
HAL Id: hal-00818030
https://hal.science/hal-00818030

Submitted on 25 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Application-Assisted Checkpoint-Restart Mechanism
for Java Applications

Diana Andreea Popescu, Eliana-Dina Tirsa, Mugurel Ionut Andreica, Valentin
Cristea

To cite this version:
Diana Andreea Popescu, Eliana-Dina Tirsa, Mugurel Ionut Andreica, Valentin Cristea. An
Application-Assisted Checkpoint-Restart Mechanism for Java Applications. Proceedings of the IEEE
12th International Symposium on Parallel and Distributed Computing (ISPDC) (ISBN: 978-1-4799-
2967-2 / 978-0-7695-5018-3), Jun 2013, Bucharest, Romania. pp.190-197, �10.1109/ISPDC.2013.33�.
�hal-00818030�

https://hal.science/hal-00818030
https://hal.archives-ouvertes.fr

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E�����C�

�F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB�
 DB!C��

An Application-Assisted Checkpoint-Restart
Mechanism for Java Applications

Diana Andreea Popescu1
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
diana-andreea.popescu@epfl.ch

Eliana-Dina T�r�a, Mugurel Ionu� Andreica,
Valentin Cristea

Politehnica University of Bucharest
Bucharest, Romania

eliana.tirsa@cs.pub.ro, mugurel.andreica@cs.pub.ro,
valentin.cristea@cs.pub.ro

Abstract—In this paper we present a novel application-

assisted checkpoint-restart mechanism for Java applications. The

checkpoint-restart API provides the application developers with

full control over what data needs to be check-pointed. The

novelty of our system is that it allows different checkpoint

periods for different data items. Our implementation makes full

use of the Java Reflection API.

Keywords— checkpoint; restart; Java; fault tolerance

I. INTRODUCTION

Computer systems are prone to hardware and software
failures, thus making checkpointing an increasingly important
tool for them. Checkpointing is an important mechanism for
fault tolerant systems, migration systems, load-balancing
systems, play-back debuggers and many others. Currently, the
major concern regarding checkpointing is the overhead,
defined either as the amount of time added to a program due to
checkpointing or as the extra space needed for storing the
checkpoint files (or as a combination of both).

In this paper we introduce an application-assisted
checkpoint-restart mechanism for Java (multi-threaded)
applications. The checkpoint mechanism may be backed by a
reliable distributed storage system for the checkpoint files, thus
ensuring data availability in case of hardware failures. The
proposed solution is a non-transparent checkpoint-restart
system which uses the Java Reflection Application
Programming Interface. We base our design on the idea that
not all the data is updated with the same frequency; in
consequence, only part of the data has to be saved in a certain
checkpoint file. We also provide an Application Programming
Interface which can be used by the programmer in order to
attain fault tolerance for his application.1

The rest of this paper is structured as follows. In Section II
we present the motivation for the work presented in this paper,
as well as some of the main characteristics of our proposed
mechanism. In Section III we discuss related work. In Section
IV we mention several realistic applications which would

1 The work presented in this paper was performed while the
author was a student in the Computer Science Department of
the Politehnica University of Bucharest.

benefit from the approach presented in this paper. In Section V
we present the software architecture of the checkpoint-restart
mechanism. In Section VI we present experimental results.
Finally, in Section VII we conclude and discuss future work.

II. MOTIVATION AND OVERVIEW OF THE PROPOSED

CHECKPOINT-RESTART MECHANISM

We chose to explore the area of non-transparent
checkpoint-restart mechanisms which, although they are more
intrusive from an application development perspective,
provide the application developer with full control over the
relevant data, allowing him to decide which data needs to be
checkpointed. Our goal was to design a checkpoint-restart
mechanism and to propose an associated Application
Programming Interface for it, which would be easy to use in a
Java multi-threaded application. We will present below the
main advantages of non-transparent checkpointing that our
proposed mechanism also shares, and we will present the
specific details of our approach.

The major advantages of application-level checkpoints are
the reduced size of the checkpoint data and the high portability
of the checkpoint files, thus allowing an application to be
restarted on different machines. Another convenient feature is
that we can save only the most important data necessary for
the restart of the application. Regarding portability, we use
binary checkpoints, which are only portable in the Java world,
but the advantage over the far more portable XML files lies in
the size of the checkpoint.

