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Abstract

We consider the strong stabilizability problem for delayed system of neutral type.
For simplicity the case of one delay in state is studied. We separate a class of
such systems and give a constructive solution of the problem in this case, without
the derivative of the localized delayed state. Our results are based on an abstract
theorem on the strong stabilizability of contractive systems in Hilbert space. An
illustrating example is also given.

Keywords. Neutral type systems, exponential stabilizability, strong stabilizabil-
ity, infinite dimensional systems.

AMS subject classification. 93D15, 93C23.

1 Introduction

The problems of stability and stabilizability are of great importance in the the-
ory of delayed systems [1-3]. In this context note that the majority of works
deals with so-called exponential stability or stabilizability. In this case the
conditions of stability (stabilizability) are well explored for the both systems
with ordinary delay and systems of neutral type [1-3,18,4]. Note also that the
mentioned type of stability is similar to the stability for finite-dimensional lin-
ear systems. However, for systems of neutral type there appears an essentially
different kind of stability — the so-called strong stability.
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Consider a system of the form

#(t) = Agx(t) + Ava(t — 1) + At — 1), (1)

where x € R", Ay, A1, A_; are n X n-matrices. It is well known [1] that (1) is
exponentially stable iff

(i) R(o) < —a < 0, where 0 = {\ : det(A\] — A_de ™ — Ay — Aje™) = 0},
and R(o) is the real part of all values in o.
In particular, the condition (i) holds [3] if ||[A_1]| < 1 and R(o) < 0.

On the other hand, the system (1) is unstable if matrix A_; possesses at
least one eigenvalue u such that |u| > 1. At the same time, it turns out [2,5]
that asymptotic stability of (1) is possible under a noticably weaker condition
R(o) < 0, which, in particular, may appear when there are some eigenvalues
wi, j = 1,.,k of matrix A_; such that |[u| = 1,7 = 1,..,k. As is shown
in [5], in this case solutions of the system (1) decay essentially slower than
exponentials, namely as functions 1/t°, 8 > 0.

An explanation of this effect can be found using the model of neutral type
systems as abstract differential equations in Banach space and the results
of the theory of strong asymptotic stability originated in [6-8] (see also the
bibliography in [9]).

Note also that the results on the strong stability find it natural application
in the control theory for analysis of the strong stabilizability of contractive
semigroups, for example [10-14]

The main goal of the present paper is to show an extention of the stabilizability
theory to the case of control systems of neutral type. To justify this point
we consider a special class of neutral type systems (including, however, all
the one-dimensional systems) and give a constructive solution of the strong
stabilizability problem for this class based on an abstract theorem from [11].

The paper is organized as follows. In Section 1 we formulate the problem on
the strong stabilizability and interprete it in the language of abstract control
systems. In Section 2 an operator analysis of obtained system is given. In the
Section 3 the main results are given. We design explicitely a strong stabilizing
control and give an illustrating example.

Finally notice that the analysis of the strong stabilizability problem under
some more general assumption is to be given in one of our forthcoming works.



2 The model and the statement of stabilizability problem

For simplicity we consider a control neutral type system with one delay in
state

#(t) = Agz(t) + Aya(t — 1)+ A_yi(t — 1) + Bu(t), 2)

where x € R",u € R", A;,j = 0,1, —1 are n X n-matrices, B is a n X r-matrix.

The stabilizability problem consists in the determination of linear feedback
control law u = p(x(+)) such that the closed-loop system

z(t) = Apx(t) + Ayx(t — 1) + A_12(t — 1) + Bp(z(-))

becomes a asymptotic stable one. In order to formulate the problem more
precisely let us go over to an abstract functional model of the system (2).
Following Yamamoto and Ueshima [15] (see also [4]) we put z:() : 0 — x(t +
0),0 € [—1,0] and y(t) = x(t) — A_yx(t — 1). Let Z = C" x Ly[(—1,0),C"].
Introduce an operator A : D(A) — Z defined by

() ()

o) = {( 1)) sa= w0 - Ase-n, o) emPl-n0, 01},

With these notations the system (2) can be rewritten as

i (1) =4 (%) e ®

where B = (g) is a linear operator B : C"* — Z.

