Study of a liquid-gas mixing layer: Shear instability and size of produced drops
Sylvain Marty, Jean-Philippe Matas, Alain Cartellier

To cite this version:

HAL Id: hal-00819720
https://hal.archives-ouvertes.fr/hal-00819720
Submitted on 2 May 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Study of a liquid-gas mixing layer: Shear instability and size of produced drops

Sylvain Marty, Jean-Philippe Matas Alain Cartellier

Laboratoire des Ecoulements Géophysiques et Industriels (LEGI), CNRS-Université de Grenoble, BP53 38041 Grenoble Cedex 9

Received *****; accepted after revision +++++
Presented by £££££

Abstract

We study experimentally the atomization of a liquid sheet by a parallel gas flow, in order to understand the conditions of destabilization of the liquid sheet and the conditions of drop creation. We study in particular the regimes at low M (ratio of gas/liquid dynamic pressures), to test the scaling law proposed and validated in previous studies at large M ($M = 16$).

The inviscid stability analysis of the system is carried out with a new velocity profile taking into account the wake of the splitter plate (zero speed at the level of the splitter plate): the influence of liquid velocity on the shear instability frequency turns out to be significantly stronger for this type of velocity profile than for classical ones.

An asymptotic study of the dispersion relation leads to a new scaling law giving the wavenumber of the shear instability as a function of gas velocity U_g, with a corrective term in M. Frequency measurements carried out by a spectral method show a good agreement with this corrected law.

We investigate by way of optical probe measurements the size distribution of produced drops downstream. The difficulty of these measurements resides in the decrease of the numerical drop flux at low M. Results obtained for the mean chord are consistent with previous studies. Diameter distributions are obtained from chord distributions with a numerical conversion procedure.

To cite this article: S. Marty, J.P. Matas, A. Cartellier, C. R. Mecanique 333 (2011).
Résumé

Etude d’une couche de mélange liquide gaz : instabilité de cisaillement et taille de gouttes produites

Nous étudions expérimentalement l’atomisation d’une nappe liquide par un courant parallèle gaz, afin de comprendre les conditions de déstabilisation de la nappe liquide et les conditions de formation de gouttes. Nous étudions en particulier les régimes de faible M (rapport de pression dynamique gaz/liquide), afin de tester les lois d’échelle mises en évidence lors d’études précédentes et validées sur un régime à grand M ($M = 16$).

L’analyse de stabilité inviscide du système est menée avec un nouveau profil de vitesse prenant en compte le sillage de la plaque séparatrice (vitesse nulle au niveau de la plaque de séparation) : l’influence de la vitesse de phase liquide sur la fréquence de l’instabilité de cisaillement est significativement plus forte pour ce type de profil de vitesse que pour les profils classiques. Une étude asymptotique de la relation de dispersion permet de trouver une nouvelle loi d’échelle reliant le nombre d’onde du mode le plus instable à la vitesse gaz U_g, avec un correctif en M. Les mesures de fréquence réalisées par une méthode spectrale montrent un bon accord avec cette loi d’échelle corrigée.

Connaissant les mécanismes en amont nous nous intéressons également aux distributions de taille de gouttes en aval, mesurées par sonde optique. La diminution du flux numérique de goutte et le changement des plages de vitesse des fluides à faible M rendent les mesures plus complexes. Les résultats sur les cordes moyennes mesurées sont cohérents avec les études précédentes. Le passage des histogrammes de cordes aux histogrammes de diamètre fait appel à des méthodes numériques très sensibles aux valeurs extrêmes de cordes.

