Nonlinear Controller for Doubly Fed Induction Motor with Bi-Directional AC/DC/AC Converter
Abderrahim Elfadili, Fouad Giri, Abdelmounime El Magri, Luc Dugard

To cite this version:
Abderrahim Elfadili, Fouad Giri, Abdelmounime El Magri, Luc Dugard. Nonlinear Controller for Doubly Fed Induction Motor with Bi-Directional AC/DC/AC Converter. 11th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP 2013), Jul 2013, Caen, France. pp.n/c, 2013. <hal-00818419>

HAL Id: hal-00818419
https://hal.archives-ouvertes.fr/hal-00818419
Submitted on 26 Apr 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Backstepping controller for Doubly Fed Induction Motor with bi-directional AC/DC/AC converter

Abderrahim El Fadili1,∗; Fouad Giri1; Abdelmounime El Magri1, Luc Dugard2.

1 University of Caen Basse-Normandie, CNRS UMR 6072, Caen, France.
2 University of Grenoble, GIPSA Lab, UMR CNRS, Grenoble-INP, France.

∗ Corresponding authors: elfadili_abderrahim@yahoo.fr

Abstract: This paper deals with the problem of controlling doubly-fed induction machines (DFIM). A nonlinear model of the whole controlled system, including the DFIM and the associated AC/DC rectifier and DC/AC inverter, is developed within the Park coordinates. A multi-loop nonlinear controller is developed, using the backstepping design technique. The controller is formally shown to meet its objectives i.e. accurate motor speed-reference tracking, tight regulation of the DC Link voltage, power factor correction. The theoretical results are validated by simulation.

Keywords: Doubly-fed induction machines (DFIM); AC/DC rectifier; DC/AC inverter; Backstepping design technique; Speed regulation; Power factor correction.

1. INTRODUCTION

Nowadays, the Doubly Fed Induction Motor (DFIM) drives are becoming popular in industry applications due to its high power handling capability without increasing the power rating of the converters. It presents good performances stability either in very low speed and in high speed operation Khojet El Khil et al. [2004].

Despite that several studies focused in the study of wind energy conversion systems using doubly fed induction generator (DFIG) (Boukhezzar and Siguerdidjane [2009], Abo-Khalil [2012], Poitiers et al. [2009], Song et al. [2012]), many others propose the use of DFIM in motor application (Metwally et al. [2002], Salloum et al. [2007], Bonnet et al. [2007], Peresadah et al. [2004], Vidal et al. [2008], Xiying and Jian [2010]), as an interesting alternative, for high power applications such as railway traction, marine propulsion, metallurgy, rolling mills or hydro-electric stations and in very low speed applications like coiler-uncoiler.

The DFIM drive is a wound rotor AC induction motor can be controlled from the stator or rotor by various possible combinations. Several papers presented various control strategies of DFIM. In Hopfensperger et al. [2000], author’s studies a field oriented control without position sensor of DFIM in motor application (Metwally et al. [2002], Salloum et al. [2007], Bonnet et al. [2007], Peresadah et al. [2004], Vidal et al. [2008], Xiying and Jian [2010]), as an interesting alternative, for high power applications such as railway traction, marine propulsion, metallurgy, rolling mills or hydro-electric stations and in very low speed applications like coiler-uncoiler.

The controlled system is illustrated by Fig. 1. It includes a combination ‘doubly fed induction motor-inverter ’, on one hand, and a tri-phase AC/DC rectifier, on the other
hand. The rectifier is a AC/DC converter operating, like the DC/AC inverter, according to the known Pulse Wide Modulation (PWM) principle.

![Fig. 1. The AC/DC/AC converter-doubly fed induction motor association](image)

2.1 Doubly fed induction motor model

Using the flux \(\phi_{sd}, \phi_{sq} \) and current \(i_{rd}, i_{rq} \) as state variables and under assumption of linear magnetic circuit, the equivalent two-phase model of the doubly fed induction motor, represented in a rotating reference frame \((d, q)\) linked to the stator voltage is:

\[
\dot{\omega}_m = \frac{M_m}{J_s} (\phi_{sq}i_{rd} - \phi_{sd}i_{rq}) - \frac{T_L}{J} - \frac{F}{J} \omega_m
\]

(1)

\[
\dot{\phi}_{sd} = -\frac{1}{\tau_s} \phi_{sd} + \omega_s \phi_{sq} + \frac{M_{sr}}{\tau_s} i_{rd} + V_s
\]

(2)

\[
\dot{\phi}_{sq} = -\frac{1}{\tau_s} \phi_{sq} - \omega_s \phi_{sd} + \frac{M_{sr}}{\tau_s} i_{rq}
\]

(3)

\[
i_{rd} = -\gamma_1 i_{rd} + (\omega_s - p\omega_m) i_{rq} + \frac{\tau_2}{\tau_s} \phi_{sd}
\]

\[-p\omega_m \gamma_2 \phi_{sq} - \gamma_3 V_s + \gamma_3 v_{rd}
\]

(4)

\[
i_{rq} = -\gamma_1 i_{rq} - (\omega_s - p\omega_m) i_{rd} + \frac{\tau_2}{\tau_s} \phi_{sq}
\]

\[+p\omega_m \gamma_2 \phi_{sd} + \gamma_3 v_{rq}
\]

(5)

where \(i_{rd}, i_{rq}, \phi_{sd}, \phi_{sq}, \omega_s \) and \(\omega_m \) are the components of rotor currents, stator fluxes, angular speed and Park transformation speed, respectively. Wherever they come in, the subscripts \(s \) and \(r \) refer to the stator and rotor, respectively. That is, \(R_s \) and \(R_r \) are the stator and rotor resistances; \(L_s \) and \(L_r \) are the self-inductances; \(M_{sr} \) denotes the mutual inductance between the stator and rotor windings; \(p \) designates the number of pole-pair, \(J \) is the inertia of the motor-load set, \(F \) is the friction coefficient and \(T_L \) is the load torque.