In our design, the useful data that has to be checkpointed
consists of selected objects of the Java application. These
objects will not be saved all in the same checkpoint and the
checkpoints will not be performed at fixed time intervals.
Because not all objects are saved in the same checkpoint,
checkpoint files will be smaller and the duration of their
writing will also be lower. In order to be able to recover all the
objects, at restart time, we will need a series of checkpoint
files, not only the most recent one. This is also a bonus point
for applications that need history. If the application cannot
make use of the obsolete information contained in the
checkpoints, we also provide a cleanup mechanism which

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E�����C�

�F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB�
 DB!C��

erases checkpoint files that contain exclusively outdated
values.

The automation support is another strong point of non-
transparent checkpoint restart. It may seem intrusive to have
explicit checkpointing function calls in the code, but the effect
is smoothed if they are integrated in the development phase of
the application. Besides, there is a better understanding of the
specific application needs. Also, due to the fact that the non-
transparent checkpoint is at user level, the implementation is
simpler, as one doesn't have to program inside the kernel.

Incremental checkpointing, saving only the data that has
been updated from the last checkpoint, is another useful
feature available to non-transparent approaches. This issue is
even more important when, for fault tolerance purposes, the
checkpoint files are saved remotely, on a distributed storage,
accessible by all the system entities, such that if one service
fails, a new one can be deployed on another machine, using
the last checkpoint in order to restore the application data.

Another advantage of non-transparent checkpoint is that
the application doesn't need to be interrupted while
checkpointing. Moreover, having the checkpointing
mechanism at application level, the timing of the associated
checkpoint, reported to the application progress and data
updates, can be more closely controlled. In our
implementation, checkpointing is performed by a separate
thread that only takes action when the update period for a
group of objects has been exceeded. However, having multiple
threads access the same data introduces the need for
synchronization.

III. RELATED WORK

Checkpointing is a method which provides an application
with fault tolerance by recording the application’s state and
using the saved data to restart the application in case of failure.
Checkpointing can also be used for process hibernation
(conserving the machine state during power cuts) or suspension
(to save memory space or to allow rolling back to different
states). The checkpoint file can be saved either locally, to
stable storage, or in a remote node's memory.

One of the checkpoint/restart methods [1] implemented in
operating systems is based on creating a file that describes a
process currently running. The process can then be
"reconstructed" along with the saved state, based on the data
from the checkpoint file. Running applications can be "saved"
periodically (e.g. based on notifications from monitoring
applications). Once the application status has reached a stable
storage, the application can be restarted and reconfigured if
necessary. Checkpoint/restart techniques can also be used to
reduce the time the applications are stopped for maintenance
(hardware or operating system) by migrating applications on
another machine. In Grid and Cloud systems,
checkpoint/restart is used to suspend or migrate jobs [2].

As presented in [3], checkpoint-restart mechanisms can be
classified with respect to the context, the agent that provides
the checkpoint-restart functionality and the implementation.
Using the first criterion of classification, the checkpoint-restart
implementations may be user-level or system-level. The user-

level implementations can require the programmer to use an
existing API for checkpoint-restart when writing the
application. Alternatively, this can be inserted automatically by
a compiler. If we do not want to modify the source code of the
application, the checkpoint-restart primitives can be invoked by
signal handlers defined at user level. Another option is to use
an environment variable, the checkpoint library being loaded
without recompilation or relinking of the application. System-
level implementations can be deployed in the operating system
or in hardware. For the operating system implementations there
are many alternatives: as a kernel-mode signal handler, system
call or kernel thread.

System level checkpoints enable a high level of
transparency and flexibility. The checkpoints are taken
automatically and restarting the application can be performed
without the user’s intervention. The major disadvantage is that
system level checkpoints cannot use the semantic information
available at the application level. As a result, the size of the
checkpoint is larger.

Implementation at the application level is often the most
effective, given that it is known which data structures need to
be saved and which not. But this approach presents a number
of disadvantages. It is often not possible to change the source
code. Another disadvantage consists of checkpoint time
restrictions; there may be a long delay between the time when a
checkpoint is requested and actual writing of that file on the
disk. The major advantages of the application level checkpoints
are the reduced size of the checkpoint data and the high
portability of the checkpoint files, thus allowing an application
to be restarted on a different machine. In the next section we
mention several advantages of our application-level approach.

