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Abstract—In this paper we present a novel application-

assisted checkpoint-restart mechanism for Java applications. The 

checkpoint-restart API provides the application developers with 

full control over what data needs to be check-pointed. The 

novelty of our system is that it allows different checkpoint 

periods for different data items. Our implementation makes full 

use of the Java Reflection API. 
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I.  INTRODUCTION 

Computer systems are prone to hardware and software 
failures, thus making checkpointing an increasingly important 
tool for them. Checkpointing is an important mechanism for 
fault tolerant systems, migration systems, load-balancing 
systems, play-back debuggers and many others. Currently, the 
major concern regarding checkpointing is the overhead, 
defined either as the amount of time added to a program due to 
checkpointing or as the extra space needed for storing the 
checkpoint files (or as a combination of both). 

In this paper we introduce an application-assisted 
checkpoint-restart mechanism for Java (multi-threaded) 
applications. The checkpoint mechanism may be backed by a 
reliable distributed storage system for the checkpoint files, thus 
ensuring data availability in case of hardware failures. The 
proposed solution is a non-transparent checkpoint-restart 
system which uses the Java Reflection Application 
Programming Interface. We base our design on the idea that 
not all the data is updated with the same frequency; in 
consequence, only part of the data has to be saved in a certain 
checkpoint file. We also provide an Application Programming 
Interface which can be used by the programmer in order to 
attain fault tolerance for his application.1 

The rest of this paper is structured as follows. In Section II 
we present the motivation for the work presented in this paper, 
as well as some of the main characteristics of our proposed 
mechanism. In Section III we discuss related work. In Section 
IV we mention several realistic applications which would 

                                                           
1 The work presented in this paper was performed while the 
author was a student in the Computer Science Department of 
the Politehnica University of Bucharest. 

benefit from the approach presented in this paper. In Section V 
we present the software architecture of the checkpoint-restart 
mechanism. In Section VI we present experimental results. 
Finally, in Section VII we conclude and discuss future work. 

II. MOTIVATION AND OVERVIEW OF THE PROPOSED 

CHECKPOINT-RESTART MECHANISM 

We chose to explore the area of non-transparent 
checkpoint-restart mechanisms which, although they are more 
intrusive from an application development perspective, 
provide the application developer with full control over the 
relevant data, allowing him to decide which data needs to be 
checkpointed. Our goal was to design a checkpoint-restart 
mechanism and to propose an associated Application 
Programming Interface for it, which would be easy to use in a 
Java multi-threaded application. We will present below the 
main advantages of non-transparent checkpointing that our 
proposed mechanism also shares, and we will present the 
specific details of our approach. 

The major advantages of application-level checkpoints are 
the reduced size of the checkpoint data and the high portability 
of the checkpoint files, thus allowing an application to be 
restarted on different machines. Another convenient feature is 
that we can save only the most important data necessary for 
the restart of the application. Regarding portability, we use 
binary checkpoints, which are only portable in the Java world, 
but the advantage over the far more portable XML files lies in 
the size of the checkpoint. 

In our design, the useful data that has to be checkpointed 
consists of selected objects of the Java application. These 
objects will not be saved all in the same checkpoint and the 
checkpoints will not be performed at fixed time intervals. 
Because not all objects are saved in the same checkpoint, 
checkpoint files will be smaller and the duration of their 
writing will also be lower. In order to be able to recover all the 
objects, at restart time, we will need a series of checkpoint 
files, not only the most recent one. This is also a bonus point 
for applications that need history. If the application cannot 
make use of the obsolete information contained in the 
checkpoints, we also provide a cleanup mechanism which 
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erases checkpoint files that contain exclusively outdated 
values. 

The automation support is another strong point of non-
transparent checkpoint restart. It may seem intrusive to have 
explicit checkpointing function calls in the code, but the effect 
is smoothed if they are integrated in the development phase of 
the application. Besides, there is a better understanding of the 
specific application needs. Also, due to the fact that the non-
transparent checkpoint is at user level, the implementation is 
simpler, as one doesn't have to program inside the kernel. 

Incremental checkpointing, saving only the data that has 
been updated from the last checkpoint, is another useful 
feature available to non-transparent approaches. This issue is 
even more important when, for fault tolerance purposes, the 
checkpoint files are saved remotely, on a distributed storage, 
accessible by all the system entities, such that if one service 
fails, a new one can be deployed on another machine, using 
the last checkpoint in order to restore the application data.  

