
ρ = − i

~
[H, ρ] + Lρ (7)

with H = H0 +HI(t). HI(t) includes the laser couplings by

HI(t) =
~ΩB(t)

2
|P 〉〈S|+ ~ΩR(t)

2
|P 〉〈D|+ ~ΩC

2
|Q〉〈S|+ H.c. (8)

and the relaxation operator

Lρ = − 1

2
γP (ρ|P 〉〈P |+ |P 〉〈P |ρ) (9)

+ βPSγP |S〉〈P |ρ|P 〉〈S|+ βPDγP |D〉〈P |ρ|P 〉〈D|
describes the radiative processes, coupling |P 〉 to states |S〉 and |D〉, with a branching

ratio βPS/βPD = 14.4 for Ca+ [28] and βPS + βPD = 1. The P1/2 state lifetime γ−1

P

has been measured to be 7.07 ± 0.07 ns in [29] and 7.1 ± 0.02 ns in [30]. Very precise

calculations [28] recommend to use γ−1

P = 6.87 ± 0.13 ns. For the simulations, we use

γ−1

P = 7.00 ns as a numerical value but the accuracy of the parameter is not relevant

for the STIRAP process.

3.1. Transfer efficiency

We start with an atom in the D3/2 = |D〉 state and the target state of the STIRAP-like

transfer is expected to be |QS〉 = N (|Q〉 − αC |S〉), if the approximations used in [20]

are still valid. The fidelity of the transfer is then

F = 〈QS|ρ|QS〉 = (α2

CρSS + (1− α2

C)ρQQ − 2αCRe(ρSQ)) (10)

in second order in αC . Our final objective is a complete transfer from D3/2 to D5/2.

Once the STIRAP process completed, the weak coupling laser has to be switched off

to reduce the contribution of |S〉 to zero. This can be done with an exponential decay

of ΩC which can be made as short as 1 µs without any coherence loss. In this case,

the target state is simply |Q〉 and the transfer efficiency is quantified by the average

occupation probability PQ = ρQQ. Let’s mention that the exact delay between the end

of the STIRAP and the decay of the weak coupling does not have to be controlled with

a high precision as the intermediate state |QS〉 is stable on time scales of the order of

the 1 s lifetime.

Following the numerical analysis of a regular two-photon STIRAP process in Ca+

[17], we want to define a process where the two branches of the Λ-scheme see a maximum

coupling strength of the same order of magnitude. This implies that Ω0
B must be

large enough to compensate for the weak mixing term αC ≪ 1. Indeed, comparison

of numerical results shows that very good transfer efficiencies are observed for a mixing

parameter αC close to 0.05 and all the results presented in this paper were obtained with

αC = 0.05. In practice, it implies that Ω0
B/2π must be of the order of a few hundreds of

MHz, which is certainly a strong experimental constraint, even more when the transfer

is addressed to an ion cloud rather than a single ion. Concerning the optimal delay
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between the two pulses, our simulations confirm the property demonstrated in [31] that

optimum transfer is observed for a delay ∆t equal to τ , which is close to the half-width of

the pulse, with our notation (Eq. 6). Figure 3 shows the time evolution of the population

of the atomic states along a population transfer process from D3/2 to D5/2. We assume

that the atomic system is previously prepared in the D3/2 state, which is easy to realize

by keeping only the B-laser on, without any repumping out of D3/2 (see level scheme on

Fig. 1). The laser parameters used for the simulation are given in the figure’s caption.
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Figure 3. a): Time evolution of the population of the D3/2 (red dotted line), P1/2

(×104, green solid line), S1/2 (×102, black dashed line)and D5/2 (dot-dashed blue line)

states during the STIRAP process driven by the Gaussian pulses ΩB(t) and ΩR(t) (see

Eq. 6). Laser parameters are τ = ∆t = 20µs, ΩC/2π = 10 MHz, ∆C/2π = 100 MHz,

Ω0
B/2π = 400 MHz, ∆B/2π = 100 MHz, Ω0

R/2π = 40 MHz, ∆R = ∆B−∆C−αCΩC/2.

b): Time evolution of the Rabi frequency ΩB(t) (blue dashed line) and ΩR(t) (red solid

line) ΩC is constant during the STIRAP process..