The remaining parameters are defined as follows:

\[
\gamma_1 = \frac{R_s L_r^2 + R_r M_{sr}^2}{\sigma L_s L_r^2}, \quad \sigma = 1 - \frac{M_{sr}^2}{L_s L_r}, \quad \tau_s = \frac{L_s}{R_s}, \quad \tau_r = \frac{L_r}{R_r}
\]

\[
\gamma_2 = \frac{M_{sr}}{\sigma L_s L_r}, \quad \gamma_3 = \frac{1}{\sigma L_r}
\]

when the stator voltage is linked to the \(d \)-axis of the frame we have \(v_{sd} = V_s \) and \(v_{sq} = 0 \), the stator and networks currents will be related directly to the active and reactive power. An adapted control of these currents will thus permit to control the power exchanged between the motor and the grid.

2.2 Modeling of the combination DFIM DC/AC inverter

The inverter is featured by the fact that the rotor \(d \)- and \(q \)-voltage can be controlled independently. To this end, these voltages are expressed in function of the corresponding control action see e.g. Michael et al. [1998]:

\[
v_{rd} = v_{dc} u_1 \quad v_{rq} = v_{dc} u_2 \quad i_{in} = u_1 i_{rd} + u_2 i_{rq}
\]

(6)

where \(u_1, u_2 \) represent the average \(d \)- and \(q \)-axis (Park’s transformation) of the triphase duty ratio system \((s_1, s_2, s_3)\), \(i_{in} \) designates the input current inverter and \(v_{dc} \) the voltage in capacitor \(C \).

With

\[
s_i = \begin{cases}
1 & \text{if } S_i \text{ On and } S_i' \text{ Off} \\
0 & \text{if } S_i \text{ Off and } S_i' \text{ On}
\end{cases} i = 1, 2, 3
\]

(7)

Now, let us introduce the state variables \(\phi_{sd} = x_2, \phi_{sq} = x_3, i_{rd} = x_4, i_{rq} = x_5, v_{dc} = x_6, v_{rd} = u_1 x_6, v_{rq} = u_2 x_6 \), where \((\cdot) \) denote the average value on the modulation (MLI) period of \((\cdot)\). Then, substituting (6) in (1-5) yields the following state space representation of the association ‘DFIM-inverter’:

\[
\dot{x}_1 = -x_1 + p \frac{M_{sr}}{J_s} (x_3 x_4 - x_2 x_5) - \frac{T_L}{J} - \frac{F}{J} \omega_m
\]

(8)

\[
\dot{x}_2 = -\frac{1}{\tau_s} x_2 + \omega_s x_3 + \frac{M_{sr}}{\tau_s} x_4 + V_s
\]

(9)

\[
\dot{x}_3 = -\frac{1}{\tau_3} x_3 - \omega_s x_2 + \frac{M_{sr}}{\tau_3} x_5
\]

(10)

\[
\dot{x}_4 = -\gamma_1 x_4 + (\omega_s - p\omega_m) x_5 + \frac{\gamma_2}{\tau_s} x_2
\]

\[-p\gamma_2 x_1 x_3 - \gamma_3 V_s + \gamma_3 v_{rd}
\]

(11)

\[
\dot{x}_5 = -\gamma_1 x_5 - (\omega_s - p\omega_m) x_4 + \frac{\gamma_2}{\tau_s} x_3
\]

\[+p\gamma_2 x_1 x_2 + \gamma_3 v_{rq} u_2
\]

(12)

2.3 AC/DC rectifier modeling

The rectifier circuit (AC/DC) is presented in Fig. 2. The power supply net is connected to a converter which consists of a three phase converter with 6 semiconductors insulated gate bipolar transistors (IGBTs) with anti-parallel diodes for bidirectional current flow mode displayed in three legs 1, 2 and 3. The 6 semiconductors are considered as ideal switches. Only one switch on the same leg can be conducting at the same time.

Applying Kirchhoff’s laws, this subsystem is described by the following set of differential equations:

\[
L_o \frac{di_{rdc}[123]}{dt} = [v_{s1}[123] - v_{dc}[k][123]
\]

(13)

\[
\frac{dv_{dc}}{dt} = \frac{1}{C} (i_{rdc} - i_{in})
\]

(14)

\[i_{in} = [k][T][i_{re}[123]
\]

(15)

where \([i_{re}[123] = [i_{re1} i_{re2} i_{re3}]^T \) is the input currents in the electric grid (rectifier side), \([v_{s1}[123] = [v_{s1} v_{s2} v_{s3}]^T \) is the sinusoidal triphase net voltages (with known constant frequency \(\omega_s \)), \(i_{rdc} \) is the output current rectifier and \(k_i \) is the switch position function taking values in the discrete set \(\{0, 1\} \). Specifically:

\[
k_i = \begin{cases}
1 & \text{if } K_i \text{ On and } K_i' \text{ Off} \\
0 & \text{if } K_i \text{ Off and } K_i' \text{ On}
\end{cases} i = 1, 2, 3
\]

