A computational diffusion MRI and parametric dictionary learning framework for modeling the diffusion signal and its features

Abstract : In this work, we first propose an original and efficient computational framework to model continuous diffusion MRI (dMRI) signals and analytically recover important diffusion features such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF). Then, we develop an efficient parametric dictionary learning algorithm and exploit the sparse property of a well-designed dictionary to recover the diffusion signal and its features with a reduced number of measurements. The properties and potentials of the technique are demonstrated using various simulations on synthetic data and on human brain data acquired from 7-T and 3-T scanners. It is shown that the technique can clearly recover the dMRI signal and its features with a much better accuracy compared to state-of-the-art approaches, even with a small and reduced number of measurements. In particular, we can accurately recover the ODF in regions of multiple fiber crossing, which could open new perspectives for some dMRI applications such as fiber tractography.
Type de document :
Article dans une revue
Medical Image Analysis, Elsevier, 2013, pp.MEDIMA779. <10.1016/j.media.2013.04.011>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00820817
Contributeur : Sylvain Merlet <>
Soumis le : mardi 7 mai 2013 - 11:41:53
Dernière modification le : mardi 6 octobre 2015 - 08:46:01
Document(s) archivé(s) le : jeudi 8 août 2013 - 04:04:54

Fichier

merlet-etal-2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sylvain Merlet, Emmanuel Caruyer, Aurobrata Ghosh, Rachid Deriche. A computational diffusion MRI and parametric dictionary learning framework for modeling the diffusion signal and its features. Medical Image Analysis, Elsevier, 2013, pp.MEDIMA779. <10.1016/j.media.2013.04.011>. <hal-00820817>

Partager

Métriques

Consultations de
la notice

358

Téléchargements du document

426