Library-level implementations solve some of these
drawbacks [4, 5]. Libraries do not require changes to
application source code and often use a signal "handler" to
perform the checkpoint, so the time restrictions are eliminated.
Implementations of this type have a common procedure for
restart. There is however a major obstacle for the
implementation of the checkpoint/restart mechanism as a
library: to impose restrictions on system calls that can be used
by the application (all forms of inter-process communication
are generally prohibited). As a result, in the case of shell scripts
and the majority of parallel applications, a library level
implemented checkpoint mechanism cannot be applied.

Checkpoint/restart implementations at the operating system
kernel level promise to eliminate much of these restrictions [6,
7]. At this level most of the core data structures are available
and applications can usually be saved at any time. The
implementation of checkpoint/restart in the kernel is much
more difficult than at application-level or as a separate library.

BLCR [6] and Zap [7] are checkpoint/restart
implementations in the Linux kernel, using dynamically
loadable kernel modules that do not need the kernel source and
do not require recompiling it. There are operating systems,
such as IRIX produced by SGI or Unicos produced by Cray,
where the checkpoint mechanism is implemented directly in
the OS kernel. BLCR saves and restores the state of a process
using an existing module, previously used to "fork" processes
running on Beowulf distributed clusters. BLCR extended this

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E�����C�

�F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB�
 DB!C��

module with support for processes with multiple threads, files,
pipes. As weaknesses, BLCR can not checkpoint at socket
level and can not preserve the IP addresses of the checkpointed
applications. Solution developers have left the applications or
messaging libraries to address these issues. Also, BLCR can
not successfully restart an application if one of the component
process IDs are assigned to another process during the
application restart.

Application-assisted checkpoint-restart APIs and
mechanisms were also developed for the IBM Blue Gene
Architecture [8].

An increased level of interest for application-level
checkpoint restart mechanisms also appeared in the exascale
computing and high performance computing fields [9, 10].
Checkpointing in distributed environments (e.g. Grids) has
been considered in [11].

Specific application-level checkpoint-restart mechanisms
for Java applications have also been considered. In [12] the
authors consider the problem of efficiently checkpointing user-
defined objects in Java applications. Their approach is similar
to ours up to a point. First, they do no consider the possibility
of having different checkpoint periods for the objects; instead,
they consider incremental checkpoints, in which it is possible
to avoid checkpointing an object if no modifications occurred.
Second, they employ program specialization techniques in
order to achieve efficient checkpoint implementations for
various types of objects and modification patterns. Our
approach is different: we define multiple types of
checkpointable objects, e.g. checkpointable collections. In [13]
code instrumentation techniques are used for developing a
checkpoint-restart mechanism for Java applications. No
support in the application source code is required (and, thus, no
API is provided). However, a language for specifying
checkpoint regions is defined, which needs to be used in order
to guide the checkpointing process. Moreover, it seems that the
developed techniques are intended for single-threaded Java
applications only.

IV. REALISTIC APPLICATIONS THAT WOULD BENEFIT FROM

OUR APPROACH

Our proposed mechanism is suited for checkpointing data-
intensive Java applications that have the following properties:

• the managed data is represented as a graph of objects

• various fields of the objects are updated
(periodically) with different periods

• the application can benefit from maintaining the
history of the updates

One example that meets the above criteria is a service
similar to the Google Maps support for real time traffic. It
recommends best routes, taking intro account the monitored
traffic in a given city.

Let's consider that the graph of objects of such an
application consists of a network of Street objects. The Street
objects are Vectors of StreetSegment objects (the portion of a
street between two intersections). Among the object fields of

the StreetSegment object we can find: Intersection,
TrafficLight, Station, LegalSpeedLimit, EstimatedTraffic,
NavigationTime, Priority, UpdatePeriod, Accident. For a
given StreetSegment object, the fields TrafficLight,
EstimatedTraffic and NavigationTime are updated more often
than Priority, UpdatePeriod, LegalSpeedLimit.

We may safely assume that the field traffic information is
collected and transmitted by wireless sensors powered by solar
energy. We know that sensors communication is an energy-
wise expensive operation; we want to retrieve data at different
periods from different locations. The Priority field quantifies
this period for a given street segment. Depending on the time
of day, or day of the week, we may assign higher priorities to
very circulated streets or where traffic statistically fluctuates
more.