(16)
To simplify the triphase representation (13 -14) for the synthesis of control laws, the Park transformation, where the d-axis of the frame is linked to the stator voltage, is invoked again.

\[
\begin{align*}
\dot{d}_{\text{req}} &= \omega_s i_{\text{req}} + \frac{V_s}{L_o} - \frac{v_{dc} u_3}{L_o} \quad (17) \\
\dot{i}_{\text{req}} &= -\omega_s i_{\text{req}} - \frac{v_{dc} u_4}{L_o} \quad (18) \\
\dot{v}_{dc} &= \frac{1}{C}(i_{ot} - i_{in}) \quad (19)
\end{align*}
\]

where \((i_{red}, i_{req})\) denotes the rectifier side network current in \(dq\)-coordinates and \(u_3, u_4\) represent the average d- and q-axis components of the triphase duty ratio system \((k_1, k_2, k_3)\).

Let us introduce the state variables \(x_7 = i_{\text{red}}, x_8 = i_{\text{req}}\), and replacing \(i_{ot}\) by \(i_{ot} = u_3 x_7 + u_4 x_8\). The considered rectifier control design will be based upon the following equations:

\[
\begin{align*}
\dot{x}_6 &= \frac{1}{C}(u_3 x_7 + u_4 x_8 - i_{in}) \quad (20) \\
\dot{x}_7 &= \omega_s x_8 + \frac{V_s}{L_o} - \frac{x_6 u_3}{L_o} \quad (21) \\
\dot{x}_8 &= -\omega_s x_7 - \frac{x_6 u_4}{L_o} \quad (22)
\end{align*}
\]

The state space equations obtained up to now are put together to get a state-space model of the whole system including the AC/DC/AC converters combined with the doubly-fed induction motor (DFIM). For convenience, the whole model is rewritten here for future reference:

\[
\begin{align*}
\dot{x}_1 &= -\frac{F}{J} x_1 + p \frac{M_{sr}}{J L_s} (x_3 x_4 - x_2 x_5) - \frac{T_l}{J} \quad (23) \\
\dot{x}_2 &= -\frac{1}{T_s} x_2 + \omega_s x_3 + M_{sr} x_4 + V_s \quad (24) \\
\dot{x}_3 &= -\frac{1}{T_s} x_3 - \omega_s x_2 + M_{sr} x_5 \quad (25) \\
\dot{x}_4 &= -\gamma_1 x_4 + (\omega_s - \omega g x_1) x_5 + \frac{\gamma_2}{T_s} x_2 - p \gamma_2 x_1 x_3 \\
&- \gamma_2 V_s + \gamma_3 x_6 u_1 \quad (26) \\
\dot{x}_5 &= -\gamma_1 x_5 - (\omega_s - \omega g x_1) x_4 + \frac{\gamma_2}{T_s} x_3 + p \gamma_2 x_1 x_2 + \gamma_3 x_6 u_2 \quad (27) \\
\dot{x}_6 &= \frac{1}{C}(x_7 u_3 + x_8 u_4 - i_{in}) \quad (28) \\
\dot{x}_7 &= \omega_s x_8 + \frac{V_s}{L_o} - \frac{x_6 u_3}{L_o} \quad (29) \\
\dot{x}_8 &= -\omega_s x_7 - \frac{x_6 u_4}{L_o} \quad (30)
\end{align*}
\]

3. CONTROLLER DESIGN

3.1 Control objectives

There are two operational control objectives:

(i) **Speed regulation**: the machine speed \(\omega_m\) must track, as closely as possible, a given reference signal \(x_1\), despite the load torque \(T_l\) uncertainty.

(ii) **PFC requirement**: the whole system input current \((i_g1, i_g2, i_g3)\) must be sinusoidal with the same frequency as the supplied power grid, the reactive power absorbed by DFIM well be all time null.

As there are four control inputs at hand, namely \(u_1, u_2, u_3\) and \(u_4\), two more control objectives are added:

(iii) **Controlling the continuous voltage** \(v_{dc}\): making it track a given reference signal \(v_{dc}^*\). This generally is set to a constant value equal to the nominal voltage entering the converter and machine.

(iv) **Regulating the stator flux norm** \(\Phi_s = \sqrt{x_2^2 + x_3^2}\) to a reference value \(\Phi_s^*\), preferably equal to its nominal value.

3.2 Motor speed and stator flux norm regulation

The problem of controlling the rotor speed and stator flux norm is presently addressed for the doubly fed induction motor described by (23-27). The speed reference \(x_1^* = \omega_m^*\) is any bounded and derivable function of time and its two first derivatives are available and bounded. These properties can always be achieved filtering the reference through second-order linear filters. The stator flux reference \(\Phi_s^*\) is fixed to its nominal value. The controller design will now be performed in two steps using the tuning-functions adaptive backstepping technique Krstic et al. [1995].

