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Abstract

The asymtoptic stability properties of neutral type systems are studied mainly in
the critical case when the exponential stability is not possible. We consider an op-
erator model of the system in Hilbert space and use recent results on the existence
of a Riesz basis of invariant finite-dimensional subspaces in order to verify its dis-
sipativity. The main results concern the conditions of asymptotic non exponential
stability. We show that the property of asymptotic stability is not determinated
only by the spectrum of the system but essentially depends on the geometric spec-
tral characteristic of its main neutral term. Moreover, we present an example of two
systems of neutral type which have both the same spectrum in the open left-half
plane and the main neutral term but one of them is asymptotically stable while the
other is unstable.

Keywords. Neutral type systems, exponential stability, strong stability, infinite
dimensional systems.

Mathematical subject classification. 34K06, 34K20, 34K40, 93C23.

1 Introduction

A number of applied problems from physics, mechanics, biology and other
fields can be described by partial differential or delay differential equations.
This leads to the construction and study of infinite-dimensional dynamical
systems. In our work we are interested in stability theory of systems with a
delayed argument. It is almost impossible to overview the huge literature on
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the subject, so we only cite some monographs [3,9,13,16,17] which are among
the main references. The most used methods and approaches are developed for
retarded differential equations while the case of neutral type systems remains
more difficult and less studied so far. Our attention is attracted by the fact
that in the case of neutral type systems one meets two essentially different
type of stability: exponential and strong asymptotic non-exponential stability.
The last type of stability is impossible for retarded systems, but may occur for
neutral type systems. In particular as it is shown in [5] for a high order differ-
ential equation of neutral type the smooth solutions decay essentially slower
that exponential, namely as function 1/tβ, β > 0. One of the explanations of
this fact is that a neutral type equation may have an infinite sequence of roots
of the characteristic equation with negative real parts approaching to zero. It
is obvious that in such a case the equation is not exponentially stable and one
needs more subtle methods in order to characterize this type of asymptotic
stability.

Our approach is based on the general theory of C0-semigroups of linear bounded
operators (see e.g. [31]).

Let us give the precise description of the system and the operator model under
consideration. We study the following neutral type system

ż(t) = A−1ż(t− 1) +

0∫

−1

A2(θ)ż(t+ θ)dθ +

0∫

−1

A3(θ)z(t+ θ)dθ (1)

where A−1 is constant n × n-matrix,detA−1 6= 0, A2, A3 are n × n-matrices
whose elements belong to L2(−1, 0). This equation occurs, for example, when a
system of neutral type is stabilized. Even if the initial system contains point-
wise delays only, then the set of natural feedback laws contains distributed
delays (see e.g., [20,21]), so the corresponding closed-loop system takes the
form (1).

We do not consider here the case of mixed retarded-neutral type systems, i.e.
when A−1 6= 0, detA−1 = 0, and limit ourselves to one principal neutral term.

One of the main questions for the construction of an operator model and a
corresponding dynamical system is the choice of the phase space. In [13], the
framework is based on the description of the neutral type system in the space
of continuous functions C([−1, 0]; Cn). The essential result in this framework
is that the exponential stability is characterized by the condition that the
spectrum is in the open left-half plane and bounded away from the imaginary
axis (see also [14, Theorem 6.1]). The case when the spectrum is not bounded
away from the imaginary axis is much more complicated. It has been shown in
[12] that a linear neutral differential equation can have unbounded solutions
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even though the associated characteristic equation has only purely imaginary
roots (see also [8,11,38]). In [5] a lower and upper estimations for the behavior
of smooth solutions are given. This suggests that non exponential stability
may occur if the characteristic roots are not bounded away from zero. Such a
behavior is impossible for ordinary or retarded linear differential equations.

The main purpose of this paper is to characterize the asymptotic stability in
the critical case when the exponential one is not possible.

We consider the operator model of neutral type systems introduced by Burns
and al. in product spaces. This approach was also used in [33] for the con-
struction of a spectral model. In [37] the authors consider the particular case
of discrete delay, which served as a model in [22,23] to characterize the stabi-
lizability of a class of systems of neutral type. The distributed delay case of
the system (1) was considered by authors of the present paper in [24].

The state space is M2(−1, 0; Cn) = C
n×L2(−1, 0; Cn), briefly M2, and permits

(1) to be rewritten as

d

dt

(
y(t)

zt(·)

)
= A

(
y(t)

zt(·)

)
=

(∫ 0
−1A2(θ)żt(θ)dθ +

∫ 0
−1A3(θ)zt(θ)dθ

dzt(θ)/dθ

)
, (2)

where the domain of A is given by

D(A) = {(y, z(·)) : z ∈ H1(−1, 0; Cn), y = z(0) − A−1z(−1)} ⊂M2

and the operator A is the infinitesimal generator of a C0-semigroup eAt. The
relation between the solutions of the delay system (1) and the system (2) is
zt(θ) = z(t+ θ).

In the particular case when A2(θ) = A3(θ) = 0, we use the notation Ā for A.

We will show that the properties of Ā can be expressed in terms of the prop-
erties of matrix A−1 only. We will show also that some important properties
of A are close to those of Ā.

For the dynamical system (eAt,M2), we consider the problem of strong asymp-
totic stability: the system is said to be strongly asymptotically stable if for all
x = (y, z(·)) ∈M2, limt→+∞ eAtx = 0.

In contrast to [5], the strong asymptotic stability of the dynamical system
(eAt,M2) means the convergence to 0 of all the solutions even if these solutions
are not smooth. This is important for the purpose of further investigations,
namely, the stabilizability problem.

The fundation for our investigations is the powerful general Theorem 20 on
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the strong asymptotic stability of an abstract C0-semigroup in Banach spaces.
However the verification of the conditions of stability in Theorem 20 is rather
difficult in a Banach space setting. At the same time, the structure of Hilbert
space gives more advanced techniques [1,10]. We use also results on stability
and stabilizability of abstract linear systems in Hilbert spaces [27,28]. This
motivates the choice of M2 as a phase space.

One of the main ideas in this work is to involve the notion of Riesz bases
in the analysis of the stability of neutral type systems [24,26]. Usually, one
looks for a Riesz basis of eigenvectors or more generally, a Riesz basis of
generalized eigenvectors (eigen- and rootvectors). In this connection we refer to
[33] where for a more general system of neutral type a condition for generalized
eigenspaces to form a Riesz basis is given. It is noted in [33] that if the spectrum
of the system is contained in a vertical strip and inf{|λ−λ′|, λ, λ′ ∈ σ(A), λ 6=
λ′} > 0, then the generalized eigenspaces form a Riesz basis. We recall [10]
that a basis {Vk} of subspaces is called a basis equivalent to orthogonal (a
Riesz basis) if there are an orthogonal basis of subspaces {Wk} and a linear
bounded invertible (with bounded inverse) operator R, such that RVk = Wk

(see also discussion in [26]).

A simple example [24] proves that the neutral type system (1) (or (2)) does
not always possess such a basis since the eigenvalues may be not separated.

One of our main ideas is that in spite of the fact that system (1) does not
possess a Riesz basis of generalized eigenspaces, it possesses (see Section 2)
a Riesz basis of finite-dimensional subspaces which are invariant under the
evolution semigroup. Moreover, this basis is quadratically close to the basis
of generalized eigenspaces of the operator Ā, and the last basis is found in
a constructive way (Theorem 7). It is important to note that in contrast to
[33, Theorem 4.8] for our case we do not assume but prove that generalized
eigenspaces of Ā and the finite-dimensional invariant subspaces of A are com-
plete in the whole space (see Theorems 7 and 16). Apart from its own value
this result gives the way for studying the stability properties.

The existence of a Riesz basis of invariant subspaces means that we can split
our infinite-dimensional dynamical system on a family of finite-dimensional
ones to study them separately. We found these invariant subspaces as the
images of spectral projectors given by Schwartz integrals over certain circles
with centers in the points λ(k) = ln |µ| + i(arg µ+ 2πk), µ ∈ σ(A−1); k ∈ Z.

In [34–36], the spectrum of the operator A is needed in the construction of the
Riesz basis of subspaces of solutions of the system like (1) in Sobolev spaces.
As one can mention, in our approach, points λ(k) are defined by the matrix
A−1 only. This fact gives us an idea to infer as much information as possible
on the stability of (1) in terms of the properties of the constant matrix A−1.
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In this context, it is natural to consider three cases: µmax > 1, µmax < 1 and
µmax = 1, where µmax = max{|µ|, µ ∈ σ(A−1)}. As a consequence of the
Theorem on the location of the spectrum of operator A (see Theorem 2 below
and for the simplest case of one discrete delay see [30] and [19, Proposition
1.4, p.35] ), we can conclude that in the case µmax > 1 there are eigenvalues of
A with positive real part, so the system is unstable. On the other hand, the
condition µmax < 1 means that if the system is stable, then the stability is of
exponential type. So we apply our main efforts to the difficult case µmax = 1.
Our main result on the stability can be formulated as follows.

Assume that σ(A) ⊂ {λ : Reλ < 0} and max{|µ| : µ ∈ σ(A−1)} = 1, where
by Reλ we denote the real part of λ. Let us put σ1 ≡ σ(A−1) ∩ {λ : |λ| = 1}.
Then the following three mutually exclusive possibilities hold true:

i) σ1 consists of simple eigenvalues only i.e., to each eigenvalue corresponds an
one-dimensional eigenspace and there are no rootvectors. The system (2) is
asymptotically stable.

ii) The matrix A−1 has a Jordan block, corresponding to an µ ∈ σ1. In this
case the system (2) is unstable.

iii) There are no Jordan blocks, corresponding to eigenvalues in σ1, but there
exists an µ ∈ σ1 whose eigenspace is at least two-dimensional. In this case
the system (2) can be either stable or unstable. Moreover, there exist two
systems with the same spectrum, such that one of them is stable while the
other one is unstable.

The paper is organized as follows. Section 2 is devoted to the analysis of
the fundamental properties of the system: semigroup property, analysis of the
spectrum, computation of the resolvent of the operator A and basis property
of invariant subspaces. Results of this section have been partially announced
in [24]. Section 3 contains the stability analysis: necessary and sufficient con-
ditions of stability and the open problem: when the matrix A−1 has multiple
eigenvalues of module 1 without Jordan chain, then the system can be either
asymptotically stable or unstable.

2 Preliminaries.

2.1 C0-semigroup property

In this paragraph we recall that the operator A generates a C0-semigroup in
the general case and a group when detA−1 6= 0. For more details, see [6] for a
more general case and [25] for our case.
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Suppose that the initial conditions for the system (1) are z(0) = y and ϕ(t) =
z0(t), t ∈ [−1, 0[ and let us put zt(θ) = z(t + θ), θ ∈ [−1, 0[. The semigroup
generated by A is given by

eAt
(

y
z0(·)

)
=
(
zt(0) − A−1zt(−1)

zt(·)

)
=
(
z(t) − A−1z(t− 1)

z(t+ ·)

)
.