Another advantage of non-transparent checkpoint is that 
the application doesn't need to be interrupted while 
checkpointing. Moreover, having the checkpointing 
mechanism at application level, the timing of the associated 
checkpoint, reported to the application progress and data 
updates, can be more closely controlled. In our 
implementation, checkpointing is performed by a separate 
thread that only takes action when the update period for a 
group of objects has been exceeded. However, having multiple 
threads access the same data introduces the need for 
synchronization. 

III. RELATED WORK 

Checkpointing is a method which provides an application 
with fault tolerance by recording the application’s state and 
using the saved data to restart the application in case of failure. 
Checkpointing can also be used for process hibernation 
(conserving the machine state during power cuts) or suspension 
(to save memory space or to allow rolling back to different 
states). The checkpoint file can be saved either locally, to 
stable storage, or in a remote node's memory.  

One of the checkpoint/restart methods [1] implemented in 
operating systems is based on creating a file that describes a 
process currently running. The process can then be 
"reconstructed" along with the saved state, based on the data 
from the checkpoint file. Running applications can be "saved" 
periodically (e.g. based on notifications from monitoring 
applications). Once the application status has reached a stable 
storage, the application can be restarted and reconfigured if 
necessary. Checkpoint/restart techniques can also be used to 
reduce the time the applications are stopped for maintenance 
(hardware or operating system) by migrating applications on 
another machine. In Grid and Cloud systems, 
checkpoint/restart is used to suspend or migrate jobs [2]. 

As presented in [3], checkpoint-restart mechanisms can be 
classified with respect to the context, the agent that provides 
the checkpoint-restart functionality and the implementation. 
Using the first criterion of classification, the checkpoint-restart 
implementations may be user-level or system-level. The user-

level implementations can require the programmer to use an 
existing API for checkpoint-restart when writing the 
application. Alternatively, this can be inserted automatically by 
a compiler. If we do not want to modify the source code of the 
application, the checkpoint-restart primitives can be invoked by 
signal handlers defined at user level. Another option is to use 
an environment variable, the checkpoint library being loaded 
without recompilation or relinking of the application. System-
level implementations can be deployed in the operating system 
or in hardware. For the operating system implementations there 
are many alternatives: as a kernel-mode signal handler, system 
call or kernel thread. 

System level checkpoints enable a high level of 
transparency and flexibility. The checkpoints are taken 
automatically and restarting the application can be performed 
without the user’s intervention. The major disadvantage is that 
system level checkpoints cannot use the semantic information 
available at the application level. As a result, the size of the 
checkpoint is larger. 

Implementation at the application level is often the most 
effective, given that it is known which data structures need to 
be saved and which not. But this approach presents a number 
of disadvantages. It is often not possible to change the source 
code. Another disadvantage consists of checkpoint time 
restrictions; there may be a long delay between the time when a 
checkpoint is requested and actual writing of that file on the 
disk. The major advantages of the application level checkpoints 
are the reduced size of the checkpoint data and the high 
portability of the checkpoint files, thus allowing an application 
to be restarted on a different machine. In the next section we 
mention several advantages of our application-level approach.  

Library-level implementations solve some of these 
drawbacks [4, 5]. Libraries do not require changes to 
application source code and often use a signal "handler" to 
perform the checkpoint, so the time restrictions are eliminated. 
Implementations of this type have a common procedure for 
restart. There is however a major obstacle for the 
implementation of the checkpoint/restart mechanism as a 
library: to impose restrictions on system calls that can be used 
by the application (all forms of inter-process communication 
are generally prohibited). As a result, in the case of shell scripts 
and the majority of parallel applications, a library level 
implemented checkpoint mechanism cannot be applied. 

Checkpoint/restart implementations at the operating system 
kernel level promise to eliminate much of these restrictions [6, 
7]. At this level most of the core data structures are available 
and applications can usually be saved at any time. The 
implementation of checkpoint/restart in the kernel is much 
more difficult than at application-level or as a separate library. 