First, introduce the tracking errors:

\[
\begin{align*}
z_1 &= x_1 - x_1 \quad (31) \\
z_2 &= \Phi_s^2 - (x_2^2 + x_3^2) \quad (32)
\end{align*}
\]

Step 1. It follows from (23) and (24-25) that the errors \(z_1\) and \(z_2\) undergo the differential equations:

\[
\begin{align*}
\dot{z}_1 &= -\frac{F}{J} z_1 + p \frac{M_{sr}}{J L_s} (z_3 z_4 - z_2 z_5) \\
\dot{z}_2 &= -\frac{1}{T_s} z_2 + \omega_s z_3 + M_{sr} z_4 + V_s
\end{align*}
\]
\[
\dot{z}_1 = \dot{x}_1 + \frac{F}{J} x_1 - p \frac{M_{sr}}{JL_s} (x_3 x_4 - x_2 x_5) + \frac{T_L}{J} \tag{33}
\]
\[
\dot{z}_2 = 2\Phi_s^* \dot{\Phi}_s^* - 2(\dot{x}_2 x_2 + \dot{x}_3 x_3) - 2x_2 V_s = 2\Phi_s^* \dot{\Phi}_s^* + \frac{2M_{sr}}{\tau_s} (x_2^2 + x_3^2) - 2x_2 V_s \tag{34}
\]
In (33) and (34), the quantities \(p \frac{M_{sr}}{JL_s}(x_3 x_4 - x_2 x_5)\) and \(2\frac{M_{sr}}{\tau_s}(x_2 x_4 + x_3 x_5)\) stand up as virtual control signals. If these were the actual control signals, the error system (33)-(34) could be globally asymptotically stabilized letting \(p \frac{M_{sr}}{JL_s}(x_3 x_4 - x_2 x_5) = \mu_2\) and \(2\frac{M_{sr}}{\tau_s}(x_2 x_4 + x_3 x_5) = \nu_1\) with:
\[
\mu_1 \overset{\text{def}}{=} c_1 z_1 + \dot{x}_1^* + \frac{F}{J} x_1 + \frac{T_L}{J} \tag{35}
\]
\[
\nu_1 \overset{\text{def}}{=} c_2 z_2 + 2\Phi_s^* \dot{\Phi}_s^* + \frac{2}{\tau_s} (x_2^2 + x_3^2) - 2x_2 V_s \tag{36}
\]
On the other hand, the load torque \(T_L\) is unknown suggests the certainty equivalence from equations (35).
\[
\mu_1 \overset{\text{def}}{=} c_1 z_1 + \dot{x}_1^* + \frac{F}{J} x_1 + \frac{T_L}{J} \tag{37}
\]
where \(c_1\) and \(c_2\) are any positive design parameters and \(\hat{T}_L\) is the estimate of \(T_L\).

As the quantities \(p \frac{M_{sr}}{JL_s}(x_3 x_4 - x_2 x_5) = \mu_2\) and \(2\frac{M_{sr}}{\tau_s}(x_2 x_4 + x_3 x_5) = \nu_1\) are not the actual control signals, they cannot be let equal to \(\mu_1\) and \(\nu_1\), respectively. Nevertheless, we retain the expressions of \(\mu_1\) and \(\nu_1\) as first stabilizing functions and introduce the new errors:
\[
z_3 = \mu_1 - p \frac{M_{sr}}{JL_s}(x_3 x_4 - x_2 x_5) \tag{38}
\]
\[
z_4 = \nu_1 - 2\frac{M_{sr}}{\tau_s}(x_2 x_4 + x_3 x_5) \tag{39}
\]
Then, using the notations (37) to (39), the dynamics of the errors \(z_1\) and \(z_2\), initially described by (33) - (34), can be rewritten as follows:
\[
\dot{z}_1 = -c_1 z_1 + z_3 + \frac{\hat{T}_L}{J} \tag{40}
\]
\[
\dot{z}_2 = -c_2 z_2 + z_4 \tag{41}
\]
where
\[
\hat{T}_L = T_L - \hat{T}_L \tag{42}
\]

Step 2. The second design step consists in choosing the actual control signals, \(u_1\) and \(u_2\), so that all errors \((z_1, z_2, z_3, z_4)\) converge to zero. To this end, we should make the following errors depend on the actual control signals \((u_1, u_2)\).