An Intersection object may contain the fields:
StreetVector, StreetSegmentVector, TrafficLightVector,
TraversalTime (this will be updated often). Finally, a
TrafficLight object contains the fields: RedPeriod,
GreenPeriod, State, PedestrianCtrlButton. RedPeriod and
GreenPeriod are subject to frequent updates.

Another example, this time from the networking field, is a
data transfer scheduling service. The DataTranfer object may
contain the following fields: NLinkVector, Rnode (controllable
devices at the two ends of the link), StartTime, EndTime,
ReservedParams (for example bandwidth). An NLink object is
a collection of LinkSegment objects (a part of a link between
routing devices). A LinkSegment may have the following
fields: TotalBW, AvailBW, LossRate, ScheduledTransfers.

The information about links is retrieved from monitoring
services, at different frequencies for different links. Within a
LinkSegment, AvailBW is the field that is updated more often,
ScheduledTransfers is updated at longer periods, and TotalBW
is updated very rarely (only in case of hardware infrastructure
changes).

V. SOFTWARE ARCHITECTURE

A. The Checkpointing Mechanism

An overview of our system is presented in Fig. 1. As stated
before, our checkpoint solution is suited to (multi-threaded)
Java applications, but it can also be applied to distributed
applications, provided there is no (checkpointable) data
dependency between the components of the distributed
system. The checkpointing architecture is composed of two
threads, the checkpoint thread and the cleanup thread, that are
distinct from the main application threads. In this way, the
checkpoint is performed in parallel with main application
execution, without the need for interruption.

The checkpoint thread takes care of all the computations
necessary for determining which objects have to be
checkpointed in the current checkpoint. After the data is
written to a file, the thread suspends its execution for a
specified period, more exactly until the next checkpoint time
arrives for at least one of the registered objects. This is an
efficient way of making processor time available to the other
threads of the application or other applications that might be

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E�����C�

�F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB�
 DB!C��

running on the computer system. When an object is registered
from one of the application threads, the checkpoint thread
resumes its execution and recalculates the next checkpoint
time, taking into account the new object’s period of update.
The checkpoints are not taken at fixed intervals of time and
the checkpoint times are not determined by the application
execution. These are two advantages to our design.

Fig. 1. Application, checkpoint and cleanup threads.

Because at first there are no registered objects, the
checkpoint thread suspends its execution for a long period of
time (Long.MAX_VALUE seconds). The thread runs in a
continuous loop. The programmer can use the
stopCheckpoint() method for stopping the thread. As a first
action (repeated after each checkpoint), the checkpoint thread
retrieves the next checkpoint time from a priority queue. After
this, the thread suspends its execution for a specified period of
time - until the next checkpoint time arrives for at least one of
the registered objects. If an object is registered from one of the
application threads, the checkpoint thread resumes its
execution before the next checkpoint time arrives (it receives
an interrupt from the application thread) and gets the next
checkpoint time, taking into account the new object’s period
of update.

We define the period of update of an object as the period
between two checkpoints for this object. The period of update
can be seen as a few (usually 5) time intervals in which the
object is updated or simply as a period of time that the
programmer considers appropriate between checkpoints for
that object. The programmer registers an object with the
checkpoint thread, providing a period of update for the
respective object and an object identifier. If an object has a
field which implements the Checkpointable interface, it will
automatically be registered with a default period of update
during the first checkpoint of the object.

The new object’s period of update is inserted in the
priority queue in the registration function. If there are no new
registered objects, the thread resumes its execution after the
specified period of time and checkpoints the objects.

Afterwards, it computes the next checkpoint time for the most
recently checkpointed objects and it leaves the next
checkpoint time unmodified for the rest of the objects. The last
step of the loop is the traversal of the unregistered objects list
and the removal from the data structures used by the
checkpointing mechanism (a hash table and a priority queue)
of the unregistered objects’ entries. This step takes place after
each checkpoint in order to be able to ensure a consistent state
of the hash table entries.

Because we have many threads accessing the same data,
we need synchronization mechanisms for accessing the
objects. In the checkpoint method checkpointObject(Object
obj), the object obj is read using synchronized statements.
Note that the application threads must also access (read/write)
the object in the same manner.