It is known [15,16] that A generates a Cy-semigroup in Z and that its spectrum
o(A) is the set

o(A) =0 ={\:det(\ — A_de™ — Ay — Aje™) =0}

and consists of eigenvalues only. Denote further by > the set of all nonzero
eigenvalues of matrix A_;. Then [2] for any u € Y- the set ¢ includes a family
of eigenvalues

S = (N =log|u| +i(Arg p+27k) +0(1), k€ Z}, (4)



where 0 is meant as k — +o0.

The substitution of a feedback control u = p(z(-)) into (2) leads to transfor-
mation of system (3) to the form

() =4 (%0) <5>

where A is a perturbation of the infinitesimal operator A by an operator of
the form BP, where P : Z — C". There are three different kinds of such a
perturbation.

1. Perturbation with a bounded operator corresponds to the case when we admit
feedback controls

w="Px() = Plx(t) — A_ya(t — 1)) / w(t + 0)do,

where P is a real (r x n)-matrix, P(),0 € [~1,0] is a real square-integrable
(r x n)-matrix-function.

In this case BP is a bounded operator and so [17] the perturbation operator
A is infinitesimal and D(A) = D(A). Note, however, that possibilities of
stabilization in this class of controls are rather restricted.

2. Perturbation with an operator bounded with respect to A corresponds to the
choice

0
/1 t+9d9+/P x(t + 0)db,

where P(0), P(6),0 € [—1,0] are real square-integrable (rxn)-matrix-function.
In this case one can easily check that operator BP is a bounded with respect

to A [17] i.e., for some a,b > 0
Aol lo)l

e (0)

This implies D(A) = D(A). At the same time, the infinitesimality of A must
be proved separately (see [17]). One can observe, however, an important for
our further purpose particular case when this infinitesimality is obvious. Let

<a

w="P()) = Pyr(t) + Pa(t — 1) + / (t + 0)df,



Fy, Py are (r x n)-matrices and P(0) is a square-integrable (r x n)-matrix-
function. Then the operator A can be represented as a perturbation of the
infinitesimal operator A; :

([ a\ _ ((Ao+ BPR)g+ ((Ai+ BP) + (Ao + BPy)A_1)p(—1)
A (0) = 20() )

by a bounded operator. So it is also infinitesimal.

Consider the possibilities of stabilization by feedback controls of class 2. It can
be proved that the spectrum o(A) = G of the perturbed operator A is given
by

g={ A | det(A = A e~ Ag— A

+BA / e MP(0)i(t 4 0)dd + B / e M P(0)x(t + e)de) } =

and then it also includes the families Y-* of the form (4) for any x € >-. This
means that the exponential stability of the closed-loop system (5) is possible
only in the case when |u| < 1 for all u € 3. On the other hand, it is clear
that the system (5) is unstable if there exists at least one u € Y such that
|| > 1. It remains one more case to be examined. Let

(al) > C {w: |w| < 1} and there exists p € Y : |u] = 1.

In this case system (5) cannot be stable exponentially but probably can be
strongly stable. That leads us to the following statement:

Problem of Strong Stabilizability (PSS) Let matriz A_y satisfy (al).
Find conditions on system (2) (or (3)) under which there exists a feedback
control of class 2 such that the perturbed operator A in (5) is infinitesimal
and all the solutions of this equation tend to 0 as t — 400 in the norm of Z.

We consider PSS in the further sections. Now we mention one more way to
formulate the stabilizability problem.

3. Perturbation with an operator unbounded with respect to A.

It is shown [18] that the possibilities of stabilization of system (2) are essien-
tally wider if we admit feedback controls of the form

w="P()) = Pai(t — 1)) / t+9d0+/P (t + 6)dd. (7)

This kind of stabilization is out of our consideration. We only notice the use of
a control (7) means, from the operator point of view, a perturbation of A by



an operator BP which is not bounded with respect to A. In particular, that
implies D(A) # D(A). So even if we prove infinitesimality of A, the domains
of solutions of the initial and closed-loop systems are different.