We start focusing on \(z_3\); it follows from (38) that:
\[
\dot{z}_3 = \mu_2 - p \frac{M_{sr}}{JL_s}(\dot{x}_3 x_4 + \dot{x}_4 x_3 - \dot{x}_2 x_5 - \dot{x}_5 x_2) \tag{43}
\]
Assume that the load torque \(T_L\) is constant or slowly time-varying and using (23-27), (42) and (37), one gets from (43):
\[
\dot{z}_3 = \mu_2 + (c_1 - \frac{F}{J} T_L - \frac{\hat{T}_L}{J}) - p \frac{M_{sr}}{JL_s} \gamma_3 x_6(x_3 u_1 - x_2 u_2) \tag{44}
\]
with
\[
\mu_2 = -c_2^2 z_1 + c_1 z_3 + \dot{z}_1^* - \left(\frac{F}{J}\right)^2 x_1
\]
\[
+ p \frac{M_{sr}}{JL_s} \left(\frac{F}{J} + \gamma_1 + \frac{1}{\tau_s}\right)(x_3 x_4 - x_2 x_5) - \frac{F \hat{T}_L}{J}
\]
\[
+ p \frac{M_{sr}}{JL_s} [p x_1(x_3 x_5 + x_2 x_4)p \gamma_2 z_1 \Phi_s^* + (\gamma_2 x_3 + x_5) V_s] \tag{45}
\]
Similarly, it follows from (39) that, \(z_4\) undergoes the following differential equation:
\[
\dot{z}_4 = \nu_2 - 2\frac{M_{sr}}{\tau_s} \gamma_3 x_6(x_2 u_1 + x_3 u_2) \tag{46}
\]
Using (23-27) and (36), it follows from (46):
\[
\dot{z}_4 = \nu_2 - 2\frac{M_{sr}}{\tau_s} \gamma_3 x_6(x_2 u_1 + x_3 u_2) \tag{47}
\]
with
\[
\nu_2 = c_2 (-c_2^2 z_2 + z_4) + 2(\Phi_s^*)^2 + 2\Phi_s^* \dot{\Phi}_s^* + 2M_{sr}\frac{3}{\tau_s} \gamma_1 (x_2 x_4 + x_3 x_5) + 4\frac{1}{\tau_s} (-\frac{1}{\tau_s} \Phi_s^* + V_s x_2 - 2V_s(-\frac{1}{\tau_s} x_2 + \omega_s x_3 + M_{sr} x_4 + V_s) - 2\frac{M_{sr}}{\tau_s} x_2)^2(x_3^2 + x_5^2)
\]
\[-2\frac{M_{sr}}{\tau_s} \gamma_2 \Phi_s^* + p x_1(x_3 x_4 - x_2 x_5) + x_4 V_s - \gamma_2 x_2 V_s \tag{48}
\]
To analyze the error system, composed of equations (40-41), (44) and (47), let us consider the following augmented Lyapunov function candidate:
\[
V = \frac{1}{2} z_1^2 + \frac{1}{2} z_2^2 + \frac{1}{2} z_3^2 + \frac{1}{2} z_4^2 + \frac{1}{2} \hat{T}_L^2 \tag{49}
\]
Its time-derivative along the trajectory of the state vector \((z_1, z_2, z_3, z_4)\) is:
\[
\dot{V} = \dot{z}_1 z_1 + \dot{z}_2 z_2 + \dot{z}_3 z_3 + \dot{z}_4 z_4 + \frac{\hat{T}_L \hat{T}_L}{J} \tag{50}
\]
Using (40-41), (44) and (47), equation (50) implies:
\[
\dot{V} = z_1(-c_1 z_1 + z_3 + \frac{\hat{T}_L}{J}) + z_2(-c_2 z_2 + z_4)
\]
\[+ z_3(\mu_2 + (c_1 - \frac{F}{J} T_L - \frac{\hat{T}_L}{J}) - p \frac{M_{sr}}{JL_s} \gamma_3 x_6(x_3 u_1 - x_2 u_2))
\]
\[+ z_4(\nu_2 - 2\frac{M_{sr}}{\tau_s} \gamma_3 x_6(x_2 u_1 + x_3 u_2)) + \frac{\hat{T}_L \hat{T}_L}{J} \tag{51}
\]
adding \(c_3 z_3^2 - c_3 z_3^2 + c_4 z_4^2 - c_4 z_4^2\) to the right side of (51) and rearranging terms, yields:
\[
\dot{V} = -c_1 z_1^2 - c_2 z_2^2 - c_3^2 - c_4 z_4^2
\]
\[+ z_3 \left[\mu_2 + c_1 z_3 + z_1 - \frac{\hat{T}_L}{J} - p \frac{M_{sr}}{JL_s} \gamma_3 x_6(x_3 u_1 - x_2 u_2)\right]
\]
\[+ z_4 \left[\nu_2 + c_4 z_4 + z_2 - 2\frac{M_{sr}}{\tau_s} \gamma_3 x_6(x_2 u_1 + x_3 u_2)\right]
\]
\[+ \left(c_1 - \frac{F}{J}\right) z_3 + z_1 + \hat{T}_L \tag{52}
\]
suggest the following parameter adaptation law:

\[\dot{T}_L = -(c_1 - F)z_1 - z_1 \]

(53)

from (42) and (53), the expression of \(\hat{T}_L \) can be calculated with the following equation:

\[\hat{T}_L = (c_1 - F)z_3 + z_1 \]

(54)

Substituting the parameter adaptation law (53) to \(\hat{T}_L \) in the right side of (52) yields:

\[
\dot{V} = -c_1 z_1^2 + c_2 z_2^2 - c_3 z_3^2 - c_4 z_4^2 + z_3 \left[\mu_2 + (c_3 + \frac{1}{J}(c_1 - F))z_3 + (1 + \frac{1}{J})z_1 \right] \\
- z_3 \left[\frac{M_{sr}}{\tau_s} \gamma_3 x_6(x_3 u_1 - x_2 u_2) \right] \\
+ z_4 \left[\nu_2 + c_4 z_4 + z_2 \right.
\]

(55)

where \(c_3 \) and \(c_4 \) are new positive real design parameters. Equation (55) suggests that the control signals \(u_1, u_2 \) must be chosen so that the two quantities between curly brackets (on the right side of (55)) are set to zero. Letting these quantities equal to zero and solving the resulting second-order linear equation system with respect to \((u_1, u_2) \), gives the following control law:

\[
\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \Lambda^{-1} \begin{bmatrix} \mu_2 + (c_3 + \frac{1}{J}(c_1 - F))z_3 + (1 + \frac{1}{J})z_1 \\ \nu_2 + z_2 + c_4 z_4 \end{bmatrix}
\]

(56)

with:

\[
\Lambda = \begin{bmatrix} \lambda_0 & \lambda_1 \\ \lambda_2 & \lambda_3 \end{bmatrix} ; \quad \lambda_0 = p \frac{M_{sr}}{\tau_s} \gamma_3 x_6 x_3, \\
\lambda_1 = -p \frac{M_{sr}}{\tau_s} \gamma_3 x_6 x_2, \\
\lambda_2 = 2 \frac{M_{sr}}{\tau_s} \gamma_3 x_6 x_2, \\
\lambda_3 = 2 \frac{M_{sr}}{\tau_s} \gamma_3 x_6 x_3
\]

(57)

It worth’s noting that the matrix \(\Lambda \) is nonsingular. Indeed, it is easily checked that its determinant is \(D = \lambda_0 \lambda_3 - \lambda_2 \lambda_3 = 2 p \frac{M_{sr}^2}{\tau_s^2} \gamma_3^2 \frac{1}{2} (x_2^2 + x_3^2) \) and \(\Phi_s = \sqrt{x_2^2 + x_3^2} \) never vanish in practice because of the machine nonzero remnant flux.