If
(

y
z0(·)

)
∈ D(A), this gives a strong (classical) solution of the system (2)

and an absolutely continuous solution of the system (1). For
(

y
z0(·)

)
∈ M2,

it is a generalized or weak solution ([6], [32]).

2.2 Analysis of the spectrum

We start with the expression of the explicit form of the resolvent R(A, λ). We
need the following

∆A(λ) = ∆(λ) = −λI + λe−λA−1 + λ

0∫

−1

eλsA2(s)ds+

0∫

−1

eλsA3(s)ds. (3)

It is easy to see that det ∆(λ) ≡/ 0, namely det ∆(λ) 6= 0 if Reλ is sufficiently
large. A more precise description of the set {λ : det ∆(λ) = 0} is given in
Theorem 2.

Proposition 1 The resolvent of A is given by

R(A, λ)
(

z
ψ(·)

)
=

(
A−1e−λ

∫ 0

−1
e−λsψ(s)ds+(I−A−1e−λ)∆−1(λ)D(z,ψ)

∫ θ

0
eλ(θ−s)ψ(s)ds+eλθ∆−1(λ)D(z,ψ)

)
, (4)

where D(z, ψ) = z+λe−λA−1

∫ 0
−1 e−λsψ(s)ds−

∫ 0
−1A2(s)ψ(s)ds−

∫ 0
−1{λA2(θ)+

A3(θ)}e
λθ{
∫ θ
0 e−λsψ(s)ds}dθ, and for λ such that det ∆(λ) 6= 0.

Proof: To compute the resolvent, we have to consider the equation

(A− λI)
(

y
ϕ(·)

)
=
(∫ 0

−1
A2(θ)ϕ̇(θ)dθ+

∫ 0

−1
A3(θ)ϕ(θ)dθ−λϕ(0)+λA−1ϕ(−1)

ϕ̇(θ)−λϕ(θ)

)

=
(

z
ψ(·)

)
.

(5)

From the second line we get ϕ(θ) = eλθϕ(0)+
∫ θ
0 eλ(θ−s)ψ(s)ds. It gives ϕ̇(θ) =

λeλθϕ(0) + λ
∫ θ
0 eλ(θ−s)ψ(s)ds+ψ(θ). Let us replace this in the first line of (5)

and use ϕ(−1) = e−λϕ(0)−
∫ 0
−1 e−λsψ(s)ds · e−λ. Collecting all the terms with

6



ϕ(0) we get ∆(λ)ϕ(0) = D(z, ψ), where D(z, ψ) is defined in the statement of
the Proposition. Hence ϕ(0) = ∆−1(λ)D(z, ψ) for det ∆(λ) 6= 0, which gives
the second line of (4). The first line of (4) follows from the definition of the
domain D(A), i.e. y = ϕ(0)−A−1ϕ(−1), which ends the proof of Proposition
1. 2

In the sequel we will consider the matrix A−1 in a Jordan basis and change the
norm in C

n such that the corresponding eigen- and rootvectors of A−1 form
an orthogonal basis.

Let us denote by µ1, ..., µℓ, µi 6= µj if i 6= j, the eigenvalues of A−1 and the
dimensions of their rootspaces by p1, ..., pℓ,

∑ℓ
k=1 pk = n. Consider the points

λ(k)
m = ln |µm|+ i(arg µm + 2πk),m = 1, .., ℓ; k ∈ Z and the circles L(k)

m of fixed

radius r ≤ r0 = 1
3
min{|λ(k)

m − λ
(j)
i |, (m, k) 6= (i, j)} centered at λ(k)

m .

Now we need a detailed description of the location of the spectrum of A (in
the simplest case of one discrete delay see [30] and [19, Proposition 1.4, p.35]).
We prove that for any fixed m = 1, .., ℓ, the total multiplicity of eigenvalues of
A inside the circles L(k)

m is independent of k (for |k| large enough) and is equal
to the multiplicity of µm as an eigenvalue of matrix A−1. This fact plays an
important role in our investigations.

Theorem 2 The spectrum of A consists of the eigenvalues only which are
the roots of the equation det ∆(λ) = 0, where ∆(λ) is given by (3). The cor-

responding eigenvectors of A are ϕ =
(
C−e−λA−1C

eλθC

)
, with C ∈ Ker∆(λ).

There exists N1 such that for any k, such that |k| ≥ N1, the total multiplicity
of the roots of the equation det ∆(λ) = 0, contained in the circle L(k)

m , equals
pm.

Remark 3 We notice that this characterization of the spectrum holds only in
the case detA−1 6= 0 (see also [19, Proposition 1.4, p.35])

Remark 4 In the simplest case of discrete neutral system

ż(t) = A−1ż(t− 1) + A1z(t) + A2z(t− 1),

we can combine the results of Theorem 2 with [19, Proposition 1.4, p.35] to
get an analogous statement to Theorem 2 with a sequence of circles L̃(k)

m of
vanishing radius, i.e. supm=1,...,ℓ r̃

(k)
m → 0, when |k| → ∞.

Proof: It is easy to see from the explicit form ofR(A, λ) and the compactness
of embedding of H1(−1, 0; Cn) into L2(−1, 0; Cn), that R(A, λ) is compact. It
gives that A has point spectrum only. Each eigenvalue is a root of det ∆(λ) of
finite multiplicity. Calculations give the form of eigenvectors of A, taking into
account the explicit definition of D(A).
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To describe the location of the spectrum of A we use Rouché theorem.

More precisely, for sufficiently large k and anym we show that |f1(λ)| > |f2(λ)|
for any λ ∈ L(k)

m and

f1(λ) = det(A−1 − eλI),

f2(λ) = det(A−1 − eλI)

− det


(A−1 − eλI) + eλ

0∫

−1

eλsA2(s)ds+ eλλ−1

0∫

−1

eλsA3(s)ds


 .

Thus, f1 − f2 will have the same number of roots inside L(k)
m as function f1

has. On the other hand the roots of f1(λ) − f2(λ) are the same as the roots
of det ∆(λ) for λ ∈ L(k)

m and for sufficiently large k.

Let us rewrite f2 as follows:

f2(λ) = det(A−1 − eλI)
[
1 − det(I + (A−1 − eλI)−1L(λ))

]
,

where

L(λ) = eλ
0∫

−1

eλsA2(s)ds+ eλλ−1

0∫

−1

eλsA3(s)ds. (6)

To show that |f1(λ)| > |f2(λ)| it is sufficient to get

|1 − det(I + (A−1 − eλI)−1L(λ))| < 1. (7)

We will show that

‖(A−1 − eλI)−1L(λ))‖ ≤ ν (8)

for sufficiently small ν (and all large k) which gives (7).

Remark 5 For a matrix D one has detD =
∏
ξk, where {ξk} = σ(D)- spec-

trum of D. Let us denote by {ν1, ..., νn} the eigenvalues of (A−1−eλI)−1L(λ)).
Hence (8) implies |νi| ≤ ν for all i=1,...,n and so det(I+(A−1−eλI)−1L(λ)) =∏

(1+ νi). We estimate (see (7) and (8) ): |1−det(I +(A−1 − eλI)−1L(λ))| =
|1 −

∏
(1 + νi)| ≤ |1 − (1 + ν)n| ≤ C · ν for sufficiently small ν > 0. So (8)

gives (7).

Since ‖(A−1−eλI)−1L(λ))‖ ≤ ‖(A−1−eλI)−1‖‖L(λ))‖ we need two estimates:

‖(A−1 − eλI)−1‖ ≤ C1, (9)
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for some C1 > 0 and

‖L(λ))‖ ≤ αm,k, λ ∈ L(k)
m , lim

|k|→∞
αm,k = 0. (10)

We have λ = λ(k)
m + reiϕ, ϕ ∈ [0, 2π] and hence |µm − eλ| = |µm − µmere

iϕ

| =
|µm||1− ere

iϕ

| ≥ C0 > 0 for all m, k and λ ∈ Lkm. We use here the assumption
that detA−1 6= 0 which implies min |µm| > 0. Using the fact that A−1 has a
Jordan form and a well known fact that for a Jordan block

B =




µ 1 0 . . . 0
0 µ 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . µ




one has

(B − eλI)−1 =




(µ− eλ)−1 −(µ− eλ)−2 . . . (−1)n−1(µ− eλ)−n

0 (µ− eλ)−1 . . . (−1)n−2(µ− eλ)−n+1

...
...

. . .
...

0 0 . . . (µ− eλ)−1



,

and we deduce (9).

To obtain (10) we write λ ∈ L(k)
m as λ = λ̃+ i · 2πk, with λ̃ ∈ L(0)

m .

To estimate ‖L(λ))‖ it is enough to consider

0∫

−1

eλsAi(s)ds =

0∫

−1

ei·2πk(Ai(s)e
λ̃s)ds. (11)

Here functions Ai(s)e
λ̃s, i = 2, 3, belong to L2(−1, 0) and do not depend on

k. The functions {ei·2πk}k∈Z form the trigonometric basis of L2(−1, 0). So the

integral (11) is the Fourier coefficient of Ai(s)e
λ̃s. It implies the estimate (10).

By (9), (10) we obtain (8). We apply Rouché theorem and this completes the
proof of Theorem 2. 2

2.3 The Riesz basis property

The results of this section form the technical foundation for all our consider-
ations about stability properties.
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Recall that in the particular case where A2(θ) = A3(θ) = 0, we use the
notation Ā for A. We will show that the properties of Ā can be expressed
in terms of the properties of matrix A−1 only. The basis properties of the
operator A will be deduced from the ones of Ā.

2.3.1 Basis property of eigen- and rootvectors of the operator Ā.

Let νm be the number of Jordan blocks, corresponding to µm ∈ σ(A−1). De-
note by pm,j, j = 1, .., νm,

∑νm
j=1 pm,j = pm, the orders of these blocks and

by {C0
m,j, ..., C

pm,j−1
m,j } the orthonormal system of corresponding eigen- and

rootvectors, i.e.

(A−1 − µmI)C
0
m,j = 0,

(A−1 − µmI)C
1
m,j = C0

m,j,

(A−1 − µmI)C
s
m,j = Cs−1

m,j , s = 1, ..., pm,j − 1.

(12)

If there exists k ∈ {1, . . . , ℓ} such that µk = 1 ∈ σ(A−1) we denote by K
the rootspace of A−1 corresponding to the eigenvalue 1 and put K = {0}
otherwise. Finally, let K1 = K⊥ = Lin{Cd

m,j,m ∈ {0, . . . , ℓ} : µm 6= 1; j =
1, . . . , νm; d = 0, . . . , pm,j − 1}. In order to describe eigen- and rootvectors of
the operator Ā (see Theorem 7) we need the following lemma.