BLCR [6] and Zap [7] are checkpoint/restart 
implementations in the Linux kernel, using dynamically 
loadable kernel modules that do not need the kernel source and 
do not require recompiling it. There are operating systems, 
such as IRIX produced by SGI or Unicos produced by Cray, 
where the checkpoint mechanism is implemented directly in 
the OS kernel. BLCR saves and restores the state of a process 
using an existing module, previously used to "fork" processes 
running on Beowulf distributed clusters. BLCR extended this 
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module with support for processes with multiple threads, files, 
pipes. As weaknesses, BLCR can not checkpoint at socket 
level and can not preserve the IP addresses of the checkpointed 
applications. Solution developers have left the applications or 
messaging libraries to address these issues. Also, BLCR can 
not successfully restart an application if one of the component 
process IDs are assigned to another process during the 
application restart. 

Application-assisted checkpoint-restart APIs and 
mechanisms were also developed for the IBM Blue Gene 
Architecture [8]. 

An increased level of interest for application-level 
checkpoint restart mechanisms also appeared in the exascale 
computing and high performance computing fields [9, 10]. 
Checkpointing in distributed environments (e.g. Grids) has 
been considered in [11]. 

Specific application-level checkpoint-restart mechanisms 
for Java applications have also been considered. In [12] the 
authors consider the problem of efficiently checkpointing user-
defined objects in Java applications. Their approach is similar 
to ours up to a point. First, they do no consider the possibility 
of having different checkpoint periods for the objects; instead, 
they consider incremental checkpoints, in which it is possible 
to avoid checkpointing an object if no modifications occurred. 
Second, they employ program specialization techniques in 
order to achieve efficient checkpoint implementations for 
various types of objects and modification patterns. Our 
approach is different: we define multiple types of 
checkpointable objects, e.g. checkpointable collections. In [13] 
code instrumentation techniques are used for developing a 
checkpoint-restart mechanism for Java applications. No 
support in the application source code is required (and, thus, no 
API is provided). However, a language for specifying 
checkpoint regions is defined, which needs to be used in order 
to guide the checkpointing process. Moreover, it seems that the 
developed techniques are intended for single-threaded Java 
applications only. 

IV. REALISTIC APPLICATIONS THAT WOULD BENEFIT FROM 

OUR APPROACH 

Our proposed mechanism is suited for checkpointing data-
intensive Java applications that have the following properties: 

• the managed data is represented as a graph of objects 

• various fields of the objects are updated 
(periodically) with different periods 

• the application can benefit from maintaining the 
history of the updates 

One example that meets the above criteria is a service 
similar to the Google Maps support for real time traffic. It 
recommends best routes, taking intro account the monitored 
traffic in a given city. 

Let's consider that the graph of objects of such an 
application consists of a network of Street objects. The Street 
objects are Vectors of StreetSegment  objects (the portion of a 
street between two intersections). Among the object fields of 

the StreetSegment object we can find: Intersection, 
TrafficLight, Station, LegalSpeedLimit, EstimatedTraffic, 
NavigationTime, Priority, UpdatePeriod, Accident. For a 
given StreetSegment object, the fields TrafficLight, 
EstimatedTraffic and NavigationTime are updated more often 
than Priority, UpdatePeriod, LegalSpeedLimit. 

We may safely assume that the field traffic information is 
collected and transmitted by wireless sensors powered by solar 
energy. We know that sensors communication is an energy-
wise expensive operation; we want to retrieve data at different 
periods from different locations. The Priority field quantifies 
this period for a given street segment. Depending on the time 
of day, or day of the week, we may assign higher priorities to 
very circulated streets or where traffic statistically fluctuates 
more. 

An Intersection object may contain the fields: 
StreetVector, StreetSegmentVector, TrafficLightVector, 
TraversalTime (this will be updated often). Finally, a 
TrafficLight object contains the fields: RedPeriod, 
GreenPeriod, State, PedestrianCtrlButton. RedPeriod and 
GreenPeriod are subject to frequent updates. 

Another example, this time from the networking field, is a 
data transfer scheduling service. The DataTranfer object may 
contain the following fields: NLinkVector, Rnode (controllable 
devices at the two ends of the link), StartTime, EndTime, 
ReservedParams (for example bandwidth). An NLink object is 
a collection of LinkSegment objects (a part of a link between 
routing devices). A LinkSegment may have the following 
fields: TotalBW, AvailBW, LossRate, ScheduledTransfers. 