The fidelity F reached at the end of the STIRAP and PQ at the end of the total transfer

both equal (1− 8.10−5). For the chosen parameters, the experimental duration must be

100 µs in order to reach such an excellent fidelity. This duration can be reduced by a

factor of 2 (50 µs) if the required fidelity is (1 − 3.10−4) and by a factor of 4 (27 µs) if

a fidelity of (1− 1.10−3) is sufficient.
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In order to reverse the transfer, starting in the D5/2 state, this state must first be

dressed and coupled to become |QS〉. This can be achieved by adiabatic rapid passage

with two alternatives : either in the no-crossing case where the detuning is kept fixed

and the laser coupling is increased to reach the desired dressed state, or in the crossing

case where the laser coupling is fixed and the detuning is chirped from a very large value

to the target one (see [32] for a complete review). In our simulations, we used the first

method and could bring the atomic state to |QS〉 by switching on the weak coupling on

a time scale of the order of 1 µs, with a fidelity reaching 1 to better than 10−6. Then,

the STIRAP pulses are applied in the reversed order (in practice, with the other set of

signs in Eq. 6), to adiabatically follow the dark state to D3/2.

This fast and complete transfer is possible at the expense of a large coupling

on the weak transition. Figure 4 shows how the evolution of the fidelity with the

characteristic pulse time depends on the weak coupling ΩC but keeping the coupling

parameter αC = 0.05 constant. The comparison of the fidelity evolution for different

0 10 20 30 40 50 60 70 80 90 100
10
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10
−4

10
−3

10
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10
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10
0
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1−F

Figure 4. Non-fidelity 1 − F = 1 − PQ of the full transfer driven by Gaussian

pulses plus weak coupling decay versus pulse duration and delay τ = ∆t (see Eq. 6)

Laser parameters are Ω0
B/2π = 400 MHz, ∆B/2π = 100 MHz, Ω0

R/2π = 40 MHz

and ∆R = ∆B − ∆C − αCΩC/2. The open red circles on the solid line are for

ΩC/2π = 1 MHz, ∆C/2π = 10 MHz, the black crosses on the dash-dotted line are

for ΩC/2π = 5 MHz, ∆C/2π = 50 MHz and the full blue squares on the dashed line is

for ΩC/2π = 10 MHz, ∆C/2π = 100 MHz.

sets of (ΩC , ∆C) clearly shows that this transfer can reach a very good fidelity if sufficient

laser power is available. It takes of the order of 5 mW focused on a beam radius of 10 µm

to reach a Rabi frequency of 1 MHz on the quadrupole transition of Ca+. With the

progress made in coherent and powerful lasers, achieving a 10 MHz coupling strength

with a larger beam size is not out of reach [33]. Another strategy could be offered by

increasing the coupling strength on the two main transitions B and R. Figure 5 shows

that increasing ΩB(t) and ΩR(t) results in a better fidelity, but this gain can be seen

only for the longer pulses and its magnitude is not sufficient to compensate for a too

small coupling on the weak transition.
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Figure 5. Non-fidelity 1− F = 1− PQ of the full transfer driven by Gaussian pulses

plus weak coupling decay versus their duration and delay τ = ∆t (see Eq. 6). Laser

parameters are ΩC/2π = 1 MHz, ∆C/2π = 10 MHz, Ω0
B/2π = 200 MHz and Ω0

R/2π =

20 MHz (filled square, blue dashed line), Ω0
B/2π = 400 MHz and Ω0

R/2π = 40 MHz

(empty circle, red solid line), Ω0
B/2π = 800 MHz and Ω0

R/2π = 80 MHz (cross, green

dot-dashed line), ∆B/2π = 100 MHz, and ∆R = ∆B −∆C − αCΩC/2.

3.2. Sensitivity to experimental imperfections

To be satisfied, the three-photon resonance condition requires the control of the relative

detuning of three lasers. The relative detuning relation given in Eq. 3 includes a light-

shift that can be rewritten like α2
C∆C . With the identified optimum condition αC = 0.05,

it means that this light-shift is equal to 0.25% of the weak coupling detuning. This is very

small compared to the effective line-width of the STIRAP efficiency shown on figure 6

for two different sets of laser parameters: the weak coupling case (ΩC/2π = 1 MHz,

∆C/2π = 10 MHz) with a pulse delay ∆t = 45 µs chosen to reach a fidelity better

than (1 − 10−3) for no mismatch and the strong coupling case (ΩC/2π = 10 MHz,

∆C/2π = 100 MHz) with a pulse delay ∆t = 20 µs chosen to reach a fidelity better than

(1 − 10−4) for no mismatch. Comparison of several curves of this figure confirms that

the sensitivity of transfer efficiency to detuning mismatch is strongly controlled by the

one photon detuning ∆R ≃ ∆B − ∆C , like already observed for two-photon STIRAP

in [17]. This is clearly illustrated when comparing the red dotted line and the green

solid line, for the weak coupling case or when comparing the dashed blue line and the

dot-dash black line for the strong coupling case. For each couple the difference in laser

parameters lies in the one photon detuning which is nearly null for the broader curve

and equal to 90 MHz for the narrower ones. So a smaller one-photon detuning makes

the STIRAP efficiency less sensitive to detuning mismatch. For a given one-photon

detuning, the curve is also made broader by a stronger coupling on the weak transition.

