Evolutionary Visual Exploration: Experimental Analysis of Algorithm Behaviour

Waldo Gonzalo Cancino Ticona 1 Nadia Boukhelifa 1 Anastasia Bezerianos 2 Evelyne Lutton 1
1 AVIZ - Analysis and Visualization
Inria Saclay - Ile de France
2 IN-SITU - Situated interaction
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Recent publications in the domains of interactive evolution- ary computation and data visualisation consider an emerg- ing topic coined Evolutionary Visual Exploration (EVE). EVE systems combine visual analytics with stochastic opti- misation to aid the exploration of complex, multidimensional datasets. In this work we present an experimental analysis of the behaviour of an EVE system that is dedicated to the vi- sualisation of multidimensional datasets, which are generally characterised by a large number of possible views or projec- tions. EvoGraphDice is an interactive evolutionary system that progressively evolves a small set of new dimensions, to provide new viewpoints on the dataset, in the form of lin- ear and non-linear combinations of the original dimensions. The criteria for evolving new dimensions are not known a priori and are partially specified by the user via an interac- tive interface: (i) The user selects views with meaningful or interesting visual patterns and provides a satisfaction score. (ii) The system calibrates a fitness function to take into ac- count the user input, and then calculates new views, with the help of an evolutionary engine. In previous work (an ob- servational study), we showed that EvoGraphDice was able to facilitate "exploration" tasks, helping users to discover new interesting views and relationships in their data. Here, we focus on the system's "convergence" behaviour, conduct- ing an experiment with users who have a precise task to perform. The experimental task is set up as a geometrical game, and collected data show that EvoGraphDice is able to "learn" user preferences in a way that helps users fulfill their task (i.e. converge to desired solutions).
Document type :
Conference papers
Liste complète des métadonnées

Cited literature [15 references]  Display  Hide  Download

https://hal.inria.fr/hal-00818641
Contributor : Nadia Boukhelifa <>
Submitted on : Sunday, April 28, 2013 - 3:38:04 PM
Last modification on : Thursday, December 20, 2018 - 1:20:54 AM
Document(s) archivé(s) le : Tuesday, April 4, 2017 - 1:33:05 AM

File

vizgec2013.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Waldo Gonzalo Cancino Ticona, Nadia Boukhelifa, Anastasia Bezerianos, Evelyne Lutton. Evolutionary Visual Exploration: Experimental Analysis of Algorithm Behaviour. GECCO workshop on Genetic and Evolutionary Computation (VizGEC 2013), Jul 2013, Amsterdam, Netherlands. pp.1373-1380, ⟨10.1145/2464576.2482717⟩. ⟨hal-00818641⟩

Share

Metrics

Record views

953

Files downloads

1136