3 Operator analysis of the model

We consider PSS and supplement (al) by the following assumptions charac-
terizing the class of systems (2) we deal with:

(a2) All the eigenvalues o € 3 such that |u| = 1 are simple in the sense that
there are no Jordan chains corresponding to such eigenvalues.

(a3) The finite-dimensional system

t(t) = Apz(t) + Bu(t), x€ R",ue R" (8)
is controlable, i.e. rank ( B, AgB, ..., Ay *B) = n. In particular, this implies
that (8) is stabilizable, i.e. there exists a linear feedback control u = Pz such
that R(o)(A+ BFJ) < 0.
(ad) rank (A1 + AgA_y B) =rankB.

Let us put into (2) a control u(t) = Pox(t) + Piz(t — 1) 4+ v(t). That leads to
replace (3) by the system

d y@)) i <y(t)>

— =A + Bo(t),

i (10) =4 (1) r 8w
where A, is given by (6). Due to (a4) for any Py € RU*™ there exists unique
P, = P(Ry) € R™™ guch that

A1+ BP, + (Ao + BP)A_1 = (A1 + AgA_1) + BRyA_1 + BP, = 0.

For this choice of P, operator A; takes the form

s (@?J) - <A0 +OBPO age> (@%)) )

Proposition 1 Let A; be given by (9). Then
i) o(A1) = 0(Ag + BPy) Ulog 3.

ii) Under the assumption o(Ag + BFy) Nlog> = 0 the set of eigenvectors of

Aj is as follows:



a) to each eigenvector d € C"™ of Ao+ BPy with eigenvalue X there corresponds

an eigenvector
i= y
(I —erA_ )1

of Ay with the same eigenvalue;

b) to each eigenvector g € C" of A_y with eigenvalue i there corresponds a
family {gx }rez of eigenvectors of A :

. (I—e™MA_))g B 0
9k = Moy Moy )

where N = log |p| + i(Arg p+ 2wk), k € Z is the eigenvalue corresponding to
G-
ProoOF: Let ((p‘(l‘)) be an arbitrary eigenvector of A; and A be the corre-

sponding eigenvalue. Taking into account (9) we have ¢'(#) = Ap(6) and
(Ao + BP())q = )\q.

From the first equality we obtain ¢(f) = e*e¢, ¢ € C", ¢ # 0. Since q =
©(0) — A_1p(1), then the second equality yields (Ag + BPy)(c — A_je™*c) —
Mce — A_je™?e¢) = (Ag + BPy — M)(I — A_je *)c = 0. Therefore, either
(I — A_je™)c is an eigenvector for Ay + BP, corresponding to A or ¢ is an
eigenvector of A_; corresponding to e*. Analysis of this alternative completes
the proof. |

Using (a3) one can choose Py € RU*™ in such a way that the spectum o(Aq +
BP,) consists of n distinct negative eigenvalues which do not belong to the set
logY" . Let further P? be such a matrix, P? = P;(PY) and A; be the operator
(6) corresponding to the choice Py = P, P, = P). Then, by Proposition 1,
the spectrum o (A;) belongs to the semiplane {) : ®(\) < 0}. Our next goal
is to prove that the system

£(26) - (25) o

is strongly stabilizable by linear bounded controls. To show that, we first prove
dissipativity of the operator A; in some equivalent norm in Z.

Let d;,j =1, ...,n be eigenvectors of Ag+ BF,, (Ao+ BFy)d; = A\jd; \; < 0,
j = 1,..,n. Denote by D a nonsingular matrix D = (di,ds,...,d,). Next
observe that, due to (al) — (a2), matrix A_; can be represented in the form

A =GJG, (11)



where G is a nonsingular matrix and J is a contraction, ||J|| < 1. As the
matrix J one can take, for example, a block diagonal form of A_; which boxes
are

Jk: 0 i Vi 0 :

where |vg| < 1 — |u|, & = 1,..,¢ (note that all the eigenvalues uy of A_4
such that |ux| = 1 are simple (a2)). Finally introduce a linear transformation

F:C" — Ly[(—1,0),C" defined by

-1
N, (12)