Key words: liquid-gas mixing layer ; Stability analysis ; Droplet

Mots-clés : couche de mélange liquide gaz ; analyse de stabilité ; distributions de taille de gouttes

Email address: Sylvain.Marty@hmg.inpg.fr (Sylvain Marty).
Modern turbojet or cryogenic engines use two-phases nozzles to feed their combustion chamber with fuel and comburant. This kind of injection turns a liquid flow into a homogeneous spray under the action of a fast gas stream. A good quality of this mixture is needed to optimize combustion. Several geometries exist for these injectors (gaz or fluid centered, with or without recess length) with various diameter and length. A good review of the different techniques for atomization can be found in Likefoot (2009) [1]. Our experimental set-up models an injector with an infinite diameter and a large liquid flow thickness (figure 1). With this geometry we avoid any 3D instability, like the flapping instability of a round liquid jet. Our injector is composed of two parallel channels: channel below is fed with water from a overflowing tank. Liquid velocity is in the range $0.1 \text{ to } 1 \text{ m.s}^{-1}$. The upper channel receives a gas stream from a compressor. The maximum gas velocity is near 100 m.s^{-1}. In order to limit velocity perturbations, honey combs are inserted in each channel, a porous plate in the gas one, and each channel ends with a smooth convergent profile (figure 1). In addition to the geometrical characteristics of the nozzle and fluid properties we have two main parameters controlling the injection: gas velocity U_g and liquid velocity U_l. The dynamic pressure ratio M can be used in place of either velocity. Previous studies carried out on this set-up have highlighted successive mechanisms of destabilization [4,5,6]. First a shear instability controlled by the gas vorticity thickness has been clearly identified: this Kelvin-Helmholtz type instability induces longitudinal waves. On the crest of these waves a transversal instability takes place, similar to a Rayleigh-Taylor instability (it is caused by the acceleration of the waves). The transversal perturbations then turn into ligaments by elongation, and eventually break into droplets (see Raynal 1997 [4] and Marmottant and Villermaux...
Figure 2. Map of experimental points: ♦ $M = 16$, × = frequency measurements, ◦ = droplet size distributions measurements, dashed line = fixed M value

2004 [5]). One of the most notable result evidenced by Raynal (1997) is the dependency of the wavenumber k of the most amplified mode of the axial instability on the gas flow vorticity thickness δ_g (equation 1):

$$k = 1.5 \sqrt[3]{\frac{1}{\rho_l \delta_g}}$$ (1)

Wave velocity can be estimated from Dimotakis velocity U_c, deduced from stress continuity [7]:

$$U_c = \frac{\sqrt{\rho_l U_l + \sqrt{\rho_g U_g}}}{\sqrt{\rho_l} + \sqrt{\rho_g}}$$ (2)

Frequency of the most unstable mode can then finally be approximated as $\omega = kU_c$. Hong (2003)[6] and Ben Rayana (2007) [8] have used the same set-up used by Raynal (1997), but have focused on a constant $M = 16$ ratio (black diamond series of figure 2). These conditions are relevant to cryotechnic engines who use constant injection regime during all the launching time. The case of turboengine for plane is different, from the take off to the cruise at high altitude this injection regime varies from $M = 15$ to 1. In the present study, we vary M to investigate the influence of this parameter on the instability. The crosses on figure 2 correspond to the frequency measurements of the present study. We will compare the predicted frequency with the measured one. The circle series corresponds to the experimental conditions for which droplet size distributions were obtained. A minimum flux of drops is needed in order to ensure a good resolution of the chord pdf: this is why size distributions could not be measured for the same conditions for which frequencies were measured. Finally diameter distributions are obtained by transformation of
chord distributions, these distributions will be presented in section 5.

2 Asymptotic analysis: influence of a velocity deficit

One of the difficulty in the stability analysis is the choice of a relevant velocity profile for both flows. Rayleigh (1879) [2] and later Chandrasekhar (1981) [3] studied this instability with a finite vorticity thickness in the gas and liquid flow. For their studies Raynal (1997) [4], Marmottant and Villermaux (2004) [5] used this profile to model the final profile far downstream the injection (see figure 3), but neglected the vorticity thickness δ_l in the liquid flow [4]. They also showed that in the case of an invicid analysis, the smooth velocity profile (solid line of figure 3) can be modelled by a linear one (dashed line of figure 3).