The asymmetry of the line profile is due to non-adiabatic crossing with a fast decaying

state, like already identified in [17]. The profile is symmetric and larger if the time

allowed for the transfer is extended. In the strong coupling case with zero one-photon
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detuning, a detuning mismatch of ±0.1 MHz leads to a reduced fidelity of 0.997 for a

pulse delay of 20 µs.
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Figure 6. Fidelity F of the full transfer driven by Gaussian pulses plus weak coupling

decay versus the three-photon resonance mismatch ∆eff = ∆R−(∆B−∆C−αCΩC/2).

Common laser parameters are Ω0
B/2π = 400 MHz and Ω0

R/2π = 40 MHz. The strong

coupling cases for the weak transition are for ΩC/2π = 10 MHz, ∆C/2π = 100 MHz,

∆t = 20 µs and ∆B/2π = 100 MHz (dashed blue line) and ∆B/2π = 190 MHz (dot-

dashed black line). The weak coupling cases are for ΩC/2π = 1 MHz, ∆C/2π = 10 MHz

∆t = 45 µs, ∆B/2π = 100 MHz (red dotted line) and ∆B/2π = 10 MHz (green solid

line)

A major experimental imperfection comes from the coherence loss induced by the

phase fluctuations of the laser fields which induce a phase fluctuation in the definition

of the dark state. It is possible to take into account these phase fluctuations in the

relaxation operator of the master equation (Eq. 9) by an average line-width responsible

for coherence decay [34]. It is introduced in the master equation by a Lindblad operator

Lrelaxρ = −1

2

∑

m

C†
mCmρ+ ρC†

mCm +
∑

m

CmρC
†
m (11)

with a Cm operator associated to each laser coupling [35, 36]:

CB
m =

√

ΓB
L

2
(|P 〉〈P |+ |D〉〈D| − |S〉〈S| − |Q〉〈Q|)

CR
m =

√

ΓR
L

2
(|D〉〈D| − |P 〉〈P | − |S〉〈S| − |Q〉〈Q|) (12)

CC
m =

√

ΓC
L

2
(|Q〉〈Q| − |S〉〈S| − |P 〉〈P | − |D〉〈D|)

with ΓX
L the half-width at half-maximum of the spectral width of the laser on the X-

transition. On Figure 7, we show the evolution of the transfer efficiency when the three

lasers have the same line-width. The results of the simulation show that this efficiency

is very sensitive to the laser frequency fluctuations and already with ΓL = 1 kHz, the

fidelity decreases to (1 − 2.10−2) whereas it is larger than (1 − 10−4) for no frequency
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fluctuations. To take advantage of the three-photon resonance, it is then highly relevant

to lock the three lasers on a very stable reference in order to reduce the relative frequency

drift. This can be done by locking each laser’s frequency on a peak of a frequency comb

[37]. For a free running optical comb and the Ca+ transition wavelengths (B : 397 nm,

C : 729 nm, R : 866 nm) the relative frequency drift is of the order of 1 kHz/s [38]. It

can be reduced to 40 Hz/s for an optical comb locked on an RF reference and to 1 Hz/s

if the reference is in the optical domain [38]. With the RF reference, the fidelity is only

reduced to (1− 5.10−4) but with such good performances, other frequency fluctuations

like the one induced by the Zeeman shift may surpass the laser line-width effect.
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Figure 7. Non-fidelity 1−F of the full transfer driven by Gaussian pulses (∆t = 28 µs)

plus weak coupling decay versus the laser half linewidth at half maximum ΓL. Laser

parameters are Ω0
B/2π = 400 MHz and Ω0

R/2π = 40 MHz and ∆B/2π = 100 MHz,

ΩC/2π = 10 MHz, ∆C/2π = 100 MHz and ∆R = ∆B −∆C − αCΩC/2.