The information about links is retrieved from monitoring 
services, at different frequencies for different links. Within a 
LinkSegment, AvailBW is the field that is updated more often, 
ScheduledTransfers is updated at longer periods, and TotalBW 
is updated very rarely (only in case of hardware infrastructure 
changes). 

V. SOFTWARE ARCHITECTURE 

A. The Checkpointing Mechanism 

An overview of our system is presented in Fig. 1. As stated 
before, our checkpoint solution is suited to (multi-threaded) 
Java applications, but it can also be applied to distributed 
applications, provided there is no (checkpointable) data 
dependency between the components of the distributed 
system. The checkpointing architecture is composed of two 
threads, the checkpoint thread and the cleanup thread, that are 
distinct from the main application threads. In this way, the 
checkpoint is performed in parallel with main application 
execution, without the need for interruption. 

The checkpoint thread takes care of all the computations 
necessary for determining which objects have to be 
checkpointed in the current checkpoint. After the data is 
written to a file, the thread suspends its execution for a 
specified period, more exactly until the next checkpoint time 
arrives for at least one of the registered objects. This is an 
efficient way of making processor time available to the other 
threads of the application or other applications that might be 
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running on the computer system. When an object is registered 
from one of the application threads, the checkpoint thread 
resumes its execution and recalculates the next checkpoint 
time, taking into account the new object’s period of update. 
The checkpoints are not taken at fixed intervals of time and 
the checkpoint times are not determined by the application 
execution. These are two advantages to our design. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Application, checkpoint and cleanup threads. 

Because at first there are no registered objects, the 
checkpoint thread suspends its execution for a long period of 
time (Long.MAX_VALUE seconds). The thread runs in a 
continuous loop. The programmer can use the 
stopCheckpoint() method for stopping the thread. As a first 
action (repeated after each checkpoint), the checkpoint thread 
retrieves the next checkpoint time from a priority queue. After 
this, the thread suspends its execution for a specified period of 
time - until the next checkpoint time arrives for at least one of 
the registered objects. If an object is registered from one of the 
application threads, the checkpoint thread resumes its 
execution before the next checkpoint time arrives (it receives 
an interrupt from the application thread) and gets the next 
checkpoint time, taking into account the new object’s period 
of update. 

We define the period of update of an object as the period 
between two checkpoints for this object. The period of update 
can be seen as a few (usually 5) time intervals in which the 
object is updated or simply as a period of time that the 
programmer considers appropriate between checkpoints for 
that object. The programmer registers an object with the 
checkpoint thread, providing a period of update for the 
respective object and an object identifier. If an object has a 
field which implements the Checkpointable interface, it will 
automatically be registered with a default period of update 
during the first checkpoint of the object. 

The new object’s period of update is inserted in the 
priority queue in the registration function. If there are no new 
registered objects, the thread resumes its execution after the 
specified period of time and checkpoints the objects. 

Afterwards, it computes the next checkpoint time for the most 
recently checkpointed objects and it leaves the next 
checkpoint time unmodified for the rest of the objects. The last 
step of the loop is the traversal of the unregistered objects list 
and the removal from the data structures used by the 
checkpointing mechanism (a hash table and a priority queue) 
of the unregistered objects’ entries. This step takes place after 
each checkpoint in order to be able to ensure a consistent state 
of the hash table entries. 

Because we have many threads accessing the same data, 
we need synchronization mechanisms for accessing the 
objects. In the checkpoint method checkpointObject(Object 
obj), the object obj is read using synchronized statements. 
Note that the application threads must also access (read/write) 
the object in the same manner. 

If the object is checkpointed for the first time, the 
checkpointObject method will run recursively on the object’s 
fields which are also Checkpointable objects. In order to avoid 
a deadlock, we keep a list of the Checkpointable fields and we 
checkpoint them after releasing the object’s lock. Because the 
objects are registered from another thread than the checkpoint 
thread, the priority queue used for computing the next 
checkpoint time is a PriorityBlockingQueue, which is thread-
safe. The list of unregistered objects is a 
CopyOnWriteArrayList, which is also thread-safe. 

The cleanup thread's role consists of deleting the 
unnecessary checkpoint files. It runs at fixed intervals of time. 
The cleanup thread is started only if the programmer specifies 
this argument at the initialization of the Checkpoint object. Its 
role consists of deleting the unnecessary checkpoint files. As 
described above, in order to be able to recover all the objects 
we need a series of checkpoint files, not only the last one. The 
cleanup thread determines which files are not part of this 
series and deletes them. 