If the object is checkpointed for the first time, the
checkpointObject method will run recursively on the object’s
fields which are also Checkpointable objects. In order to avoid
a deadlock, we keep a list of the Checkpointable fields and we
checkpoint them after releasing the object’s lock. Because the
objects are registered from another thread than the checkpoint
thread, the priority queue used for computing the next
checkpoint time is a PriorityBlockingQueue, which is thread-
safe. The list of unregistered objects is a
CopyOnWriteArrayList, which is also thread-safe.

The cleanup thread's role consists of deleting the
unnecessary checkpoint files. It runs at fixed intervals of time.
The cleanup thread is started only if the programmer specifies
this argument at the initialization of the Checkpoint object. Its
role consists of deleting the unnecessary checkpoint files. As
described above, in order to be able to recover all the objects
we need a series of checkpoint files, not only the last one. The
cleanup thread determines which files are not part of this
series and deletes them.

B. Proposed Application Programming Interface

First of all, a class has to implement the Checkpointable
interface in order to be registered with the checkpoint
mechanism. Secondly, the class needs to have a no-argument
constructor. Also, the access to the registered objects has to be
synchronized when modifying the object.

The Application Programming Interface consists of the
following Java classes:

Checkpoint

• public Checkpoint (String fileName, String
directoryName, boolean performCleanup) - Constructs a
Checkpoint object. The checkpointed data will be saved in the
specified directory and in files which have the given name and
an identifier appended at the end of the name. If the boolean
flag is set to true, the cleanup thread will delete the
unnecessary checkpoint files, otherwise all checkpoint files
will be kept.

• public boolean registerObject(Object obj, String
identifier, int periodOfUpdate) - Registers an object with the
identifier identifier and the period of update periodOfUpdate.

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E�����C�

�F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB�
 DB!C��

The method returns true if the registration is successful and
false otherwise.

• public void unregisterObject(Object obj) -
Unregisters the specified object. This object will not be
checkpointed anymore.

• public void stopCheckpoint() - Stops the checkpoint
thread from running. No more checkpoints will be performed.

• public HashMap<String, Object> restore(String
filename, String directoryname) - The method returns a
HashMap with the checkpointed objects, constructed from the
most recent series of checkpoints. The key of the HashMap
represents the identifier given to the object at registration.

We also provide support for checkpointable collections.
The idea behind the checkpointable collections is that the
elements of a collection or a map could have different periods
of update, thus allowing the elements to be saved during
different checkpoints. A normal collection or map defined by
the Java JDK cannot be registered. A collection or map which
represents a field of a Checkpointable object implicitly
inherits the object’s period of update and it will have all its
elements saved at the same time. The collections from our API
have a period of update which is used for updating the changes
made on the collections themselves (i.e. adding or removal of
an element). Our API offers support for two collections:
CheckpointableVector and CheckpointableHashTable.

CheckpointableVector<T>

• public CheckpointableVector(Checkpoint ckp, String
identifier, int periodOfUpdate) - Constructs a new
CheckpointableVector and registers it with the identifier
identifier and the period of update periodOfUpdate.

• public void add(T o, Checkpoint ckp, String
identifier, int periodOfUpdate) - Appends the specified
element to the end of this list and registers it with the
identifier identifier and the period of update periodOfUpdate.

• public void add(int index, T o, Checkpoint ckp,
String identifier, int periodOfUpdate) - Inserts the specified
element at the specified position in this list and registers it
with the identifier identifier and the period of update
periodOfUpdate.

• public T remove(T o, Checkpoint ckp) - Removes the
element from this list and unregisters it.

• public T remove(int index, Checkpoint ckp) -
Removes the element at the specified position in this list and
unregisters it.

CheckpointableHashTable<K,V>

• public CheckpointableHashTable(Checkpoint ckp,
String identifier, int periodOfUpdate) - Constructs a new
CheckpointableHashTable and registers it with the identifier
identifier and the period of update periodOfUpdate.

• public void put(K key, V value, String identifier,
Checkpoint ckp, int periodOfUpdate) - Associates the
specified value with the specified key in this map and registers
it with the identifier identifier and the period of update.

public V remove(K key, Checkpoint ckp) - Removes the
mapping for this key from this map if present and unregisters
the object associated with the key.