A new approach, by Matas et al. (2011) [9], takes into account the wake due to the splitter plate: there is a velocity deficit right after the splitter plate. The stability analysis is therefore carried out with the dashed profile represented at the end of the splitter plate. Left figure 4 present the dimensionless frequency obtained with both profiles (dashed line without a deficit, and solid line with a deficit), as a function of M. The gap between the two profiles becomes larger for low M: the frequency is strongly underestimated by the classical analysis for low M. The same effect is observed for the dimensionless growth rate,

![Figure 3. Downstream evolution of the velocity profile.](image)

![Figure 4. Dimensionless frequency (a) and growthrate (b) as a function of M obtained with both profiles (dashed line without a velocity deficit, and solid line with a velocity deficit)](image)
see right figure 4. In order to generalize the prediction of equation 1 when the velocity deficit is included, an asymptotic analysis is carried out on the dispersion relation around the unstable mode. Equation 3 where Ω' and K' are respectively the dimensionless frequency and wavenumber proportional to $\sqrt{\rho_g/\rho_l}$, is this simplified dispersion relation. For obtain this result, it is assumed that M is of order 1 or larger, $\rho_g/\rho_l << 1$, $U_l << U_g$ and $k\delta_l << 1$. The liquid vorticity thickness has to be small compared with the wavelength of the instability.

$$\Omega'^2 - \left(\frac{2K'}{\sqrt{M}} + K'^2\right)\Omega' + \left(\frac{2K'^3}{\sqrt{M}} + K'^2\right) = 0$$

(3)

This equation is solve for temporal solution. The resulting wavenumber and frequency are:

$$k = (\sqrt{2} + \frac{3}{2} M^{-1/2}) \sqrt{\frac{\rho_g}{\rho_l} \frac{1}{\delta_g}}$$

and

$$\omega_r = \frac{\rho_g}{\rho_l} \frac{U_g}{\delta_g} (1 + \frac{5}{2} \sqrt{2} M^{-1/2})$$

(4)

This results introduce a corrective term in M to the prediction of Raynal (1997) [4], Marmottant and Villermaux (2004) [5]. In order to test both predictions, frequency was measured for M smaller than 10, i.e. when the corrective term is not negligible.

3 Frequency and growthrate measurements

In order to determine the frequency of the most amplified Kelvin-Helmholtz mode, we use a LIF method. Fluorescein is mixed in the liquid phase, a longitudinal section of the flow is made with an Argon laser, and a high speed camera (Phantom V2) records flow motion in this section. Post treatment of the movie uses a Sobel filter to localize the water surface. We therefore obtain the position h of surface as a function of time and downstream position: $h = f(x, t)$. A Fourier transform of h (Welch method) yields the desired frequency, see figure 5. The dimensionless frequency is plotted as a function of $M^{-1/2}$. Experimental series ◦, □, • and • display each gas velocity used, respectively 12, 17, 22 and 27 m/s. Dotted line corresponds to the prediction without a deficit, and solid line to the prediction of equation 4. Experimental points are collapsed around the solid line for all M, in agreement with the analysis where the deficit is included. From the interface position $h = f(x, t)$ we can also draw the variations of wave amplitude downstream the injector. A significant processing has to be carried out, see reference [9], in particular to exclude rare events, after which the spatial growthrate k_i of the longitudinal instability can be obtained. Figure 5 shows also k_i as a function of gas velocity.
The growthrate is mainly a function of gas velocity, and not M: this behaviour is not predicted by the inviscid stability analysis. We believe it results from the large amplitude of the waves, which will itself impacts gas flow, a nonlinear mechanism not included in the stability analysis.

4 Droplet size and flux measurements

The previous section has evidenced a significant sensitivity of the axial instability characteristics to the M parameter. The question to be considered now is whether this parameter also alter the size or the flux of the drops produced at the last step of atomization process. We have therefore gathered information of the drops for flow conditions close to those for which frequency and growthrate have been investigated. Droplet size and fluxes have been measured with a monofiber optical probe: detailed information about this sensor and the associated signal processing and post-processing can be found in references [10] and [11]. For the present study, we used an optical probe with a 30µm sensitive length so that unbiased detection is expected for drops above 10^{-12}µm. This latence length is measured on a special calibration bench with a precision of 5µm. In comparison with previous studies (ref Cartellier 2004 [10] and Hong 2004 [11]) this length is very short and generate some problem of long time scale evolution not clarified now. Independently of these consideration we have a maximum gap between two measurement of 25% for the mean chord and 31% for the volumetric flux. This repetition of measurement include all the acquisition chain from the selection of injection parameter with the set on of probe to the postprocessing. Note that we cannot exactly cover the same range of conditions as those considered in the previous section. Indeed, for gas velocities below about 20 m.s$^{-1}$, the flux of drops remains very weak and the convergence of the statistics would imply very long acquisition times. In addition, at low gas velocity, the probe dewetting time becomes quite long and may alter the signal quality. This problem is solved by adapting sig-
happens that for a given gas velocity, a variation in the
mean chords detected for gas velocities evolving
Figure 7. Convergence of mean chord for $U_g = 30 \, m.s^{-1}$ and $U_g = 90 \, m.s^{-1}$ at $M = 16$