Lemma 6 Let ν(1) = 0 if 1 6∈ σ(A−1) and ν(1) = νk if for some k ∈ {0, . . . , ℓ}
we have µk = 1, then

i) for any y ∈ C
n there exists the unique polynomial vector Py(θ) of the

form

Py(θ) =
ν(1)∑

j=1

pk,j−1∑

d=0

Cd
k,j

pk,j−d−1∑

i=0

αi,jy
θpk,j−d−i

(pk,j − d− i)!
+ γy,

where γy ∈ K1, such that

y = Py(0) − A−1Py(−1). (13)

ii) the mapping y
D
7→ Py(·) is a linear bounded operator D : C

n → H1(−1, 0; Cn).

In the particular case when 1 6∈ σ(A−1) the mapping D is given by Py(θ) =
(I − A−1)

−1y.
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Proof: To prove i) we observe that

Py(0) − A−1Py(−1) =

=
ν(1)∑

j=1

pk,j−1∑

d=0

(Cd
k,j + Cd−1

k,j )

×

(
α0,j
y

(−1)
pk,j−d+1

(pk,j−d)!
+ α1,j

y
(−1)

pk,j−d

(pk,j−d−1)!
+ · · · + α

pk,j−d−1,j
y

)

+(I − A−1)γy,

(14)

where C−1
k,j = 0. On the other hand, the vector y is decomposed as

y =
ν(1)∑

j=1

pk,j−1∑

d=0

Cd
k,jξ

pk,j−d−1,j
y + δy, δy ∈ K1. (15)

Note that K1 is an invariant subspace for A−1 and the restriction (I−A−1)|K1

is an invertible operator. Equating (14) and (15) yields δy = (I −A−1)γy and

ξ0,j
y = α0,j

y ,

ξ1,j
y = α0,j

y + α1,j
y − 1

2
α0,j
y ,

...
...

ξpk,j−1,j = α
pk,j−2,j
y − 1

2
α
pk,j−3,j
y + · · · + (−1)

pk,j−2

(pk,j−1)!
α0,j
y

+α
pk,j−1,j
y − 1

2
α
pk,j−2,j
y + · · · + (−1)

pk,j−1

pk,j !
α0,j
y ,

j = 1, . . . , ν(1),

and, therefore, we have γy = (I − A−1)
−1
|K1
δy and




α0,j
y

α1,j
y

...

α
pk,j−1,j
y




=




1 0 0 . . . 0

∗ 1 0 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . 1




−1


ξ0,j
y

ξ1,j
y

...

ξ
pk,j−1,j
y




, j = 1, . . . , ν(1).

The linearity of the mapping D is obvious and we have already shown that it
is invertible. By construction we obtain relation (13).

If 1 6∈ σ(A−1) then putting Py(θ) = c, with a constant vector c, we get

Py(0) − A−1Py(−1) = c− A−1c

11



and then if c = (I − A−1)
−1y we get (13). 2

This allows to state the following result.

Theorem 7 The spectrum of Ā only consists of the eigenvalues which are the
roots of the equation det ∆Ā(λ) = det(λ− λe−λA−1) = 0, i.e.

σ(Ā) = {λ(k)
m = ln |µm| + i(arg µm + 2kπ)} ∪ {0},

where µm ∈ σ(A−1),m = 1, . . . , ℓ. The corresponding generalized eigenvectors
are of two forms. To each {λ(k)

m } and each Jordan chain {Cd
m,j} of the or-

thonormal eigen- and rootvectors of the matrix A−1 (see (12)) corresponds the

Jordan chain of Ā : v
(k),0
m,j , v

(k),1
m,j , ..., v

(k),pm,j−1
m,j , i.e. the vectors vs (the indices

k,m, j are omitted) verify the relation (Ā − λI)vs = vs−1. They are given by

v
(k),s
m,j =

(
0

eλ
(k)
m θP s(θ)

)
, P s(θ) = P s

m,j(θ) =
∑s
d=0C

d
m,j

(∑s−d
i=0 β

i,s
d

θi

i!

)
, (16)

where s = 0, .., pm,j − 1, m = 1, . . . , ℓ, k ∈ Z, j = 1, . . . , νm.

Besides, to λ = 0 ∈ σ(Ā) correspond n generalized eigenvectors of another
form




ei

Pei
(θ)


 , (17)

where {ei}
n
i=1 is an arbitrary orthogonal basis in C

n and the polynomial Py(θ)
is described in Lemma 6.

The collection (16) and (17) constitutes a Riesz basis in M2 which becomes an
orthogonal basis if we choose the equivalent norm

‖(y, z(·)‖2
1 = ‖y‖2 +

0∫

−1

‖T (Py(θ) − z(θ))‖2dθ, (18)

where T is a bounded operator in L2(−1, 0; Cn) with a bounded inverse.

Let us first discuss the formulation of this result.

Remark 8 We emphasize, that the polynomials P s
m,j(θ) in (16) do not de-

pend on index k. So vectors v
(k),s
m,j in (16) only differ (for different k) in the

exponential eλ
(k)
m θ. This property is essential for our investigations.

12



Remark 9 Note that if the Jordan basis {Cd
m,j} is not orthogonal in the initial

norm, then one can change the scalar product in C
n to achieve its orthogo-

nality. So the assumption on {Cd
m,j} to be orthogonal is not essential for the

property of generalized eigenvectors of Ā to form a Riesz basis.

Remark 10 We notice that the rootspace of Ā corresponding to 0 has essen-
tially different structures in cases 1 6∈ σ(A−1) and 1 ∈ σ(A−1). The difference
is in the family (17). Let us consider this in more details.

Vector
(

e
ϕ(θ)

)
is an eigenvector of Ā, corresponding to 0 iff

Ā

(
e

ϕ(θ)

)
= 0,

(
e

ϕ(θ)

)
∈ D(A).

The first property gives ϕ(θ) ≡ C = const, and the second one implies e =
ϕ(0)−A−1ϕ(−1) = (I−A−1)C. So the number of linearly independent vectors
{ei} (ei 6= 0) which can be the first (nonzero) coordinate of an eigenvector(

e
ϕ(θ)

)
is equal to dim Im(I − A−1).

In the case 1 6∈ σ(A−1), we have dim Im(I−A−1) = n, so there are n eigenvec-
tors (of Ā corresponding to 0) with the first nonzero coordinate. This means
that in addition to the set of eigen- and rootvectors from (16) one has n eigen-
vectors from (17), i.e. with the first (nonzero) coordinate.

In the case 1 ∈ σ(A−1), we have dim Im(I − A−1) < n, so the number of
eigenvectors is less than n. Moreover, there is no rootvector (of Ā) which
satisfies

(Ā − 0 · I)

(
y

ψ(θ)

)
=

(
e

ϕ(θ)

)
, e 6= 0

since Ā
(

y
ψ(θ)

)
=
(

0
d/dθψ(θ)

)
, because the first coordinate must be zero.

More precisely, the subspace Cn ⊖ Im(I − A−1) is the linear span of all
rootvectors of the highest order of A−1, corresponding to µ = 1 ∈ σ(A−1),
i.e. {C

pm,j

m,j }. In this case the vectors from (17) with the first coordinate from
Cn ⊖ Im(I − A−1) are rootvectors of Ā which ”continue” the corresponding
sequence from (16). They are the rootvectors of highest orders in these se-
quences.

We can illustrate this fact, for example, on particular cases. For simplicity,
we choose {ei}

n
i=1 = {Cd

m,j} (see vectors (17)).

1. Assume that µm = 1 ∈ σ(A−1) is a simple root (νm = 1 and pm,j = 1).
Hence from the family (16) we have one eigenvector

v0
m,j =

(
0

eλ
(0)
m θP 0(θ)

)
=

(
0

C0
m,j

)
,

13



and the corresponding rootvector from the family (17)

v1
m,j =

(
C0
m,j

C0
m,jθ

)
.

It is easy to check that (Ā − 0 · I)v1
m,j = v0

m,j and v1
m,j ∈ D(Ā). Here we are

interested in the rootvector with the first (nonzero) coordinate C0
m,j since only

this vector does not belong to Im (I − A−1).

2. Assume νm = 1 and pm,j = 2, i.e. from the family (16) we get two vectors

v0
m,j =

(
0

C0
m,j

)
, v1

m,j =

(
0

C0
m,jθ + C1

m,j

)
.

In this case we are interested in the rootvector with the first (nonzero) co-
ordinate C1

m,j since only this vector does not belong to Im (I − A−1). The
corresponding rootvector (from the family (17)) is

v2
m,j =

(
C1
m,j

C0
m,j

θ2

2
+ C1

m,j(θ + 1
2
)

)
.

Proof of the Theorem: We prove by induction.

Step 1. First, check by direct calculation that the vector v0 =
(

0

eλ
(k)
m θC0

m,j

)

belongs to D(Ā) and satisfies (Ā − λI)v0 = 0.

Step 2. s→ s+ 1.

Consider P s(θ) =
∑s
d=0C

d
m,j

(∑s−d
i=0 β

i
d
θi

i!

)
and P s+1(θ) =

∑s+1
d=0C

d
m,j

(∑s+1−d
i=0 γid

θi

i!

)
.

We omit some indices which do not change in this part of the proof (we write
βid = βi,sd and γid = βi,s+1

d ). The coefficients βid are known and we are looking
for γid. It is easy to check, that the property (Ā − λ(k)

m I)vs+1 = vs implies
d/dθP s+1(θ) = P s(θ), i.e.

s∑

d=0

Cd
m,j

(
s+1−d∑

i=1

γid
θi−1

(i− 1)!

)
=

s∑

d=0

Cd
m,j

(
s−d∑

i=0

βid
θi

i!

)
.

Since {Cd
m,j} are linearly independent, it follows that

s+1−d∑

i=1

γid
θi−1

(i− 1)!
=

s−d∑

i=0

βid
θi

i!
.

It implies

γi+1
d = βid, i = 0, ..., s− d, d = 0, ..., s. (19)

14



So, we only need to find γ0
d , d = 0, ..., s+1 i.e, the coefficients of θ0 in P s+1(θ).

Consider P s+1(0) =
∑s+1
d=0C

d
m,jγ

0
d and let us use the fact that vs+1 ∈ D(Ā). It

gives

0 = P s+1(0) − A−1e
−λ

(k)
m P s+1(−1)

or equivalently, multiplying by µm = eλ
(k)
m , we get

µmP
s+1(0) − A−1P

s+1(−1) = 0.

We obtain, using (19),

µ
s+1∑

d=0

Cd
m,jγ

0
d − A−1

s+1∑

d=0

Cd
m,j

(
s+1−d∑

i=1

βi−1
d

(−1)i

i!
+ γ0

d

)
= 0.

Collecting the terms with γ0
d and using (A−1 − µm)Cd

m,j = Cd−1
m,j , (A−1 −

µm)C0
m,j = 0, one gets

s+1∑

d=1

Cd−1
m,j γ

0
d +

s+1∑

d=0

(
Cd−1
m,j + µCd

m,j

) s+1−d∑

i=1

βi−1
d

(−1)i

i!
= 0.