C. Data Structures

When an object is registered with the checkpoint
mechanism, the programmer provides the period of update
through a parameter of the registration’s function. If the period
of update given as a parameter is below the
CHECKPOINT_LIMIT, the period of update of the object will
be automatically considered to be the CHECKPOINT_LIMIT.
The objects’ periods of update are stored in a hash-table. We
use a HashMap structure in order to have a O(1) (constant
time) access to the periods of update.

We also need an efficient structure for calculating the
checkpoint time for each registered object. We use a heap
structure ordered by the time in the future when the objects
have to be checkpointed. In Java, we have the PriorityQueue
class, which is a priority queue based on a priority heap. The
elements of the priority queue are pairs which consist of the
key of the object obtained using the
System.identityHashCode() function and its next time of
checkpoint. The next time of checkpoint is calculated as the
current time returned by the System.currentTimeMillis() plus
the period of update: Using a priority queue for keeping the
next checkpoint times for the objects has several advantages.
Firstly, we retrieve the next checkpoint time in O(1) time.
Secondly, having the objects sorted by the time of checkpoint
allows us to checkpoint only the elements from the priority
queue which have the next checkpoint time lower than the
current time plus an interval of time defined by a private field
of the Checkpoint class. We use this interval of time,
EPS_TIME, in order to include in the current checkpoint those
objects with next checkpoint times very close in the future to
the actual time. As a result, we eliminate the possibility of
taking two checkpoints too close in time to one another. Our
goal is not to take checkpoints below the
CHECKPOINT_LIMIT time, so as to avoid the unnecessary
load on the system.

We designed a checkpoint hash-table structure that holds
the actual objects along with metadata used to construct the
objects, since not all programmer registered objects and
automatically registered objects are saved in the same
checkpoint. We also store the necessary information for
determining the times at which the objects have to be
checkpointed. An object may be constructed solely from
entries of the hash-table from the most recent checkpoint or it
may have fields which are stored in prior checkpoints.
Moreover, in the hash-table checkpoint we could have only
the identifier of a prior checkpoint where the object is actually
stored. As a result, in order to restore the checkpointed data,
we do not need only the most recent checkpoint file, but
instead we need a series of checkpoint files. In our
implementation we actually store in memory two checkpoint

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E�����C�

�F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB�
 DB!C��

hash-tables, the one constructed during the previous
checkpoint and the one constructed during the current
checkpoint, in order to avoid iterating recursively through the
list of registered objects and their fields, at every checkpoint.

The key of the hash-table is an integer obtained using the
System.identityHashCode() function, which returns a unique
hash code value for the object. The values stored in the hash-
table for each entry depend on the given object’s type. We
store different information for a Checkpointable object, a
CheckpointableVector and a CheckpointableHashTable. Also,
if the object is not to be saved in the current checkpoint, the
value holds only the identifier of the previous checkpoint
where the object can be found. There are four types of values
stored in the hash-table: ValueId, ValueObject, ValueVector
and ValueHash.

For a Checkpointable object we use the ValueObject which
has:

• a string representing the object’s class name

• the identifier (string) of the object as given at
registration or null if the object is automatically registered

• a list of keys and objects, depending on the object’s
fields (obtained with the aid of the Java Reflection Application
Programming Interface)

• the object’s period of update

If an object’s field implements the Checkpointable
interface, we save in the list the key of the entry in the hash-
table for this field. Otherwise, if the field is one of the
following: a primitive data type, a String, a primitive wrapper
class type, we add in the list directly the value of the field.

The final and static fields are not saved, since these types
of fields are considered to represent the state of the class, not
that of a particular object. In addition to this, the fields of a
Checkpointable object which do not implement the
Checkpointable interface will not be registered in the hash-
table and, consequently, will not be saved in checkpoints.

 For a CheckpointableVector we use the ValueVector,
which stores:

• a hash-table: the key is the position of the element
and the value is represented by the key calculated using the
System.identityHashCode() function for the element

• the identifier (string) of the vector as given at
registration

• the vector’s period of update.

For a CheckpointableHashTable, the ValueHash contains:

• a hash-table: the key is represented by the key from
the CheckpointableHashTable hash-table for the element and
the value is represented by the key calculated using the
System.identityHashCode() function for the element

• the identifier (string) of the hash table as given at
registration

• the hash-table’s period of update.