Substituting the control law (56) to \((u_1, u_2) \) on the right side of (55) yields:

\[
\dot{V} = -c_1 z_1^2 - c_2 z_2^2 - c_3 z_3^2 - c_4 z_4^2 + z_3 \left[\mu_2 + (c_3 + \frac{1}{J}(c_1 - F))z_3 + (1 + \frac{1}{J})z_1 \right] \\
- z_3 \left[\frac{M_{sr}}{\tau_s} \gamma_3 x_6(x_3 u_1 - x_2 u_2) \right] \\
+ z_4 \left[\nu_2 + c_4 z_4 + z_2 \right.
\]

(58)

As the right side of (58) is a negative definite function of the state vector \((z_1, z_2, z_3, z_4) \), the closed-loop system is globally asymptotically stable Khalil [2003]. The result thus established is more precisely formulated in the following proposition:

Proposition 1. (Speed regulation). Consider the closed-loop system composed of the doubly fed induction motor-DC/AC inverter, described by model (23-27), the nonlinear controller defined by the control law (56) and the parameter update law (54). Then, one has the following properties:

1) The closed-loop error system undergoes, in the \((z_1, z_2, z_3, z_4) \) coordinates, the following equations:

\[
\begin{align*}
\dot{z}_1 &= -c_1 z_1 + z_3 + \frac{\hat{T}_L}{J} \\
\dot{z}_2 &= -c_2 z_2 + z_4 \\
\dot{z}_3 &= -c_3 z_3 + z_1 + (c_1 - F) \frac{\hat{T}_L}{J} \\
\dot{z}_4 &= -c_4 z_4 - z_2
\end{align*}
\]

(59)

(60)

(61)

(62)

2) The above linear system is globally asymptotically stable with respect to the Lyapunov function \(V_5 = \frac{1}{2} z_1^2 + \frac{1}{2} z_2^2 + \frac{1}{2} z_3^2 + \frac{1}{2} z_4^2 \). Consequently, the errors \((z_1, z_2, z_3, z_4) \) vanish exponentially fast, whatever the initial conditions.

Proof. Equations (59-60) are immediately obtained from (40-41). Equation (61) is obtained substituting the control law (56) and the parameter update law (54) to \((u_1, u_2) \) on the right side of (44). Equation (62) is obtained substituting the control law (56) to \((u_1, u_2) \) on the right side of (47). This proves Part 1. On the other hand, it is readily seen from (49) and (53) that \(V = \frac{1}{2} z_1^2 + \frac{1}{2} z_2^2 + \frac{1}{2} z_3^2 + \frac{1}{2} z_4^2 + \frac{1}{2} \frac{\hat{T}_L^2}{J} \) is a Lyapunov function of the error system (59-62). As \(V \) is a negative definite function of the state vector \((z_1, z_2, z_3, z_4) \), the error system is globally asymptotically stable. But asymptotic stability implies exponential stability due to system linearity Khalil [2003]. Proposition 1 is established.

Remark 1. . Note that the exponential nature of stability guarantees stability robustness with respect to modelling and measurements errors Khalil [2003].

3.3 Power factor correction and DC voltage controller

Controlling rectifier input current to meet PFC: The PFC objective means that the input current overall system should be sinusoidal and in phase with the AC supply voltage.

Therefore, one seeks a regulator that enforces the current \(i_{sg} = i_{sq} + i_{sr} \) to track a reference signal equal to zero to impose a \(i_1 \) in phase with the voltage supply \(v_s \).

As the reference signal \(i_{sq} \) is null, it follows that the tracking error \(z_5 = i_{sq} - i_{sg} \) undergoes the equation:

\[
\dot{z}_5 = -\dot{i}_q - x_8
\]

(63)

as \(x_8 = L_s i_{sq} + M_{sr} x_5 \), equation (63) becomes:

\[
\dot{z}_5 = -\frac{x_3}{L_s} + \frac{M_{sr}}{L_s} x_5 - x_8
\]

(64)

In view of (25), (27) and (30), the above error undergoes the following equation:

\[
\dot{z}_5 = -\frac{x_3}{L_s} + \frac{M_{sr}}{L_s} \dot{x}_3 - \dot{x}_8 \\
= -\frac{1}{\omega_s} \left(\frac{L_s}{\omega_s} x_3 - \omega_s x_2 + \left(\frac{M_{sr}}{\tau_s} + M_{sr} \gamma_1 \right) x_5 \right) \\
+ \omega_s \frac{x_7 + x_6 u_4}{L_o} \\
+ \frac{M_{sr}}{L_s} \left(-\omega_s p x_1 x_4 + \gamma_2 \frac{x_3}{\tau_s} + p \gamma_2 x_1 x_2 + \gamma_3 x_6 u_2 \right)
\]

(65)