Here we denote C−1
m,j = 0. Collecting the coefficients of Cd

m,j, we arrive for each
d = 0, ..., s to equation

γ0
d+1 +

s−d∑

i=1

βi−1
d+1

(−1)i

i!
+ µ

s+1−d∑

i=1

βi−1
d

(−1)i

i!
= 0 (20)

which is the formula for γ0
d+1. The coefficient γ0

0 can be chosen arbitrarily, say
γ0

0 = 0 for simplicity. This and (19) give all coefficients γid so the existence of
polynomial P s+1(θ) with the desired properties is proved. These polynomials
give the sequence of eigen- and rootvectors (see (16)).

Remark 11 It follows from (20) that γ0
s+1 = µmβ

0
s or, more precisely, β0,s+1

s+1 =

µmβ
0,s
s = µs+1

m β0,0
0 for all s = 0, ..., pm,j − 1.

Remark 12 If β0,0
0 = α ∈ C (see the definition of P s in (16)), then βs,s0 = α

for all s = 0, ..., pm,j − 1. We remind that βs,s0 is the coefficient of θs

s!
, where s

is the highest order of θ in P s.

Now we prove that the sequence of eigen- and rootvectors (16), (17) forms a
Riesz basis in M2. First we show that the functions

{ eλ
(k)
m θC0

m,j, eλ
(k)
m θC1

m,j, . . . , eλ
(k)
m θC

pm,j−1
m,j },

m = 1, ..., ℓ; j = 1, ..., νm; k ∈ Z.
(21)

15



form an orthogonal basis of L2(−1, 0; Cn). This follows from the fact that

{Ci
m,j} forms an orthogonal basis of C

n and { eλ
(k)
m θ}k∈Z - an orthogonal basis

of L2(−1, 0; C), for each m. We use here that λ(k)
m − λ(j)

m = i · 2π(k − j).

Now in each subspace L2(−1, 0;Lm,j), Lm,j = Lin {Cd
m,j}

pm,j−1
d=0 we consider

the operator T̃m,j = {ts,d(θ)}; s, d = 0, .., pm,j − 1, where elements ts,d(θ) are
polynomials (see the definition of P s in (16)) such that ts,d(θ) = 0 for s < d

and ts,d(θ) =
∑s−d
i=0 β

i,s
d

θi

i!
for s ≥ d.

T̃m,j =




β0,0
0 0 . . . . . . 0

t2,1(θ) β0,1
1 0 . . . 0

∗ ∗ β0,2
2 0 0

. . . . . . . . . . . . 0
tpm,j−1,1(θ) ∗ . . . ∗ β

0,pm,j−1
pm,j−1



.

This operator maps the group of functions

{ eλ
(k)
m θC0

m,j, eλ
(k)
m θC1

m,j, . . . , eλ
(k)
m θC

pm,j−1
m,j }

into the group (see (16))

{ eλ
(k)
m θP 0(θ), eλ

(k)
m θP 1(θ), . . . , eλ

(k)
m θP pm,j−1(θ)}.

The operator T̃m,j is bounded and has bounded inverse since it is a polynomial
matrix whose determinant is a constant different from zero. Such matrix is
called an elementary polynomial (see e.g. [4, Theorem 53.1, p.142]). In our

case det T̃m,j =
∏pm,j−1
s=0 β0,s

s = µ1+2+..+(pm,j−1) · β0,0
0 6= 0 (see Remark 11).

Thus the diagonal operator T̃ = diag [T̃m,j] is bounded, has bounded inverse
and maps the orthogonal basis (21) into the Riesz basis (in L2(−1, 0; Cn)):

{ eλ
(k)
m θP 0

m,j(θ), eλ
(k)
m θP 1

m,j(θ), . . . , eλ
(k)
m θP

pm,j−1
m,j (θ)},

m = 1, .., ℓ; j = 1, .., νm; k ∈ Z.

In order to define the new norm (see (18)) we put T = T̃−1.

Since the collection (17) consists of n linearly independent vectors which do
not belong to the subspace {0} × L2(−1, 0; Cn) ⊂ M2 we then conclude that
(16), (17) is a Riesz basis in M2.

Let us show that vectors (17) are eigen- or rootvectors corresponding to the
eigenvalue 0 for operator Ā. First of all, due to Lemma 6 these vectors belong

to D(Ā). If K = {0} it is obvious that Ā




ei

Pei
(θ)


 = 0 (see Lemma 6) and,
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therefore, (17) is a collection of eigenvectors corresponding to 0. If K 6= {0} we

notice that K = Lin{C
pm,j−1
m,j }νm

j=1, where C
pm,j−1
m,j are rootvectors (of A−1) of

the highest orders, corresponding to µm = 1. Let us first consider y = C
pm,j−1
m,j .

In the same way as in the construction of polynomials P s
m,j (see (16)) we look

for a rootvector such that

Ā


C

pm,j−1
m,j

P (θ)


 =

(
0

P
pm,j−1
m,j (θ)

)
.

It is easy to see that the property
(
C

pm,j−1

m,j

P (θ)

)
∈ D(A) and Lemma 6 imply

P (θ) = Py(θ) for y = C
pm,j−1
m,j (by the uniqueness of polynomial Py(θ)). In

general, y = y1 + y2, y1 ∈ K, y2 ∈ K⊥ and linearity of the mapping y → Py(·)
(see Lemma 6 item ii) ) gives the rootvectors of the form (17).

It remains to prove that the basis (16), (17) is orthogonal in the norm ‖ · ‖1.
First we observe that

‖(0, z(·))‖1 = ‖Tz(·)‖L2(−1,0;Cn).

Hence all the vectors of the collection (16) are orthogonal to each others. Then
we note

〈


y

Py(·)


 ,




0

z(·)



〉

1

= (y, 0) +

0∫

−1

(T (Py(θ) − Py(θ)), T z(θ)) dθ = 0.

Therefore, any vector from (16) is orthogonal to each from (17). And finally,
we get

〈


ei

Pei
(·)


 ,




ej

Pej
(·)



〉

1

= (ei, ej) = 0

as i 6= j. This completes the proof of the theorem. 2

2.3.2 Basis property of finite-dimensional invariant subspaces

Let us recall [10] that a basis {Vk} of subspaces is called a basis equivalent to
orthogonal (a Riesz basis) if there are an orthogonal basis of subspaces {Wk}
and a linear bounded invertible (with bounded inverse) operator R, such that
RVk = Wk. See also the discussion in [26].

In order to give a complete proof of the main result of this section, we need
the following important Lemma and Theorem.
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Lemma 13 For any m = 1, .., ℓ and |k| > N1 (N1 is defined in Theorem 2)
the following estimate holds

sup
λ∈L

(k)
m

‖R(A, λ) −R(Ā, λ)‖ ≤ γk, with
∑

|k|>N1

γ2
k <∞. (22)

Proof: Using the explicit form of resolvent (4), we get

[R(A, λ) −R(Ā, λ)]
(

z
ψ(·)

)
=
(

(I−A−1e−λ){∆−1
A (λ)DA−∆−1

Ā
(λ)DĀ}

eλθ{∆−1
A (λ)DA−∆−1

Ā
(λ)DĀ}

)
, (23)

where

DA = DA(z, ψ) = z+λe−λA−1

∫ 0
−1 e−λsψ(s)ds−

∫ 0
−1A2(s)ψ(s)ds−

∫ 0
−1{λA2(θ)+

A3(θ)}e
λθ{
∫ θ
0 e−λsψ(s)ds}dθ andDĀ = DĀ(z, ψ) = z+λe−λA−1

∫ 0
−1 e−λsψ(s)dθ

Now we write

{∆−1
A (λ)DA − ∆−1

Ā
(λ)DĀ} = [∆−1

Ā
(λ) − ∆−1

A (λ)]DA + ∆−1
Ā

(λ)[DA −DĀ].(24)

Let us show that there exists C2 > 0 such that for any λ ∈ L(k)
m ,m = 1, .., ℓ

and large enough |k|, one has

‖∆−1
Ā

(λ)‖ ≤ C2|λ|
−1. (25)

We have ∆−1
Ā

(λ) = (−λI + λe−λA−1)
−1 = λ−1(−I + e−λA−1)

−1 and (−I +
e−λA−1)

−1 = [(A−1 − eλI)e−λ]−1 = (A−1 − eλI)−1eλ. Hence

‖(−I + e−λA−1)
−1‖ = ‖(A−1 − eλI)−1‖|µm||e

reiϕ

| ≤ C1 max
m=1,...,ℓ

|µm|e
r ≡ C2,

where C1 is defined in (9) and λ = λ(k)
m + reiϕ, ϕ ∈ [0, 2π], r is the fixed radius

of all circles L(k)
m (see the proof of (9) for details). It gives (25).

In a quite similar way we get the estimate for ∆−1
A (λ) similar to (25):

‖∆−1
A (λ)‖ ≤ C3|λ|

−1. (26)

More precisely, from (3), we get

∆A(λ) =λe−λ


−Ieλ + A−1 + eλ

0∫

−1

eλsA2(s)ds+ eλλ−1

0∫

−1

eλsA3(s)ds




=λe−λ(A−1 − Ieλ + L(λ)) = λe−λ(A−1 − Ieλ)
{
I + (A−1 − Ieλ)−1L(λ)

}
,
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where L(λ) is defined in (6).

Hence

∆−1
A (λ) = λ−1eλ

{
I + (A−1 − Ieλ)−1L(λ)

}−1
(A−1 − Ieλ)−1.

Now estimates (9) and (8) with ν small enough give (26).

Remark 14 It is easy to check for arbitrary matrices A and K, such that A
and A+K are nonsingular, the identity

A−1 − (A+K)−1 = (A+K)−1KA−1.

We get this by multiplying the identity (A+K) −A = K by (A+K)−1 from
the left and by A−1 from the right.

The last Remark gives

∆−1
Ā

(λ) − ∆−1
A (λ) = ∆−1

A (λ)


λ

0∫

−1

eλsA2(s)ds+

0∫

−1

eλsA3(s)ds


∆−1

Ā
(λ).

Using the last estimate together with (25) and (26) we deduce

for any λ ∈ L(k)
m

‖∆−1
Ā

(λ) − ∆−1
A (λ)‖ ≤ C4|λ|

−1. (27)

We also obtain

∥∥∥[∆−1
Ā

(λ) − ∆−1
A (λ)]DA (z, ψ)

∥∥∥ ≤

≤ C
|λ|

‖(z, ψ)‖ + C
|λ|

∥∥∥λe−λA−1

∫ 0
−1 e−λsψ(s)ds

∥∥∥+

+ C
|λ|

∥∥∥λ
∫ 0
−1{A2(θ) + λ−1A3(θ)}e

λθ{
∫ θ
0 e−λsψ(s)ds}dθ

∥∥∥ .

(28)

Let us first estimate the second term in (28).