D. Saving Data to Checkpoint Files and Restoring Data

Saving data to files. The hash-table structure is serialized
and saved in a file which has the name given by the user and
the checkpoint identifier appended to this name. In order to
reduce the size of the checkpoint file and to reduce the
serialization time, we implemented the Externalizable
interface for the Value objects. The Value interface extends
the Externalizable interface. The ValueId, ValueHash,
ValueVector and ValueObject classes implement two
additional methods:

• public void writeExternal (ObjectOutput out) throws
IOException;

• public void readExternal (ObjectInput in) throws
IOException, ClassNotFoundException;

In this way we defined our own protocol for writing to and
reading from the checkpoint file. For ValueId we use only
writeInt() and readInt(). For ValueObject we use writeInt()
and readInt() for the period of update, writeUTF() and
readUTF() for the name of the class, and for the list we first
write its size and then write every object with writeObject()
and read the object with readObject(). We proceed in the same
manner for ValueVector and ValueHash and for the hash-table
structure. There is no difference in how a class that
implements Externalizable is used. When we call
writeObject() or readObject(), the two methods will be called
automatically.

The ValueId class is used for an object which must not be
saved in the current checkpoint. We store only the identifier of
the most recent checkpoint where the object can be found. The
structure of the hash-table is presented in the following figure.

Fig. 2. Checkpoint hash table structure.

Restoring Data. Our proposed Application Programming
Interface provides a method called restore, which returns a
HashMap containing the registered objects reconstructed using
the data from the checkpoints. The key of the hash represents

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E�����C�

�F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB�
 DB!C��

the identifier given as an argument for the registration
function.

Firstly, given the name of the checkpoint file and the
directory where the files were being saved, the function
determines the most recent checkpoint file, using a
FilenameFilter. Secondly, the hash-table contained in this
checkpoint file is deserialized and, after this, we iterate
through the keys’ set, constructing each object, using Java
Reflection. An object is added to the list of restored objects
and is automatically re-registered, thus allowing it to be saved
at the next checkpoint according to its period of update.

The function recursively constructs an object, using the
information from the corresponding entry stored in the hash-
table. If the information for constructing the object is found in
the current checkpoint, we get the object’s class name and,
afterwards, we use the static method Class.forName(String x),
which returns the Class object associated with the class or
interface with the given string name. Next, we invoke the no-
arguments constructor of the class to create and initialize a
new instance of the constructor's declaring class:

If the object’s class is CheckpointableVector, we construct
each element of the vector and add it to the new
CheckpointableVector instance created. We proceed in the
same manner for the CheckpointableHashTable objects. For
reconstructing a Checkpointable object, we obtain the fields of
the class. The values of the fields which do not represent
Checkpointable objects are set using the method set(obj,
currentField). Before this, the field was made accessible with
the setAccessible method.

If the information stored for the object is of type ValueId,
we restore the checkpoint file whose identifier was found in
the entry for the object. After this, we recursively call the
construction function with the new restored checkpoint.

VI. EXPERIMENTAL EVALUATION

A. Validation Tests

For the validation testing we constructed various scenarios
for testing our Application Programming Interface. In our tests
we used different types of objects. Each object (and object
field) was assigned an identifier and was registered with a
certain period of update. We started a thread that updated the
fields of the registered objects with the frequency of the
assigned period of update. We let the checkpoint thread run
for a few (5) maximum update periods.

We checked that each checkpoint contained the objects
that had to be checkpointed during a certain period and the
correct checkpoint ID reference for the others. We restored the
objects from various checkpoint files, obtaining the expected
objects with their identifiers. We also verified that the cleanup
thread correctly deletes the old checkpoint files and that all the
objects can be restored from the remaining files.

B. Performance Tests

We conducted a series of tests in order to establish the
performance of the checkpoint mechanism. We chose the
following periods of update: 10 seconds, 20 seconds, 50

seconds, 100 seconds and 150 seconds. The checkpoint
minimum limit is 10 seconds. The tests were conducted for
100 000 objects and 500 000 objects. Each object has been
assigned one of the periods listed above. We formed 5 groups
of equal size. We started a thread that updated the fields of the
registered objects with the frequency of the assigned period of
update and let it run until it updated five times the objects in
the category of 150 seconds. We also started the checkpoint
thread and we measured every checkpoint (processing time
and writing to file).