4. Building a linear combination of (meta-)stable states

As the dark state is formally built out of the |D〉, |Q〉, |S〉 dressed states, it is possible

to build a linear combination of these states by controlling their contribution by the

laser coupling ratio. To be more precise, the dark state is a combination of |D〉 and

|QS〉 and by controlling the ratio E (see Eq. 4), one can build any desired combination

of these two states. Figure 8 shows the evolution of the population of the dressed states

along a pulsed STIRAP, interrupted before completion. From this interruption, all the

laser couplings are kept constant as they are. For the demonstration, we choose a non-

negligible contribution of the |S〉 state, which requires to go beyond the weak-coupling

approach used in section 2. The exact solutions for the eigenstates of the (|Q〉, |S〉)
coupled system are well known and the more general form for |QS〉 can be expressed

with the new parameter α = 2αC/(1 +
√

1 + 4α2
C) like

|QS〉 =
1√

1 + α2
|Q〉 − α√

1 + α2
|S〉. (13)
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Its eigen-energy is λQ = −∆C(1 +
√

1 + 4α2
C)/2 and this dressed state is coupled to

the |P 〉 state by the laser coupling −βΩB/2 with β = α/
√
1 + α2. The three-photon
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Figure 8. Time evolution of the population of the D3/2 (red dotted line), S1/2

(black dashed line) and D5/2 (dot-dashed blue line) states during an incomplete

STIRAP process driven by Gaussian pulses ΩB(t) and ΩR(t) kept constant since

t = 40 µs (see Eq. 6). Laser parameters are τ = ∆t = 28µs, ΩC/2π = 50 MHz,

∆C/2π = 10 MHz, Ω0
B/2π = 400 MHz, ∆B/2π = 100 MHz, Ω0

R/2π = 40 MHz,

∆R = ∆B −∆C(1 +
√

1 + 4α2
C)/2.

resonance condition becomes

∆R −∆B +∆C(1 +
√

1 + 4α2
C)/2 = 0. (14)

and the laser parameters for figure 8 obey this condition. For continuity reason with

the previous section, we build the dark state with the |QS〉 state, which implies that the

contribution of |S〉 can not exceed the one from |Q〉. If the reverse situation is required,

the dark state must be built with |SQ〉 by adapting the three-photon resonance condition

to the other eigen-energy λS = −∆C(1 −
√

1 + 4α2
C)/2. The fidelity of the process is

evaluated by computing 〈Ψ|ρ|Ψ〉 with |Ψ〉 = M(E ′|D〉+|QS〉), M being a normalization

factor and E ′

= βΩB/ΩR. All along the population transfer depicted on figure 8, the

fidelity remains higher than (1−10−4) and reaches (1−2.10−5) at the end of the process.

This very good value shows that the atomic state exactly follows the dark state, even if

it is now extended to large couplings on the weak transition. The large value chosen for

ΩC (50 MHz) in this calculation may not be experimentally realistic but this choice was

made to demonstrate the validity of the description in a broad range of parameters.

Once the combination built, the B- and R- coupling lasers can be turned off

simultaneously, with a 1 µs exponential decay, and leave the system in the equivalent

combination of D3/2 and |QS〉. Obviously, if the C- coupling laser is also turned off, the

|QS〉 state continuously tends to D5/2 (or to S1/2 if the dark state is built with |SQ〉). A

three-state linear combination therefore requires at least one coupling laser to exist.
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Conclusion

The dark state, made of three stable or metastable states and resulting from a three-

photon dark resonance is used to coherently transfer population between the two fine-

structure states D3/2 and D5/2 of calcium-like ions. In the ideal case of exact cancelling

of the Doppler effect and a phase lock of the three involved lasers, fidelity values as high

as (1 − 8.10−5) can be reached for a 100 µs long experiment. This fidelity decreases

if the laser couplings are not sufficiently strong or if pulses are too short. Depending

on the laser parameters, a detuning mismatch can be tolerated but relative frequency

drifts of the lasers must be drastically avoided. If the laser pulses are interrupted before

completion of the STIRAP-like process, a linear combination of D3/2 and D5/2 can be

built. If one of the lasers continues to be applied, the combination can also include the

ground state S1/2. The cancellation of the first order Doppler effect by a geometric phase

matching of the laser beams allows the application of these methods to an ion cloud.

On the contrary, like shown in [20], if entanglement of internal and external degrees of

freedom is needed, another geometry can be used which results in motional side-bands

to the dark resonance and allows the process to include modification of the vibrational

state along with transfer of the internal state.
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