We can write λ ∈ L(k)
m as λ = i · 2πk+ λ̂, where λ̂ ∈ L(0)

m . Since e−λ̂sψ(s) ∈ L2,

from the second term in (28), that
∫ 0
−1 e−λsψ(s)ds =

∫ 0
−1 e−i·2πkse−λ̂sψ(s)ds

is the Fourier coefficient of function e−λ̂sψ(s). Notice that for any λ̂ ∈ L(0)
m

one has ‖e−λ̂·ψ(·)‖L2(−1,0;Cn) ≤ C‖ψ‖L2(−1,0;Cn), i.e. the family of functions

{e−λ̂·ψ(·)}
λ̂∈L

(0)
m

is uniformly bounded in the space L2(−1, 0; Cn).
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Now to estimate the third term in (28), we first consider

0∫

−1

A2(θ)e
λθ





θ∫

0

e−λsψ(s)ds



 dθ =

0∫

−1

d




θ∫

0

A2(t)e
λtdt








θ∫

0

e−λsψ(s)ds





Integrating by parts we get

−

0∫

−1

A2(t)e
λtdt

0∫

−1

e−λsψ(s)ds−

0∫

−1





θ∫

0

A2(t)e
λtdt



 e−λθψ(θ)dθ. (29)

Consider the function χ(θ) ≡
∫ θ
0 A2(t)e

λtdt · ψ(θ) and notice that |χ(θ)| =
|ψ(θ)| · |

∫ θ
0 A2(t)e

λtdt| ≤ |ψ(θ)| ·
∫ 0
θ |A2(t)|e

tReλdt ≤ |ψ(θ)| ·
∫ 0
θ |A2(t)|dt · C5,

where C5 ≡ exp{sup |Reλ|, λ ∈ λ ∈ L(k)
m , k ∈ Z,m = 1, ..., ℓ} < ∞, since all

the circles L(k)
m are located in a vertical strip of the complex plane. Hence we

conclude ‖χ‖L2(−1,0;Cn) ≤ ‖ψ‖L2(−1,0;Cn)‖A2‖L2(−1,0;Cn)C5 and we arrive to the
same case as in the consideration of the second term in (28), i.e. we have the
Fourier coefficient of χ instead of ψ. The same calculations give an analogous
estimate for the first term in (29) and the term A3 instead of A2 (see the third
term in (28)). Moreover, the factor λ−1 simplifies estimation.

This gives for any λ ∈ L(k)
m that ‖[∆−1

Ā
(λ) − ∆−1

A (λ)]DA(z, ψ)‖ · ‖(z, ψ)‖−1 ≤

αk,m(λ̂), λ̂ ∈ L(0)
m , such that

∑
k∈Z

m=1,..,ℓ
α2
k,m = S(λ̂) ≤ S < ∞ where S is inde-

pendent of λ̂ ∈ L(0)
m . Essentially the same considerations lead to an analogous

estimate for the second term in (24).

Collecting this with (24)-(28) and taking into account that for all λ ∈ L(k)
m ,

one has |λ|−1 ≤ (2π|k| − Ĉ)−1 with Ĉ independent of k and m, we get (22).
Lemma 13 is proved. 2

Theorem 15 There exists N0 large enough, such that for any N ≥ N0,

i) the sequence of subspaces {V (k)
m } |k|≥N

m=1,..,ℓ

form a Riesz basis of the clo-

sure of their linear span, say LN . Here V (k)
m = P (k)

m M2 and P (k)
m =

1
2πi

∫
L

(k)
m
R(A, λ)dλ are spectral projectors; L(k)

m are circles defined in Para-
graph 2.2;

ii) codimLN = (2N + 1)n+ n = 2(N + 1)n.

Proof: An essential tool of the proof is the estimation of the norm of the
difference

P (k)
m − P̄ (k)

m =
1

2πi

∫

L
(k)
m

[R(A, λ) −R(Ā, λ)]dλ, (30)
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where P̄ (k) is the same eigenprojector corresponding to the operator Ā. This
is given by the application of the Lemma 13.

From (22) we infer
∑ℓ
m=1

∑
|k|>N2

‖P (k)
m − P̄ (k)

m ‖2 < ∞. Here N2 ≥ N1 (see
Theorem 2). Using this we easily obtain N0 such that for any N ≥ N0 one has∑ℓ
m=1

∑
|k|>N0

‖P (k)
m −P̄ (k)

m ‖2 < 1. The last estimate means that the sequences of

subspaces {V (k)
m } |k|≥N

m=1,..,ℓ

and {V̄ (k)
m } |k|≥N

m=1,..,ℓ

are quadratically close. Theorem 5.2

[10] (see also Theorem 2.20 and Corollary 2.22 in [15]) completes the proof of
item i).

Let us prove item ii). We use that the sequence {V̄ (k)
m } k∈Z

m=1,..,ℓ
forms an or-

thogonal basis in M2 (see Theorem 7) and {V̄ (k)
m } |k|≤N

m=1,..,ℓ

∪ {V (k)
m } |k|>N

m=1,..,ℓ

is

quadratically close to the sequence {V̄ (k)
m } k∈Z

m=1,..,ℓ
(see the proof of item i). Hence

{V̄ (k)
m } |k|≤N

m=1,..,ℓ

∪{V (k)
m } |k|>N

m=1,..,ℓ

forms a Riesz basis in M2 and dim{V̄ (k)
m } |k|≤N

m=1,..,ℓ

=

2(N + 1)n.

The proof of Theorem 15 is complete. 2

The following result is very important in our framework.

Theorem 16 There exists a sequence of A-invariant finite-dimensional sub-
spaces which constitute a Riesz basis in M2. More precisely, these subspaces
are {V (k)

m } |k|≥N
m=1,..,ℓ

defined in Theorem 15 and a 2(N+1)n-dimensional subspace

WN spaned by all eigen- and rootvectors, corresponding to all eigenvalues of
A, which are outside all circles L(k)

m , |k| ≥ N,m = 1, .., ℓ.

Proof: Let X1 = LN , where LN is defined in Theorem 15. The subspace X1

is of finite co-dimension and A-invariant, i.e. for any x ∈ D(A) ∩X1, one has
Ax ∈ X1.

Step 1. Let us show thatM2 can be split into the direct sumM2 = X1⊕X2, and
the operator A can be presented in the triangular form A =

(
A11

0
A12

A22

)
, where

A11 = P1AP1 : X1 → X1, A22 = P2AP2 : X2 → X2, A12 = P1AP2 : X2 → X1.
Here Pi are projectors on Xi along Xj, j 6= i.

First, we have to show that there exists X2, such that D(A) ∩ X2 6= {0}.
Since codimX1 < ∞, and A is densely defined, we get the existence of y1 6∈
X1, y1 ∈ D(A). Now denote by X1

1 = Lin{y1, X1}. The same arguments give
the existence of y2 6∈ X1

1 , y2 ∈ D(A) and so on. Since codimX1 < ∞, we
have a finite number of yi, whose linear span gives X2. Hence the splitting
M2 = X1 + X2 and the invariance of X1 gives the triangular form of A,
mentioned above, if we identify X1 +X2 with X1 ×X2.

Step 2. Let us show that σ(A11)∩σ(A22) = ∅. Let us assume that there exists
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µ̂ ∈ σ(A11) ∩ σ(A22) 6= ∅. By Theorem 15, item i), X1 possesses a Riesz basis
of invariant subspaces.

Consider the generalized eigenspace for A11 corresponding to µ̂ and present
it as Vµ̂ = Im(A11 − µ̂I)|Vµ̂

+ Kµ̂. Here Kµ̂ is spaned by rootvectors (of
A11) of the highest orders from the rootchains giving the Jordan basis of
A11|Vµ̂

. Notice that the dimension of Kµ̂ equals the number of Jordan blocks
of A11|Vµ̂

. Since (A11 − µ̂I) is invertible on X1 ⊖ Vµ̂, X1 itself is presented as
X1 = Im(A11 − µ̂I) +Kµ̂.

Now consider the eigenvector h ∈ X2 for A22 corresponding to µ̂, i.e. A22h =
µ̂h. We are going to show that there exist y ∈ X1 and v ∈ Kµ̂, such that

(
A11

0

A12

A22

)(
y

h

)
= µ̂

(
y

h

)
+
(
v

0

)
. (31)

Since A12h ∈ X1, there exist w ∈ Im(A11 − µ̂I) and v ∈ Kµ̂, such that
A12h = w + v. If we substitute this decomposition into the first row of (31):
(A11 − µ̂I)y = −A12h − v = −w − v + v = −w, we can find y. As a result,

we get the existence of a rootvector
(
y
h

)
for A, corresponding to µ̂, which is

of higher order than
(
v
0

)
. The contradiction gives the result of this step.

Step 3. Let us show that M2 can be split into the direct sum M2 = X1 + X̂2,
with an invariant X̂2. Consider finite-dimensional operator A22. There exists
σ(A22) = {µ̂1, .., µ̂s} with the total multiplicity equals to dimX2 = codimX1.
Consider h- an eigenvector of A22 corresponding to µ̂ and find y ∈ X1 such
that A

(
y
h

)
= µ̂

(
y
h

)
. Such y is given by y = −(A11 − µ̂I)−1A12h (see the

triangular form of A). This is due to the property σ(A11)∩σ(A22) = ∅, which
implies µ̂ 6∈ σ(A11). Exactly in the same way one can find all rootvectors of
A for all µ̂. Hence the number of eigen- and rootvectors of A corresponding
to σ(A22) is equal to dimX2 = 2(N + 1)n. By construction, the linear span of
these vectors gives an A-invariant subspace X̂2. Now Theorem 15 completes
the proof of Theorem 16. 2

3 Stability analysis

In this section we study the stability of the system (2). We consider two notions
of stability: the strong asymptotic stability and the exponential stability (see
for example [7,31] and references therein for abstract systems and different
concrete examples).

Definition 17 The system (2) (or (1)) is said to be exponentially stable if
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for some positive constants M and ω one has

‖eAt‖ ≤Me−ωt.

It is said to be strongly asymptotically stable if

∀x ∈M2, lim
t→+∞

eAtx = 0.

3.1 Exponential stability.

In the following theorem, using the results on the existence of Riesz bases of
subspaces (see Theorem 16) and on the location of σ(A) (see Theorem 2),
we (partially) reformulate in terms of the matrix A−1 the condition on the
spectrum σ(A) to be bounded away from the imaginary axis (cf. [14, Theorem
6.1]).

Theorem 18 System (2) is exponentially stable if and only if the following
conditions are verified

i) σ(A) ⊂ {λ : Reλ < 0}

ii) σ(A−1) ⊂ {λ : |λ| < 1}.

Proof: Suppose that system (2) is exponentially stable, i.e. there exist pos-
itive M and α such that ‖eAt‖ ≤ Me−αt. Hence σ(A) ⊂ {λ : Reλ ≤ −α}
together with Theorem 2 easily give the properties i), ii).