To get a stabilizing control law for this first-order system, consider the quadratic Lyapunov function \(V_5 = 0.5 z_5^2 \). It can be easily checked that the time-derivative \(\dot{V}_5 \) is a
negative definite function of z_6 if the control input u_4x_6 is chosen as follows:

$$u_4x_6 = -c_5L_o z_6 - L_o \omega_s x_7 + h_1(x)$$ (66)

with $c_5 > 0$ is a design parameter and

$$h_1(x) = \frac{L_o}{L_s} \left(-\frac{1}{r_s} x_3 - \omega_s x_2 + \left(\frac{M_{sr}}{r_s} + M_{sr} \gamma_l \right) x_5 \right) + \frac{L_o M_{sr}}{L_s} \left((\omega_s - p \omega) x_4 - \frac{\gamma_2}{\tau_s} x_3 - p \gamma_2 x_3 x_2 - \gamma_3 x_6 u_2 \right)$$ (67)

DC link voltage regulation: The aim is now to design a control law u_3 so that the rectifier output voltage $x_6 = \overline{v}_{dc}$ is steered to a given reference value $x_6^* = v_{dc}^*$. As mentioned above, v_{dc}^* is generally (not mandatory) set to the nominal value of the rotor voltage amplitude.

Therefore, one seeks a regulator that enforces the current x_7 to track a reference signal x_7^*. Introduce the current tracking error z_7:

$$z_7 = x_7^* - x_7$$ (68)

the z_7-dynamics undergoes the following equation:

$$\dot{z}_7 = \dot{x}_7^* - \omega_s x_8 - \frac{V_o}{L_o} + \frac{x_6 u_3}{L_o}$$ (69)

To get a stabilizing control signal for this first-order system, consider the following quadratic Lyapunov function:

$$V_7 = \frac{1}{2} z_7^2$$ (70)

It is easily checked that the time-derivative \dot{V}_7 can be made negative definite in the state z_7 by letting the quantity $x_6 u_3$ as follows:

$$x_6 u_3 = -c_7 L_o x_7^* + c_7 L_o x_7 - L_o \dot{x}_7^* + L_o \omega_s x_8 + V_o$$ (71)

with $c_7 > 0$ is a design parameter.

Multiply both sides of the equation (28) by $2x_6$ and replace the quantities $x_6 u_3$ and $x_6 u_4$ by their equivalents, described by the equations (71) and (66) respectively, in the equation (28). The squared voltage ($y^2 = x_7^2$) varies, in response to the tuning x_7^*, according to the equation:

$$\dot{y} = \frac{2}{C}(x_7 x_6 u_3 + x_8 x_6 u_4 - x_6^2)$$

$$= -\frac{2}{C}(c_7 L_o x_7 x_7^* + L_o x_7 \dot{x}_7^* + c_5 L_o x_8 z_5) + h_2(x)$$ (72)

where

$$h_2(x) = \frac{2}{C}(c_7 L_o x_7^2 + V_o x_7 + x_8 h_1(x) - x_6^2)$$ (73)

As previously mentioned, the reference signal $y^* = v_{dc}^*$ (of the squared DC-link voltage $x_6 = \overline{v}_{dc}$) is chosen to be constant (i.e. $\dot{y}^* = 0$), it is given the nominal value of rotor voltage amplitude. Then, it follows from (72) that the tracking error $z_6 = y^* - y$ undergoes the following equation:

$$\dot{z}_6 = \dot{y}^* + \frac{2}{C}(c_7 L_o x_7 x_7^* + L_o x_7 \dot{x}_7^* + c_5 L_o x_8 z_5) - h_2(x)$$ (74)

To get a stabilizing control law for the system (74), consider the following quadratic Lyapunov function:

$$V_6 = \frac{1}{2} z_6^2$$ (75)

Fig. 3. Control system including AC/DC/AC converters and a doubly-fed induction motor

Deriving V_6 along the trajectory of (74) yields:

$$\dot{V}_6 = \dot{z}_6^2$$ (76)

This suggests for x_7^* the following control law:

$$\dot{x}_7^* = -c_7 x_7^* - c_5 z_6 x_7 + \frac{C}{2L_o x_7^*} (-c_6 z_6 - y^* + h_2(x))$$ (77)

with $c_6 > 0$ a design parameter. Indeed, substituting x_7^* to (76) gives $V_6 = -c_6 z_6^2$ which clearly is negative definite in z_6.

Proposition 2. Consider the control system consisting of the subsystem (28-30) and the control laws (66), (71) and (77). The resulting closed-loop system undergoes, in the (z_5, z_6, z_7, x_7^2)-coordinates, the following equation:

$$\dot{Z} = AZ + g(x)$$ (78)

with

$$Z = \begin{bmatrix} z_5 \\ z_6 \\ z_7 \\ x_7^2 \end{bmatrix}, \quad A = \begin{bmatrix} -c_5 & 0 & 0 & 0 \\ 0 & -c_6 & 0 & 0 \\ 0 & 0 & -c_7 & 0 \\ -c_5 x_7^2 - c_5 C_{2\pi/\omega_0} x_7 & 0 & 0 & -c_7 \end{bmatrix}$$

$$g(x) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{C}{2\pi/\omega_0} (h_2(x) - y^*) \end{bmatrix}$$ (79)

Equation (78) defines a stable system and the vector (z_5, z_6, z_7, x_7^2) converges exponentially fast to $(0, 0, 0, 0)$, whatever the initial conditions.

Proof. Equation (78) is obtained substituting the control law (66), (71) and (77) to $x_6 u_3, x_6 u_4$ and x_7^* on the right side of (65), and (76). It is clear that the matrix A is Hurwitz, this implying that the closed loop system (78) is globally exponentially stable. This completes the proof of Proposition 2.