Fq = F (Z dej> = —G_l qu (] — A_16_>\j>
j=1

J=1

q € C". Consider now a linear bounded operator T': Z — Z given by

D1 0
T‘( F Gl)

and the corresponding equivalent Hilbert norm || - ||z in Z defined by

()

This new norm allows to get dissipativity of the operator fl(l)

() - J ID-1qle + / (Fo)(6) + G (0) 28,

Proposition 2 Operator A is dissipative in the norm || - |7, i.e.

w(((0) (0)),) =0 () o

PROOF: We have

(A(5)-( ), - mnar -

[ {(F(a5+ BR)G)(6) + G/ (6), (Fa)(0) + G~'p(6)) do. (13)

Let ¢ = 3°7_; q;d;. Then (D~ (Ao + BFy)q, D~"q) = >}, \j|d;||* and, there-
fore,

R ((D71(Ao+ BF)a. D)) = S RO\l * <. (14)

1

J

n



Let us denote the second term of (13) by R. Taking into account (12) we have

(F(Ag + BPY)q)(0) = G ]Zn; g (I - A_le”f)*1 N0y = je(Fq)(@)-

Therefore

R [ (00 + 6oL 00 + 676(6) ) o

—(Fo)(6) + @), -

d

(Fg)(0) + G ¢(0), 5 [(Fa)(8) + G_lw(Q)]> df

’—‘\o
T

)

and

R(R) = 5 (I(Fa)(0) + GO ~ [(Fa)(~1) + G e(-DIF) . (15)

Note that

P(0) = Arp(=1) = g = 3 gy (16)

Let o(0) = >, q; (I — A_le_’\J')_l e*%d; +1)(0). Then one can easily check
that (16) implies

P(0) = A_y(—1). o
From (12) we obtain

(Fq)(0) + G p(0) =

-G (zn: q; (I — A_16_Aj)_1 Ml — 90(9)) = G7(0).

Hence, taking into account (17), relation (15) can be rewritten as R(R) =
s(IGTO)? = 167 (=DI?) = 5(IGTT Ap(=D)[* = |G (=1)]]*). Let
us substitute G~ (—1) = w and make use of (11). That yields

R(R) = 5 (170 ~ w]?) <0 (18)



Comparison of (13), (14) and (18) completes the proof. N

Corollary 3 It follows from Proposition 2 that the semigroup {e“‘igt}tzo 18
contractive in the norm || - ||r. In fact,

e = w (e (1) (1)) ) <o

This means that (10) is a contractive system in the space Z with norm || - ||r

(see [11]).
4 The strong stabilizability

In order to analyze strong stabilizability of (10) we make use of the following
theorem on the strong stabilizability of contractive systems [11, Theorem 5]:

Consider a system of the form

jtx:Ax—{—Bu, reHuel,

where H and U are Hilbert spces, the operator A generates a strongly contin-
uous contractive semigroup {e4t};5o and B € [U, H]. Let there exists t, > 0
such that the set o(e) N {w € C||w| = 1} is at most countable. Then the
system is strongly stabilizable (with the aid of linear bounded controls) if and
only if there does not exist an eigenvector x( of the operator A corresponding
to an eigenvalue A\g(R(Ag) = 0) such that oy € Ker B*. If this condition holds
then the strong stabilizing control can be chosen as

u=—B*z.

We showed that the semigroup {ev“?t}tzo is contractive in the space Z with
norm || - ||7. It is known [19] that

o (eM0) = exp(too (A7)
(S means the closure of S). From Proposition 1 we have for ty =1 :
exp(a(AY)) = exp(c(A° + BR)) U Y.
and, therefore, this set is finite. Hence the set
o) N{w e C: jw| =1} C o(eM) = exp(a(A?))

is also finite. Thus, basing on the [11, Theorem 5] we conclude that the system
(10) is strongly stabilizable (notice that stabilizabilities in norms || - || and || - ||z

10



are equivalent) iff there does not exist an eigenvector fy of the operator A9
corresponding to a pure imaginary eigenvalue such that

fo € Ker B, (19)

where B : (Z,] - ||r) — C" is the adjoint operator to B in the norm || - ||7. If
(19) holds then one can choose

e (Y@
v=—-B} (%()) (20)

as a strong stabilizing control.