ternal processing parameters for each conditions, and by verifying carefully the
consistency of each signal.

Hong (2003) [6], who carried out optical probe measurement in a similar con-
figureation, has shown that spatial variations of the measured flux are quite
strong, care was also taken, when varying M, to collect data at the same relative
position (figure 6). When varying M, along the vertical axis the probe is
aligned with the splitter plate, and its downstream position is located at the end of the theoretical liquid intact length L. The latter has been shown (Raynal
1997 [4]) to vary as: $\frac{L}{2H_1} \approx \frac{6}{\sqrt{M}}$ where H_1 is the initial water thickness. The first
step is to ascertain the convergence of the measurements. We investigated that
convergence on the mean chord C_{10} which is a quantity directly yielded by the
optical probe. A typical evolution of the mean chord with number of drops
considered is plotted on figure 7. As shown by this figure, the mean chord
value converges but still exhibits some fluctuation even when the number of
drops becomes large. For different gas velocities, we quantified the minimum
number of drops that yields a maximum uncertainty of 3% (dashed line) on
C_{10} measurements. For $U_g = 20 \, m.s^{-1}$, a minimum of 3000 drops is needed
to ensure correspond a convergence of the C_{10} within 3%. For a gas velocity of
$U_g = 90 \, m.s^{-1}$, 40000 drops correspond to a 1.5% uncertainty of the mean
chord. Table 1 provides the mean chords detected for gas velocities evolving
between 20 and $30 \, m.s^{-1}$ and for three values of M, namely 1.5, 2 and 4. It
happens that for a given gas velocity, a variation in the M changes the mean
As expected the first 2% of eliminated chords (+ series) have more influence on the C_{10} than the following cut-offs. It is particularly true for the low U_g. this result clearly indicates that the mean chord is affected by a few rare events, and that removing theses stabilizes the drop size. Now, we can further test the available scaling for the mean drop size. That scaling was based on the following arguments. First, the experiments of Marmottant and Villermaux (2004) [5] demonstrated that the mean droplet diameter is proportional to the transverse instability wavelength. Second, that transverse wavelength was estimated by Hong and al. (2002) [11], Varga and al. (2003) [13], Ben Rayana
and al. (2006) [14] by considering the axial acceleration of the wave crest by the air stream and the ensuing Rayleigh-Taylor instability. Third, it was further assumed that the fraction of the wave crest which is atomized is proportional to the axial wavelength, namely \(\alpha \lambda_{axi} \), where \(\lambda_{axi} \) is given by

\[
\lambda_{axi} = C_{axi} \sqrt{\frac{\rho_l}{\rho_g}} \delta_g \left(\frac{\rho_l}{\rho_g} \right)^{1/4} \left(\frac{\rho_G(U_G - U_C)}{\sigma} \right)^{-1/2} \]

(5)

\[
\lambda \approx \delta_G \left(\frac{\rho_l}{\rho_g} \right)^{1/4} \text{We}^{-1/2} \]