4. SIMULATION RESULTS

The experimental setup is described by Fig. 3 and the nonlinear adaptive controller, developed in Section 3, including the control laws (54, 66, 71, 77) and the parameter adaptive law (53), will now be evaluated by simulation.
Table 1. Numerical values of considered doubly fed induction motor characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal power</td>
<td>P_N</td>
<td>1.5</td>
<td>Kw</td>
</tr>
<tr>
<td>Nominal stator voltage</td>
<td>U_{sn}</td>
<td>380</td>
<td>V</td>
</tr>
<tr>
<td>Nominal stator current</td>
<td>I_{sn}</td>
<td>4.3</td>
<td>A</td>
</tr>
<tr>
<td>Nominal flux</td>
<td>Φ_{sn}</td>
<td>0.56</td>
<td>wb</td>
</tr>
<tr>
<td>Stator resistance</td>
<td>R_s</td>
<td>1.75</td>
<td>Ω</td>
</tr>
<tr>
<td>Stator inductance</td>
<td>L_s</td>
<td>0.296</td>
<td>H</td>
</tr>
<tr>
<td>Nominal rotor voltage</td>
<td>U_{rn}</td>
<td>225</td>
<td>V</td>
</tr>
<tr>
<td>Nominal rotor current</td>
<td>I_{rn}</td>
<td>4.5</td>
<td>A</td>
</tr>
<tr>
<td>Rotor resistance</td>
<td>R_r</td>
<td>1.68</td>
<td>Ω</td>
</tr>
<tr>
<td>Leakage inductance</td>
<td>M_{sr}</td>
<td>0.195</td>
<td>H</td>
</tr>
<tr>
<td>Rotor inductance</td>
<td>L_r</td>
<td>0.165</td>
<td>H</td>
</tr>
<tr>
<td>Inertia moment</td>
<td>J</td>
<td>0.35</td>
<td>kg.m2.s$^{-1}$</td>
</tr>
<tr>
<td>Friction coefficient</td>
<td>F</td>
<td>0.026</td>
<td>N.m.s.rd$^{-1}$</td>
</tr>
<tr>
<td>Number of pole pairs</td>
<td>p</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

The simulated system is given the following characteristics:

- Supply network: is triphase 220V/50Hz
- AC/DC/AC converters: $L_o = 15mH$; $C = 1.5mF$; modulation frequency 10KHz.
- Doubly fed induction machine: it is a 1.5KW motor whose characteristics are summarized in Table 1.

The indicated values of design parameters ($c_1, c_2, c_3, c_4, c_5, c_6, c_7$) have been selected using a try-and-error search method and proved to be suitable. The experimental setup is simulated within the Matlab/Simulink environment with a calculation step of 5μs. This value is motivated by the fact that the inverter frequency commutation is 10KHz. In the light of the closed-loop responses (see Figs 5 - 9), it is seen that the multiloop nonlinear adaptive controller meets all its objectives and enjoy quite satisfactory transient performances.

5. CONCLUSIONS

In this paper, the problem of controlling associations including AC/DC rectifier, DC/AC inverter and doubly fed induction motor has been addressed. The system dynamics are profiled so that the machine is enforced to operate, successively, both at high and low speeds. Specifically, the machine operates in high speed ($\omega_{m}^* = 150$rd/s) over the interval $[0, 6s]$ and at low speed ($\omega_{m}^* = 10$rd/s) over $[6, 8s]$.

The DC-link voltage reference is set to the constant value $v_{dc}^* = 220V$. The reference value Φ_s^* for the stator flux norm is set to its nominal value (0.7wb).

In this paper, the problem of controlling associations including AC/DC rectifier, DC/AC inverter and doubly fed induction motor has been addressed. The system dynamics are profiled so that the machine is enforced to operate, successively, both at high and low speeds. Specifically, the machine operates in high speed ($\omega_{m}^* = 150$rd/s) over the interval $[0, 6s]$ and at low speed ($\omega_{m}^* = 10$rd/s) over $[6, 8s]$.

The DC-link voltage reference is set to the constant value $v_{dc}^* = 220V$. The reference value Φ_s^* for the stator flux norm is set to its nominal value (0.7wb).

The indicated values of design parameters ($c_1, c_2, c_3, c_4, c_5, c_6, c_7$) have been selected using a try-and-error search method and proved to be suitable. The experimental setup is simulated within the Matlab/Simulink environment with a calculation step of 5μs. This value is motivated by the fact that the inverter frequency commutation is 10KHz. In the light of the closed-loop responses (see Figs 5 - 9), it is seen that the multiloop nonlinear adaptive controller meets all its objectives and enjoy quite satisfactory transient performances.
Fig. 8. Grid current $i_{gq}(A)$

Fig. 9. Unitary power factor checking in presence of a varying speed reference and load torque have been described by the averaged eighth order nonlinear state-space model (23-30). Based on such a model, an adaptive nonlinear controller defined by (54, 66, 71, 77, 53), has been introduced for DFIM-AC/DC/AC converters association drives. The proposed controller is designed based on adaptive backstepping control approach and is capable of making the system states trajectories follow the speed reference signal with unity power factor condition inspite of external load torque disturbance. The proposed control approach has been tested for the motoring mode. Furthermore the DC link voltage is maintained constant also based backstepping control, using a rotating synchronous reference frame with d-axis coincide with the direction of space voltage vector of the main AC supply. Computer simulation results obtained, confirm the validity and effectiveness of the proposed control approach.

REFERENCES