To show that the conditions of the theorem are sufficient, we use the existence
of a Riesz basis of invariant subspaces {WN , V

(k)
m , k ∈ Z,m = 1, . . . , ℓ} (see

Theorem 16). Consider the norm ‖.‖1 where the subspaces {WN , V
(k)
m , k ∈

Z,m = 1, . . . , ℓ} are orthogonal. The semigroup eAt|WN
is clearly exponentially

stable.
Let us consider now eAt|

V
(k)
m

. By construction we have

eAt|
V

(k)
m

=
1

2πi

∫

L
(k)
m

eλtR(A, λ)dλ.

From the expression of the resolvent (Proposition 1) and using the same esti-
mate as in the proof of Lemma 13 we get

‖R(A, λ)‖1 ≤ C, λ ∈ L(k)
m , k ∈ Z, m = 1, . . . , ℓ.
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The conditions of the Theorem give Reλ(k)
m ≤ −ε0 < 0 for all k ∈ Z and then

‖eAt|
V

(k)
m

‖1 ≤M1e
−εt

∫

L
(k)
m

‖R(A, λ)‖1dλ, k ∈ Z, (32)

where 0 < ε < ε0 and then eAt|
V

(k)
m

are uniformly exponentially stable for such
m:

‖eAt|
V

(k)
m

‖1 ≤Me−εt, t ≥ 0, k ∈ Z. (33)

Since the constantM in the last estimate is independent ofm, k and {WN , V
(k)
m }

form a Riesz basis we get the exponential stability. The proof is complete. 2

3.2 Strong asymptotic stability

A well known necessary condition is given in the following Proposition.

Proposition 19 If system (2) is asymptotically stable, then the spectrum sat-
isfies σ(A) ⊂ {λ : Reλ < 0}.

The proof is obvious because the spectrum of A consists on eigenvalues only
(Theorem 2).

We will essentially use the following

Theorem 20 Let eAt, t ≥ 0 be a C0-semigroup in the Banach space X and
A be the infinitesimal generator of the semigroup. Assume that σ(A) ∩ (iR)
is at most countable and the operator A∗ has no pure imaginary eigenvalues.
Then eAt is strongly asymptotically stable if and only if one of the following
conditions hold:

i) There exists a norm ‖ · ‖1, equivalent to the initial one ‖ · ‖, such that
the semigroup eAt is contractive according to this norm: ‖eAtx‖1 ≤ ‖x‖1,
∀x ∈ X, t ≥ 0;

ii) The semigroup eAt is uniformly bounded: ∃C > 0 such that ‖eAt‖ ≤ C,
t ≥ 0.

Theorem 20 was obtained first in [29] for the case of bounded operator A,
then generalized in [2,18] for the general case. The development of this theory
concerns a large class of differential equations in Banach space (see [31] and
references therein).
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Theorem 21 System (2) is strongly asymptotically stable if and only if σ(A) ⊂
{λ : Reλ < 0} and A is dissipative in an equivalent norm.

Proof: We apply Theorem 20 to our system and use that, in our case, the
operator A has eigenvalues only. 2

The condition σ(A) ⊂ {λ : Reλ < 0} is necessary for asymptotic stability.
Then, in order to have more precise conditions of strong stability, the main
problem is to verify dissipativity of the operator A. In our framework, the
analysis of this problem is given in terms of the spectral properties of the
matrix A−1.

3.2.1 Conditions for stability and instability

In this section, assuming the spectrum σ(A) is in the left-half plane, we present
sufficient conditions (in terms of matrix A−1 only) for the system (2) to be
stable (Theorem 23) or unstable (Theorem 24). The case when these suffi-
cient conditions are not satisfied is much more complicated and is studied in
section 3.2.2.

Theorem 2 gives that the property σ(A) ⊂ {λ : Reλ < 0} implies σ(A−1) ⊂
{λ : |λ| ≤ 1}.

Let us split σ(A−1) = σ0 ∪ σ1, where σ0 = σ(A−1) ∩ {λ : |λ| < 1}, and
σ1 = σ(A−1) ∩ {λ : |λ| = 1}.

Our main result on stability can be formulated as follows.

Theorem 22 Assume σ(A) ⊂ {λ : Reλ < 0} and max{|µm| : µm ∈ σ(A−1)} = 1.
Then the following three mutually exclusive possibilities exist:

p1) the part of the spectrum σ1 ≡ σ(A−1) ∩ {λ : |λ| = 1} consists of sim-
ple eigenvalues only, i.e. to each eigenvalue corresponds a one-dimensional
eigenspace and there are no rootvectors. In this case system (2) is asymptoti-
cally stable.

p2) the matrix A−1 has a Jordan block, corresponding to µ ∈ σ1. In this case
system (2) is unstable.

p3) there are no Jordan blocks, corresponding to eigenvalues in σ1, but there
exists µ ∈ σ1 whose eigenspace is at least two-dimensional. In this case system
(2) can be stable as well as unstable. Moreover, there exist two systems with the
same spectrum, such that one of them is stable while the other one is unstable.

We split the proof on several assertions.

25



Theorem 23 Let σ(A) ⊂ {λ : Reλ < 0}. Assume that the part of the spec-
trum σ1 consists of simple eigenvalues only, i.e. to each eigenvalue corresponds
a one-dimensional eigenspace and there are no rootvectors. Then system (2)
is asymptotically stable.

Proof: We use the existence of a Riesz basis of invariant subspaces {WN , V
(k)
m , k ∈

Z,m = 1, . . . , ℓ} (see Theorem 16). Consider the norm ‖.‖1 where the sub-
spaces {WN , V

(k)
m , k ∈ Z,m = 1, . . . , ℓ} are orthogonal. The semigroup eAt|WN

is clearly exponentially stable and then uniformly bounded.
Let us consider now eAt|

V
(k)
m

. Let us distinguish two families of eigenvalues
corresponding to the spectrum σ1 and σ0 of the matrix A−1.

Suppose first that m is such that µm ∈ σ0, then Reλ(k)
m ≤ −ε0 < 0 for all

k ∈ Z. By the same arguments as in the proof of Theorem 18 (see relations
(32 and (33)) we obtain that eAt|

V
(k)
m

are uniformly exponentially stable and
then uniformly bounded for such m.

Now consider the critical case when m is such that µm ∈ σ1. By hypothesis
this part of spectrum is simple. Let x be in closed span of the corresponding
subspaces V (k)

m , then

x =
∑

k∈Z

µm∈σ1

x(k)
m , eAtx =

∑

k∈Z

µm∈σ1

eλ
(k)
m tx(k)

m ,

This gives

‖eAtx‖2
1 =

∑

k∈Z

µm∈σ1

e2Reλ
(k)
m t‖x(k)

m ‖2
1 ≤ ‖x‖2

1,

and this means that eAt is uniformly bounded in the subspace generated by
the corresponding subspaces V (k)

m .

Hence we obtain

‖eAt|
V

(k)
m

‖1 ≤M, k ∈ Z,m = 1, . . . , ℓ,

and the constant M does not depend on k or m. This gives that the semigroup
in uniformly bounded on the closed span of the subspaces V (k)

m and then, with
the boundedness on WN , we obtain the uniform boundedness in M2. Then by
Theorem 20 the system is strongly asymptotically stable. 2

Theorem 24 If the matrix A−1 has a Jordan block, corresponding to µ ∈ σ1,
then the system (2) is not asymptotically stable.

Proof: Consider µ = µm ∈ σ1. By Theorem 7, points λkm ∈ σ(Ā) belong
to iR, i.e. they are purely imaginary numbers. We denote by v̄k = v̄km and
w̄k = w̄km the normed eigen- and rootvectors corresponding to λkm (see (16) in
Theorem 7).
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Hence, using ‖v̄k‖ = ‖w̄k‖ = 1 and |eλ
k
mT | = 1, one gets

‖eĀT w̄k‖ = ‖eλ
k
mT (T v̄k + w̄k)‖ = |eλ

k
mT | · ‖T v̄k + w̄k‖ ≥ T − 1. (34)

Now consider the spectral projectors P (k) = P (k)
m and P̄ (k) = P̄ (k)

m (see Theo-
rem 15 and (30)) and estimate

‖eATP (k) − eĀT P̄ (k)‖ =
∥∥∥ 1

2πi

∫
L

(k)
m

eλT [R(A, λ) −R(Ā, λ)]dλ
∥∥∥

≤ 1
2π

eε0T
∫
L

(k)
m

∥∥∥R(A, λ) −R(Ā, λ)
∥∥∥ dλ

≤ eε0Tγk,

(35)

where γk → 0, k → ∞ (see in Lemma 13 the relation (22)).

Now we choose an arbitrary large T (we will later pass to the limit T → ∞).
For this T we choose large k such that eε0Tαk ≤ ε1 and ‖P (k) − P̄ (k)‖ ≤ ε1 for
some ε1.

Using this and (35) we obtain

‖eATP (k)w̄k‖ ≥ ‖eĀT P̄ (k)w̄k‖ − ε1 ≥ T − 1 − ε1. (36)

On the other hand, ‖P (k)−P̄ (k)‖ ≤ ε1 and ‖w̄k‖ = 1 give ‖P (k)w̄k−P̄ (k)w̄k‖ ≤
ε1 which implies

‖P (k)w̄k‖ ≤ 1 + ε1. (37)

Collecting (36) and (37), we arrive to

‖eATP (k)w̄k‖

‖P (k)w̄k‖
≥
T − 1 − ε1

1 + ε1

→ +∞ as T → +∞.

Hence eAt is unstable by the Banach-Steinhaus theorem. The proof of Theo-
rem 24 is complete. 2

3.2.2 Dilemma: stable or unstable (the case p3)

In this section we prove that in the case σ1 = σ(A−1) ∩ {|λ| = 1} is not
simple, system (2) can be either stable or unstable. We give (see Theorem 29)
two examples of system (2) (one stable and one unstable) for z ∈ R

2 and
A−1 = −I, i.e. σ1 = {−1} and there are two eigenvectors. In these examples
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both systems (one stable and one unstable) have the same spectrum located
in the open left-half plane.

General auxiliary considerations

We will consider the following particular case of the system (2) with a control

d

dt

(
y(t)

zt(·)

)
= Ā

(
y(t)

zt(·)

)
+ Bu(t), (38)

where D(Ā) = {(y, z(·)) : z ∈ H1(−1, 0; Cn), y = z(0)−A−1z(−1)} ⊂M2, the
control u is m dimensional and

Bu =
(
B
0

)
,

where B is a n×m matrix.

Let us consider A = Ā+BQ, where Q is a linear bounded operator and assume
that σ(Ā + BQ) ∩ σ(Ā) = ∅.