(6)

where the drag coefficient \(C_d \) is about 2. This model predicts a non dimensional drop size \(D \) evolving as \(\text{We}^{-1/2} \). Such a trend was confirmed by previous experiments performed at \(M = 16 \): the diamond series in figure 9 are the result of Ben Rayana (2007) [8](collected with another optical probe with a sensitive length about 45\(\mu \)m). To report our data collected at low \(M \) on this plot, the Sauter mean diameter \(D_{32} \) is directly estimated from the \(C_{10} \) using \(D_{32} = (3/2)C_{10} \) [15]. The drop size measured at low \(M \) happen to reasonably agree with predicted trend, except at the lowest gas velocities from which extra mechanisms alter ligament formation (see Ben Rayana et al. 2006 [14]). Beside the symbols on figure 9 are quite close indicating that the prefactor in equation 5 is only slightly modified when \(M \) is varied. Since the prefactor includes the fraction \(\alpha \) of the crest that is stripped off the bulk liquid, this result indicates that the shape of the axial waves remain rather similar for all \(M \). To further confirm the above mentioned trends and more precisely investigate the influence of \(M \), more result at low \(M \) and a higher gas velocity are needed: such a campaign will require some adaptation of the existing experiment. Finally, let us consider the volumetric flux \(J_L \) of the droplet produced by stripping. this flux corresponds to the entrainment velocity \(U_e \) at the interface. The latter can be estimated (Ben Rayana 2007 [8]) by writing down the continuity
of turbulent stress at the interface, namely:
\[\rho_L U_e^2 = C_1 \rho_G u'^2 \]
(7)

where \(u'^2 \) is the turbulent intensity in the gas phase and \(C_1 \) an entrainment coefficient. As a single phase mixing layer, the velocity fluctuation is estimated to be proportional to the mean velocity difference along: \(u' = \beta (U_g - U_l) \). The volumetric flux \(J_L \) is then given by:
\[J_L = C_1^{1/2} \left(\frac{\rho_g}{\rho_l} \right)^{1/2} \left(u' (U_g - U_l) \right) \]
(8)

This simple model predicts \(J_L \) to increase as \(U_g - U_l \). As shown on figure 10 this trend is recovered for all the experimental conditions considered except at the lowest gas velocities. The diamond series (Ben Rayana’s data at \(M = 16 \) [8]) corresponds to the straight line \(J_L = (U_g - U_l - 15) \times 0.0013 \), where the \(-15\) shift models the absence of atomisation below about 15 m.s\(^{-1}\). Its slope 0.0013 allows to evaluate an entrainment coefficient \(C_1 \) equal to 0.013 for \(\beta \) equal to 0.35, value measured from particle image velocity by Descamps et al. (2008) [16]. This small value compared to the value for single phase mixing layer (\(C_1 \approx 0.25 \)) is attributed to the fact that the measure is here localized. In experiments with strong spatial gradients, local data cannot be directly compared with global entrainment rate.

5 Chord pdf

The last step is to check how chord distributions are modified when \(M \) is varied for fixed \(U_g \). Figure 11 is a superposition of the distributions of \(C/C_{10} \) for three values of \(M \), for the same \(U_g \); the pdf are well superposed. The
standard deviation of these pdfs, defined as $\sigma_{C} = \sqrt{C_{20}/C_{10}^2} - 1$, are given on table 2: σ_{C} increases with U_g, but is roughly constant when M is varied for fixed U_g. Chord distributions are therefore mainly controlled by U_g.

Table 2
Root mean square of dimensionless chord for $M = 4$, 2 and 1.5

<table>
<thead>
<tr>
<th>U_g</th>
<th>20</th>
<th>20</th>
<th>20</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>30</th>
<th>30</th>
<th>35</th>
<th>35</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(C/C_{10})$</td>
<td>1.09</td>
<td>1.09</td>
<td>1.19</td>
<td>1.27</td>
<td>1.24</td>
<td>1.20</td>
<td>1.29</td>
<td>1.39</td>
<td>1.39</td>
<td>1.46</td>
<td>1.53</td>
</tr>
</tbody>
</table>

6 Conclusion

We have carried out frequency and spatial growthrate measurements for the shear instability of a planar two-phase mixing layer. Experimental frequencies were found to agree with the prediction of a linear stability analysis including a velocity deficit at the interface, while experimental growthrates were much larger than predicted, and exhibited a dependence on U_g not predicted by the analysis. Droplet size measurements were carried out with an optical probe. Droplet chord and volumic flux follow the scaling law predicted by known mechanisms, in particular $D_{32} \sim We^{-1/2}$. Additional data for larger U_g for the same M are needed to confirm these results.

References