Uy

Let u = ( : ) €O (4) € Zand g =X qdy, b = X bjnd;, k =
Uy

1,..,7, where by, is the k-th column of B, {d;}}_, is the eigenbasis of Ay + BF

appearing in definition of the operator 7. In order to find B} we observe

(o)), = ()7 ()

:<<<1*13f;£z))’<(Fq )+1G 1o() >> u, B'D7Dq)

r N NN B
— e (I =A™ A, G (1= A_e d->
+kz=:1Ukmz::1 Ai + A < i 1 ) G ™) d; cn
n 0
_Zuk2< o (1= Az ™) Renien / €Aj990(9)d9> bj.-
Let @ be an ( )-matrix which j-th row is

—1
eNd: (1 - Aile‘Af) GG j=1,.n.

With these notations, taking into account that

q1 bll blr
=D |... ... ...|=D"B,
qn bn blr

(),

o0 QD),, ~ (o /BD“Q()() ')

Ccn

we obtain

11



Thus, the stabilizing control (20) is of the form

_ B (Z(@)) _pep-ir ((I+Q)D y(t / e)de) (21)

Now let us analyze the condition (19). Among all the eigenvalues of jl[f the
pure imaginary ones are (see Proposition 1)

Np = log |u| +i(Argu + 27k), k€ Z, (22)

for p € Y such that |u| = 1. For the corresponding eigenvectors gp =
()\90 ), k € Z we have

ek g

0
Brge=B'D" [ Q) gd0

* * =1 -1 l—e_Al_/\Z
R d1 (I — A_1€ ) AL e (23>
= . qg.
d* ([ — A* e -1 l—e_)‘"_/\;:
n ( — A€ ) W

In (23) g is an eigenvector of A_; corresponding to eigenvalue p. This implies
that G™*G~1g is an eigenvector of A*, corresponding to complex conjugate
eigenvalue fi. Indeed, taking into account (11) we get

<J*Gflg, Gilg> _ < e q,G™ g>
:< l*G g,A 1g>
=/ <G q,G~ g> . (24)

Since the adjoint operator J* is also a contraction then (24) yields J*G~'g =
iG™1g. From here and (11) We get A*,G™1*G7lg = uG~1*G'g. This fact
and the observation that e = fi, N = -\, k € Z allow to rewrite (23) as

* ~ * y—1x ﬁdf * R* 0

An+>\“

where Ry(Ao+ BP)) = (Ag+BP) —\I)~! is the resolvent of matrix Ay+ BPy.
With respect to formulas (21) and (25) the necessary and sufficient conditions
of the strong stabilizability for the system (10) take the following form:

12



Theorem 4 System (10) is strongly stabilizable (with the aid of the of bounded
controls) iff there do not exist an eigenvector g of matriz A_y corresponding
to an eigenvalue pn € 3., || =1 and k € Z such that

B* R}y (Ao + BFy)g = 0,

where Ny is given by (22). Under this condition a stabilizing control is given

by (21).
Remark. Let By be a (r x n)-matriz and let X\ € C be such that A\ ¢ o(Ag +
BPR))Uo(Ay + BPR,). Let us precise that
Ri\(Ao + BPy) = Ry(Ao + BPy) = R\(Ao + BPo)(Py — Py") B* R} (Ao + BFY)
= R} (Ao + BP))(P; — PY*)B*R;(Ay + BP,).

From this identity one can easily infer that for given p,g, Ny the relation

B*Ru(Ao + BP))g = 0 holds if and only if B*R}.(Ay + BPy)g = 0 for
k k

an arbitrary Py such that N, ¢ o(A + BF).

The following theorem is the main result of the paper.