The equation for an eigenvector and eigenvalue of A is (Ā + BQ)x = λx or
equivalently (Ā − λI)x+ BQx = 0. Apply the resolvent Rλ = R(Ā, λ) to the
last equation x+R(Ā, λ)BQx = 0. Hence there exists a vector cx ∈ C

m, such
that

x = R(Ā, λ)Bcx (39)

Then cx must satisfy

R(Ā, λ)Bcx +R(Ā, λ)BQR(Ā, λ)Bcx = 0. (40)

Remark 25 Without loss of generality we can assume that the column of B,
say b1, .., bm, are linearly independent, and then we have KerB = {0}. Hence
there exists B−1

left, the left-inverse of B.

The last equation (40) gives cx +QR(Ā, λ)Bcx = 0 or equivalently

(I +QR(Ā, λ)B)cx = 0, (41)

where I+QR(Ā, λ)B is m×m. The characteristic equation, for the eigenvalues
of A is then given by det (I +QR(Ā, λ)B) = 0.

This result is quite general and may be formulated in the following Lemma.
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Lemma 26 Let Ā be a linear operator with ρ(Ā) 6= ∅ defined in the Hilbert
space X and A = Ā+BQ, where B are linear bounded operator from C

m to X
and from X to C

m respectively, B being left-invertible. Then λ /∈ σ(Ā) is an
eigenvalue of A if and only if det (I +QR(Ā, λ)B) = 0 and the corresponding
eigenvector is x = R(Ā, λ)Bcx, where cx ∈ Ker(I +QR(Ā, λ)B).

Particular auxiliary case n = 1

We need this scalar case to study the properties of the characteristic equation
(see (44)) which will be also the characteristic equation of the 2-dimensional
system (46) in the next paragraph. Our purpose is to design a 2-dimensional
system, which, depending on the feedback, may be asymptotically stable or
unstable.

Consider the scalar equation

ż(t) = −ż(t− 1) + u (42)

which is a particular case of the system (38) with n = 1, A−1 = −1 and the
operator is defined as

Bu = b · u, b = (1;ϕ)T ∈M2(−1, 0; C), ϕ(θ) = 0, (43)

where ϕ(θ), θ ∈ [−1, 0] is a scalar function.

From Theorem 2 the spectrum is σ(Ā) = {λ0 = 0} ∪ {λk = i · (2πk + π)}k∈Z,
and eigenvectors

v00 = (1; 1/2)T ∈M2, vk =
(
0; eλkθ

)T
∈M2

form an orthogonal basis of M2 with the norm

‖(y, z(·))‖2
1 = ‖y‖2 +

0∫

1

‖
1

2
y − z(θ)‖2dθ.

It is easy to verify that system (42) satisfies all assumptions of [28], more
precisely (see [28] for more details):

i) Ā is a skew-adjoint (in ‖ · ‖1-norm) unbounded operator with discrete
spectrum consisting of simple eigenvalues {λk},

ii) there exists a constant Cσ = 1
2
min
i6=j

|λi − λj| = π/2 > 0,
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iii) the operator B is associated with the vector b ∈ M2; besides, if {vk} is
an orthogonal eigenbasis of Ā, i.e. Āvk = λkv

k, then bk = 〈b, vk〉1 6= 0 for
all k.

If we are interested in a bounded control for system (42), i.e. u(x) = q∗x ≡
〈x, q〉1 for some q ∈ M2, then (see (41)) the characteristic equation for the
eigenvalues λ̃n of the operator A = Ā + bq∗ is

1 +
q00b00

λ
+
∑

k

qkbk

λ̃n − λk
= 0, (44)

where bk is defined in iii) and qk = 〈q, vk〉1.

To study the properties of equation (44) we apply the following result.

Theorem 27 [28, Theorem 4] Let {λ̃n} be any set of complex numbers such
that

a) |λn − λ̃n| < Cσ for all n;

b)
∑
n

|λn−λ̃n|2

|bn|2
< Cσ

‖b‖2
1
, where ‖b‖1 · ‖q‖1 < Cσ/2 = π/4.

There then exists a unique control u(x) = q∗x such that the spectrum σ(A) of
the operator A = Ā+bq∗ is {λ̃n} and, moreover, the corresponding eigenvectors
constitute a Riesz basis.

We will also need the following

Corollary 28 Fix any sequence {bk} ⊂ ℓ2, bk 6= 0. Then for any set of com-
plex numbers such that

c1) |λn − λ̃n| < π/2 for all n;

c2)
∑
n

|λn−λ̃n|2

|bn|2
< π

2
(
∑
i |bi|

2)
−1

there exists a unique sequence {qk} ⊂ ℓ2, such that {λ̃n} are all the roots of
the equation (44) and (

∑
i |qi|

2) · (
∑
i |bi|

2) < π2/16.

Particular case n = 2

Consider the system

ż(t) = A−1ż(t− 1) +Bu, A−1 =
(
−1 0
0 −1

)
, B =

(
1 0
0 1

)
. (45)
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The operator form (38) is then

d

dt

(
y(t)

zt(·)

)
= Ā

(
y(t)

zt(·)

)
+ Bu, Ā

(
y(t)

z(·)

)
=

(
0

dz(θ)/dθ

)
, (46)

where the domain of Ā is given by D(Ā) = {(y, z(·)) : z ∈ H1(−1, 0; C2), y =
z(0) − A−1z(−1)} ⊂M2.

The operator B associated with the matrix B, is defined as

B
(
u1

u2

)
= b1u1 + b2u2, b1 =

((
1

0

)
;ϕ
)T

, b2 =
((

0

1

)
;ϕ
)T

, (47)

where ui ∈ C, ϕ(θ) : [−1, 0] → C
2, ϕ(θ) = 0, and bi ∈M2.

From Theorem 2 the spectrum is σ(Ā) = {λ0 = 0} ∪ {λk = i · (2πk + π)}k∈Z,
there are no rootvectors and eigenvectors are

v00
1 =

((
1

0

)
;

(
1/2

0

))T
, v00

2 =

((
0

1

)
;

(
0

1/2

))T
, (48)

vk1 =
((

0

0

)
; eλkθ ·

(
1

0

))T
, vk2 =

((
0

0

)
; eλkθ ·

(
0

1

))T
. (49)

Theorems 15 and 16 (see also [24]) give that the two-dimensional subspaces
V̄ (k) = Lin {vk1 , v

k
1} and V̄ (00) = Lin {v00

1 , v
00
2 } form an orthogonal basis of

subspaces in M2. Moreover eigenvectors form an orthogonal basis in the norm

‖(y, z(·))‖2
1 = ‖y‖2 +

0∫

1

‖
1

2
y − z(θ)‖2dθ.

As in [24] (see also Theorem 15), we define in M2 the eigenprojectors P̄ (k) =
(P̄ (k))2 : M2 → V̄ (k).

As
∑
k P̄

(k) = I and P (k) are orthogonal to each other, we can write the
operator in (41) as

I+QR(Ā, λ)B = I+(
∑

k

QP̄ (k))·R(Ā, λ)·(
∑

k

P̄ (k)B) = I+
∑

k

QP̄ (k)R(Ā, λ)B.

Since V̄ (k) are invariant for Ā we have R(Ā, λ)|V̄ (k) = (λ − λk)
−1 · I, which

gives

I +QR(Ā, λ)B = I +
1

λ
QP̄ (00)B +

∑

k

1

λ− λk
QP̄ (k)B. (50)
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Let us study in details the operator QP̄ (k)B : C
2 → C

2. First we consider the
operator P̄ (k)B : C

2 → V̄ (k), and use ((47) - (49):

P̄ (k)B(u1, u2) = vk1〈b1u1 + b2u2, v
k
1〉1 + vk2〈b1u1 + b2u2, v

k
2〉1

= vk1
(
〈b1, v

k
1〉1 · u1 + 〈b2, v

k
1〉1 · u2

)

+vk2
(
〈b1, v

k
2〉1 · u1 + 〈b2, v

k
2〉1 · u2

)

= (vk1 , v
k
1)
(
〈b1, v

k
1〉1 〈b2, v

k
1〉1

〈b1, v
k
2〉1 〈b2, v

k
2〉1

)(
u1

u2

)
.

Hence

QP̄ (k)B(u1, u2) =

(
q1(P̄

(k)B(u1, u2))

q2(P̄ (k)B(u1, u2))

)

=
(
q1(v

k
1) q1(v

k
2)

q2(v
k
1) q2(v

k
2)

)(
〈b1, v

k
1〉1 〈b2, v

k
1〉1

〈b1, v
k
2〉1 〈b2, v

k
2〉1

)(
u1

u2

)
. (51)

Using the explicit form of b1, b2 and vk1 , v
k
2 we see that 〈b1, v

k
1〉1 = 〈b2, v

k
2〉1 =

bk 6= 0 and 〈b1, v
k
2〉1 = 〈b2, v

k
1〉1 = 0. We conclude

QP̄ (k)B(u1, u2) =
(
q1(v

k
1) q1(v

k
2)

q2(v
k
1) q2(v

k
2)

)(
bk 0
0 bk

)(
u1

u2

)
. (52)

Now we prove the main result of this section (cf. item p3) of Theorem 22).

Theorem 29 Consider the system (46) (see also (45)). For any sequence of
complex numbers {λ̃k} ⊂ {λ : Reλ < 0} such that

c1) |λn − λ̃n| < π/2 for all n;

c2)
∑
n

|λn−λ̃n|2

|bn|2
< π

2
(
∑
i |b

i|2)
−1

;

c3) 1
k
· |λ̃k−λk|

(−Re λ̃k)
→ ∞, k → ∞

there exist two bounded linear feedback controls Qi : M2 → C
2, i = 1, 2, such

that the system (46) with both controls, i.e. ẋ = (Ā + BQi)x, i = 1, 2, has
the same spectrum σ(Ā + BQ1) = σ(Ā + BQ2) = {λ̃k} and the corresponding
semigroup et(Ā+BQ1) is asymptotically stable while the semigroup et(Ā+BQ2) is
unstable.

Proof: The proof consists of two parts: stable and unstable.
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A. Stable part of Theorem 29

We will show that there exists Q, such that QP̄ (k)B = q̃kbk ·I for some q̃k ∈ C.
Using (52), we set

q1(v
k
1) = q2(v

k
2) = q̃k, q1(v

k
2) = q2(v

k
1) = 0. (53)

Using (52) and (53), we get from (50):

I +QR(Ā, λ)B =

(
1 +

q̃00b00

λ
+
∑

k

q̃kbk

λ− λk

)
· I. (54)

The characteristic equation is

1 +
q̃00b00

λ
+
∑

k

q̃kbk

λ− λk
= 0. (55)

Since the characteristic equation (55) coincides with (44), we can apply Corol-
lary 28 to get the existence of {q̃00, q̃1, q̃2, . . .} ⊂ ℓ2, such that the roots
of (55) are {λ̃k}. Since eigenvectors ({vki }) form an orthogonal basis and
{q̃00, q̃1, q̃2, . . .} ⊂ ℓ2, then the control Q defined by (53) is bounded.