For the second round of tests, we started the updating
thread and a modified checkpoint thread that serialized the
whole graph of objects every 10 seconds (the minimum update
period of an object). We wanted to compare our proposed
solution with simple serialization of all the objects. Even if we
save fewer objects per checkpoint, our solution might take
more time to decide which objects it should save.

The measurements were performed on a system with Intel
Core 2 Duo, 2.5GHz, 3GB RAM.

For 100000 objects (1000 types of objects, 100 objects of
each type), the average time per checkpoint for our
implementation was 190ms, whereas for serialization of the
whole graph, the mean time per checkpoint was 220ms. Also,
the average size of a checkpoint file was 2.8MB in our
approach and 5.2MB in the serialization case.

We tested similarly with 500000 objects (1000 types of
objects, 500 objects of each type). The average time per
checkpoint for our approach was 1450ms, whereas for
serialization of the whole graph, the mean time per checkpoint
was 1600ms.

As we can see from the results presented above, we have
obtained a checkpointing overhead of about 90% of the
serialization time of the whole graph. It may not seem a
significant improvement, but in long running applications, it
can make a difference. Also, the average size of the
checkpointing files was visibly smaller in our approach,
needing less storage space. This is particularly useful for
applications that need to maintain the history of the updates.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel application-assisted
checkpoint-restart mechanism. The mechanism and its
associated API were designed for Java applications (and, thus,
our implementation is also Java-based). Experimental
evaluation has shown that our system improves upon the
standard Java serialization both in terms of running time and
(particularly) in terms of disk space.

As future work we intend to improve our checkpoint
protocol, in order to obtain better improvements in running
time compared to the standard Java serialization mechanism.
Moreover, we intend to expand our checkpoint mechanism to
distributed applications and distributed (shared) objects.

REFERENCES
[1] Eric Roman, „A Survey of Checkpoint/Restart Implementations”,

Berkeley Lab Technical Report (publication LBNL-54942), July 2002.

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E�����C�

�F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB�
 DB!C��

[2] I. Foster, C. Kesselman, J. Nick and S. Tuecke, „Grid Services for
distributed system integration”, Computer, vol. 35, no. 6, Jun. 2002, pp.
37 – 46.

[3] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa and S. Jiang, “Current
Practice and a Direction Forward in Checkpoint/Restart Implementations
for Fault Tolerance”, Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium, 2005.

[4] M. Litzkow, T. Tanenbaum, J. Basney, and M. Livny, “Checkpoint and
migration of unix processes in the condor distributed processing
system”, Computer Sciences Technical Report 1346, University of
Wisconsin, Madison, WI., 1997.

[5] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson ,”A survey of
rollback-recovery protocols in message-passing systems”, ACM
Computing Surveys, vol. 34, no. 3, Sept. 2002, pp. 375–408.

[6] P. H. Hargrove and J.C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters”, Proceedings of SciDAC 2006, publication
LBNL-60520, June 2006.

[7] S. Osman, D. Subhraveti, G. Su and J. Nieh, “The design and
implementation of Zap: A system for migrating computing
environments”, Proceesings of the 5th Symposium on Operating System
Design and Implementation (OSDI 2002), 2002, pp. 361–376.

[8] B. Chan, et al., “Science at LLNL with IBM Blue Gene/Q”, IBM Journal
of Research and Development, vol. 57, pp. 11:1-11:18, 2013.

[9] G. Zheng, “A scalable double in-memory checkpoint and restart scheme
towards exascale”, Proceedings of the 42nd IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops, 2012.

[10] K. Kharbas, et al., “Combining Partial Redundancy and Checkpointing
for HPC”, Proceedings of the 32nd IEEE International Conference on
Distributed Computing Systems, 2012, pp. 615-626.

[11] E. Feller, J. Mehnert-Spahn, M. Schoettner, and C. Morin, “Independent
checkpointing in a heterogeneous grid environment”, Future Generation
Computer Systems, vol. 28 (1), 2012, pp. 163-170.

[12] J. L. Lawall, and G. Muller, “Efficient Incremental Checkpointing of
Java Programs”, Research Report no. 3810, National Institute for
Research in Informatics and Automatics (INRIA), 1999.

[13] G. Xu, A. Rountev, Y. Tang, and F. Qin, “Efficient Checkpointing of
Java Software Using Context-Sensitive Capture and Replay”,
Proceedings of the ESEC/FSE International Conference, 2007.