Theorem 5 Let a system (2) satisfy the assumptions (al) — (a4). Then this
system is strongly stabilizable with the aid of feedback controls of class 2 if and
only if for an arbitrarily chosen matrix Py such that

there do not exist an eigenvector g of A_y corresponding to an eigenvalue
weS, |u|=1andk € Z such that

where N, is given by (22). Under this condition the strong stabilization can by
achived by the choice of control:

u= Pyx(t)+ Pla(t — 1) + v,

where PY and P} are defined in Section 2 and v is given by (21):

v — _B*D-1* (((I +Q)D Hx(t) — A_jx(t — 1))) - /Q(@)x(@)d@) :

Proor: Sufficiency follows directly from Theorem 4 and the Remark to this
theorem.

13



Let us prove the necessity. Assume that there exists a control u = P (i’t(i )))
of class 2 which strongly stabilizes system (3). This means that the operator
A= A+ BP with D(A) = D(A) is infinitesimal and the semogroup {e*'},5¢
is strongly asymptotic stable. Then A= fl? + BP1, where BP; is an operator
bounded with respect to A. If (26) does not hold then (see Remark) there
exist an eigenvector g of A_; corresponding to an eigenvalue p € 3, |u| =1

and k € Z such that B*R}.(Ay+ BFy)g = 0, This implies (see (25)) that the
s s

eigenvector g, of AV, i.e. AGx = Ni.gr, belongs to Ker B

Let us show that g is an eigenvector of the operator (A%, adjoint to A9

in the norm || - ||z, and the corresponding to g eigenvalue of (A7)} equals

A ==X Let f e D(A?%) = D(A) and w € C. Then using the dissipativity
of AY (see Proposition 2) we have

0> R (((AY = NeD) (@i +wf), (G +wf)), )
R (w (A= MDD FGe) ) + PR (((A) = NDF F) ) -

Let us put w = oz<(.[l(f — NI f, §k>T’ a € R. This leads to the inequality
_ 2
o |[((CAY =MD G,

which holds for all & € R. It follows from here that

(I+aR (A= NI) f, ) <0

((A) = X)), =0, for all f € D(AD).
The later relation means that g, € D((A%)%) and
(ADTGk = XiGe = —Aige.

Since in addition
gr € Ker By, C Ker (BP1)r

then g, € D(A%) and
Asge = (AD 3Gk + (BP1)5gr = —Nedi-

Hence

* . CZMg
(eAt>T9k = e Mg,
and, as a consequence,

__— 3 ok .
<€At9k,9k>T = <gk, <€At>T9k:>T = M| gell7, ¢ >0.

Thus ~
e Gllr > gl 4 0 ast — +oc.

14



This contradiction completes the proof. |

Remark. Assume that rank B = n. In this case one can easily observe that
assumptions (a3)-(a4) are satisfied automatically. Besides, the condition (26)
from Theorem 2 is also always satisfied. So any system (2) with rank B = n
and (al)-(a2) is strongly stabilizable.

Ezample

Consider the following one-dimensional system

#(t) = —a(t) + 2t — 1) + it — 1) + ult). (27)

It is shown in [20] that this system is not exponentially stabilizable by a
feedback of clas 2, because only a finite part of spectrum of the closed-loop
system can be moved to a semiplane { : R(\) < a < 0}

Now observe that (27) is strongly stabilizable due to the Theorem 5. In fact, for
this system we have: n = 1,40 =—-1,4, =41 =1,B=1, = {—1} which
is simple eigenvalue. Since rank B =1 = n and (al)-(a2) are satisfied the (27)
is strongly stabilizable. Let us find a stabilizing control. Since A; + AgA_1 =0
and o(Ag) = {—1} is real negative we can put P? = P) = 0. Further simple
calculations give G =1, D = 1,(Fq)(0) = —(1 — e)"*e"%q and, therefore,

Q:;CJ—FD Qw):ee—l'

—0

Thus, a stabilizing control from Theorem 5 for our system takes the form

0

w=— (1+;Zi) ((t) — 2(t — 1)) — eil_/le%(tw)de.

5 Conclusion

For linear systems of neutral type we gave a characterization of a class of
strong stabilizable systems by relatively bounded feedback law. No derivative
of the state is needed in the feedback. The contrepart is that the stabilizability
is not exponential. As a perspective, one can expect that this technique may
be used for more general systems with delay of neutral type. using the same
infinite dimensional abstract framework.

15
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