Let us find the eigenvectors of A (see (39), (41) and (54)) to show that the

system is stable. In this case we can take cx = c1x =
(

1
0

)
and cx = c2x =

(
0
1

)
.

Using (47), we get Bc1x = b1 and Bc2x = b2. These together with the explicit
form of the resolventR(Ā, λ) (see Proposition 1) and (39) give two eigenvectors
of A :

ξk1 = − 1

λ̃k

((
1
0

)
; eλ̃kθ(1 + e−λ̃k) ·

(
1
0

))T

ξk2 = − 1

λ̃k

((
0
1

)
; eλ̃kθ(1 + e−λ̃k) ·

(
0
1

))T
.

(56)

Theorem 15 gives that the subspaces V (k) = Lin{ξk1 , ξ
k
2} form a Riesz basis

of their linear span. The explicit form (56) shows that 〈ξk1 , ξ
k
2 〉1 = 0, hence

the eigenvectors form a Riesz basis of their linear span. Finally, the condition
{λ̃k} ⊂ {λ : Reλ < 0} allows us to apply the general Theorem 20 to get the
stability of the system.
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B. Unstable part of Theorem 29.

Using (52), we set

q1(v
k
1) = q1(v

k
2) = q2(v

k
2) = q̃k, q2(v

k
1) = 0. (57)

Using (52) and (57), we get from (50):

I +QR(Ā, λ)B = I +

(
q̃00b00

λ
+
∑

k

q̃kbk

λ− λk

)
·D, D =

(
1 1
0 1

)
. (58)

The characteristic equation is again (55) so, as in the stable part of the The-
orem, we can apply Corollary 28 to get the existence of {q̃00, q̃1, q̃2, . . .} ⊂ ℓ2.
This implies that the corresponding operator Q (defined by (57)) is bounded.

Since cx = c1x =
(

1
0

)
is an eigenvector ofD (the eigenspace is one-dimensional),

we get from (39), (41) and (58) that x = ṽ = R(Ā, λ)b1 is an eigenvector of
A.

Let us find the rootvector w̃ of A : (Ā + BQ)w̃ = λw̃ + ṽ or equivalently
(Ā − λI)w̃ + BQw̃ = ṽ. We apply the resolvent R(Ā, λ) to get

w̃ +R(Ā, λ)BQw̃ = R(Ā, λ)ṽ = R2
λ(Ā, λ)b1. (59)

If we set d = Qw̃, then we obtain

w̃ = R2
λ(Ā, λ)b1 −R(Ā, λ)Bd. (60)

Replacing this into (59):

R2
λ(Ā, λ)b1−R(Ā, λ)Bd+R(Ā, λ)BQ (R2

λ(Ā, λ)b1−R(Ā, λ)Bd) = R2
λ(Ā, λ)b1.

We now apply the left inverse operator (R(Ā, λ)B)−1
left to obtain −d+QR2

λ(Ā, λ)b1−
QR(Ā, λ)Bd = 0 or equivalently (I +QR(Ā, λ)B)d = QR2

λ(Ā, λ)b1.

Using (58) and R(Ā, λ)|V̄ (k) = (λ− λk)
−1 · I, (see also (50)), we can write

[
I +

(
q̃00b00

λ
+
∑

k

q̃kbk

λ− λk

)
·D

]
d =

(
q̃00b00

λ2
+
∑

k

q̃kbk

(λ− λk)2

)
·
(

1

0

)
.(61)
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Since λ is a root of the characteristic equation (55), we deduce that

[
I +

(
q̃00b00

λ
+
∑

k

q̃kbk

λ− λk

)
·D

]
=
(

0 −1
0 0

)
.

Hence (61) gives

(
0 −1
0 0

)
d =




q̃00b00

λ2 +
∑
k

q̃kbk

(λ−λk)2

0


 .

Finally, we obtain

d =

(
p

γ

)
, p ∈ C, γ =

q̃00b00

λ2
+
∑

k

q̃kbk

(λ− λk)2
. (62)

We substitute this d into (60) and arrive to the formula for a rootvector
w̃ = w̃k, corresponding to eigenvalue λ̃k ∈ σ(A)

w̃k =
∑

i

1

(λ̃k − λi)2
P̄ (i)b1 −

1

λ̃k − λi
P̄ (i)B

(
pi
γi

)
, (63)

where γi is defined in (62) for λ = λ̃k. Let us take pi = (λ̃k − λi)
−1. Then (47)

and (63) give

w̃k =
∑

i

−γi

λ̃k − λi
P̄ (i)b2. (64)

The eigenvector ṽ = ṽk, corresponding to eigenvalue λ̃k ∈ σ(A) (see (39)) is
given by

ṽk =
∑

i

1

λ̃k − λi
P̄ (i)b1. (65)

Lemma 30 The norms of the eigen- and rootvectors satisfy

lim
|k|→∞

‖ṽk‖1

‖w̃k‖1

·
1

|λ̃k − λk|
= 1. (66)

Proof of the Lemma 30: First, we prove (see (65), (64)), that

lim
|k|→∞

‖ṽk‖1

‖P̄ (k)b1‖1 · |λ̃k − λk|−1
= 1; lim

|k|→∞

‖w̃k‖1

‖P̄ (k)b2‖1 · |λ̃k − λk|−2
= 1.(67)
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To prove the first estimate in (67) we use (65) and the orthogonality of the
projectors P̄ (k) in ‖ · ‖1-norm:

‖ṽk‖
2
1 =

‖P̄ (k)b1‖
2
1

|λ̃k − λk|2
+
∑

i6=k

‖P̄ (i)b1‖
2
1

|λ̃k − λi|2
. (68)

Property c1) (see the statement of Theorem) and the location of λk gives

|λ̃k−λi| > π/2, hence |λ̃k−λi|
−1 < 2/π. This implies

∑
i6=k

‖P̄ (i)b1‖2
1

|λ̃k−λi|2
< 2‖b1‖

2
1/π.

The last estimate and (68) give

1 ≤
‖ṽk‖

2
1

‖P̄ (k)b1‖2
1 · |λ̃k − λk|−2

≤ 1 +
|λ̃k − λk|

2

‖P̄ (k)b1‖2
1

·
2‖b1‖

2
1

π
. (69)

The property c2) (see the statement of Theorem) implies |λ̃k−λk|
2

‖P̄ (k)b1‖2
1
→ 0 as

k → ∞, hence from (69) to get the first estimate in (67).

The second estimate in (67) is proved in the same manner using |γk| ≈
|λ̃k − λk|

−1, which follows from the fact that λ̃k is a root of the character-
istic equation (55).

Using the explicit form of b1, b2 and vk1 , v
k
2 we see that ‖P̄ (k)b1‖ = ‖P̄ (k)b2‖.

Hence (67) completes the proof of Lemma 30.

As we have shown, one can choose Q in such a way that for each λ̃k ∈ σ(A),
there exist an eigenvector ṽk and a rootvector w̃k such that (A− λ̃kI)w̃k = ṽk.

Consider Lk = Lin {ṽk, w̃k} which is an invariant subspace for A. Hence

etA|Lk
= etA|Lk = eλ̃ktet(A−λ̃kI)|Lk = eλ̃kt

∑

i

[(A− λ̃kI)|Lk
· t ]i/i!.

Here (A− λ̃kI)|Lk
is 2 × 2-matrix. We also used etA = eλ̃ktet(A−λ̃kI).

Since (A− λ̃kI)w̃k = ṽk, we get [(A− λ̃kI)|Lk
]i = 0 for all i > 1. Hence

etAw̃k = etA|Lk
w̃k = eλ̃kt(w̃k + t · ṽk). (70)

Since Lk = Vk, where {Vk} form a Riesz basis of subspaces on M2 Theorem 16
(see Theorem 6 [24]), there then exists a bounded operator R̃ : M2 →M2 with
bounded inverse, such that the subspaces {Lk} are orthogonal to each other
in the norm ‖R̃ · ‖.

Let us show that there exist x ∈M2 and {tk}
∞
1 , tk → ∞, such that ‖etkAx‖ →

∞, as k → ∞.
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Consider x =
∑
k αkṽk + βkw̃k ∈M2, where αk, βk ∈ C will be chosen later.

Using (70), we consider

‖R̃etkAx‖2 =
∑

k

e2tRe λ̃k‖(αk + tβk)R̃ṽk + βkR̃w̃k‖
2

≥ e2tRe λ̃k0‖(αk0 + tβk0)R̃ṽk0 + βk0R̃w̃k0‖
2.

In the sequel, k = k0. It gives

‖R̃etAx‖ ≥ etRe λ̃k‖(αk + tβk)R̃ṽk + βkR̃w̃k‖

≥ etRe λ̃k

[
|αk + tβk|‖R̃ṽk‖ − |βk|‖R̃w̃k‖

]
.

(71)

To choose αk and βk we first notice that x ∈M2 iff ‖R̃x‖ ≤ ∞, that is possible
if, for example,

∑
i |αi|

2‖R̃ṽi‖
2 + |βi|

2‖R̃w̃i‖
2 ≤ ∞. Taking this into account,

we set αi = (i · ‖R̃ṽi‖)
−1 and βi = ξi · ‖R̃w̃i‖

−1, where
∑
i ξ

2
i ≤ ∞, ξi ≥ 0.

Then ‖R̃x‖2 =
∑
i i

−2 + ξ2
i ≤ ∞.

Now we set tk = (−Re λ̃k)
−1 and get from (71)

‖R̃etkAx‖ ≥ e−1

[
1

k
+ (−Re λ̃k)

−1ξk
‖R̃ṽk‖

‖R̃w̃k‖
− ξk

]
.

Since 1
k

+ ξk is bounded, we get a sufficient condition for ‖etkAx‖ → ∞ :

ξk ·
1

(−Re λ̃k)
·
‖R̃ṽk‖

‖R̃w̃k‖
→ ∞. (72)

Due to the equivalence of the norms ‖ · ‖ and ‖R̃ · ‖, we get the condition
similar to (72) with the initial norm ‖ · ‖ in M2.

Let us take, for example, ξk = 1/k. Then Lemma 30 gives a sufficient condi-
tion on the location of the spectrum {λ̃k} = σ(A) for eAt to be an unstable
semigroup (see c3) in the statement of the theorem):

1

k
·
|λ̃k − λk|

(−Re λ̃k)
→ ∞, k → ∞. (73)

The proof of Theorem 29 is complete. 2
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4 Conclusion

It is well known that for the systems of neutral type the analysis of stabil-
ity conditions is more complicated than for a system with simple delays. We
have shown that the condition of asymptotic stability may first be analyzed
by means of the principal neutral term (the matrix A−1). If the part of the
spectrum of this matrix, which lies on the unit circle is simple (distinct eigen-
values), or if there is a Jordan chain, then the condition of asymptotic stability
can be easily characterized. In the case of multiple eigenvalues without Jor-
dan chain, the analysis of non-exponential asymptotic stability is still an open
problem in the sense that the system may be stable or unstable according to
other additional terms in the system.
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