B. Proposed Application Programming Interface 

First of all, a class has to implement the Checkpointable 
interface in order to be registered with the checkpoint 
mechanism. Secondly, the class needs to have a no-argument 
constructor. Also, the access to the registered objects has to be 
synchronized when modifying the object. 

The Application Programming Interface consists of the 
following Java classes: 

Checkpoint 

• public Checkpoint (String fileName, String 
directoryName, boolean performCleanup) - Constructs a 
Checkpoint object. The checkpointed data will be saved in the 
specified directory and in files which have the given name and 
an identifier appended at the end of the name. If the boolean 
flag is set to true, the cleanup thread will delete the 
unnecessary checkpoint files, otherwise all checkpoint files 
will be kept. 

• public boolean registerObject(Object obj, String 
identifier, int periodOfUpdate) - Registers an object with the 
identifier identifier and the period of update periodOfUpdate. 
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The method returns true if the registration is successful and 
false otherwise. 

• public void unregisterObject(Object obj) - 
Unregisters the specified object. This object will not be 
checkpointed anymore. 

• public void stopCheckpoint() - Stops the checkpoint 
thread from running. No more checkpoints will be performed. 

• public HashMap<String, Object> restore(String 
filename, String directoryname) - The method returns a 
HashMap with the checkpointed objects, constructed from the 
most recent series of checkpoints. The key of the HashMap 
represents the identifier given to the object at registration.  

We also provide support for checkpointable collections. 
The idea behind the checkpointable collections is that the 
elements of a collection or a map could have different periods 
of update, thus allowing the elements to be saved during 
different checkpoints. A normal collection or map defined by 
the Java JDK cannot be registered. A collection or map which 
represents a field of a Checkpointable object implicitly 
inherits the object’s period of update and it will have all its 
elements saved at the same time. The collections from our API 
have a period of update which is used for updating the changes 
made on the collections themselves (i.e. adding or removal of 
an element). Our API offers support for two collections: 
CheckpointableVector and CheckpointableHashTable. 

 

CheckpointableVector<T> 

• public CheckpointableVector(Checkpoint ckp, String 
identifier, int periodOfUpdate) - Constructs a new 
CheckpointableVector and registers it with the identifier 
identifier and the period of update periodOfUpdate. 

• public void add(T o, Checkpoint ckp, String 
identifier, int periodOfUpdate) - Appends the specified 
element to the end of this list and registers it with the  
identifier identifier and the period of update periodOfUpdate. 

• public void add(int index, T o, Checkpoint ckp, 
String identifier, int periodOfUpdate) - Inserts the specified 
element at the specified position in this list and registers it 
with the identifier identifier and the period of update 
periodOfUpdate. 

• public T remove(T o, Checkpoint ckp) - Removes the 
element from this list and unregisters it. 

• public T remove(int index, Checkpoint ckp) - 
Removes the element at the specified position in this list and 
unregisters it. 

 

CheckpointableHashTable<K,V> 

• public CheckpointableHashTable(Checkpoint ckp, 
String identifier, int periodOfUpdate) - Constructs a new 
CheckpointableHashTable and registers it with the identifier 
identifier and the period of update periodOfUpdate. 

• public void put(K key, V value, String identifier, 
Checkpoint ckp, int periodOfUpdate) - Associates the 
specified value with the specified key in this map and registers 
it with the identifier identifier and the period of update. 

public V remove(K key, Checkpoint ckp) - Removes the 
mapping for this key from this map if present and unregisters 
the object associated with the key. 

C. Data Structures 

When an object is registered with the checkpoint 
mechanism, the programmer provides the period of update 
through a parameter of the registration’s function. If the period 
of update given as a parameter is below the 
CHECKPOINT_LIMIT, the period of update of the object will 
be automatically considered to be the CHECKPOINT_LIMIT. 
The objects’ periods of update are stored in a hash-table. We 
use a HashMap structure in order to have a O(1) (constant 
time) access to the periods of update. 

We also need an efficient structure for calculating the 
checkpoint time for each registered object. We use a heap 
structure ordered by the time in the future when the objects 
have to be checkpointed. In Java, we have the PriorityQueue 
class, which is a priority queue based on a priority heap. The 
elements of the priority queue are pairs which consist of the 
key of the object obtained using the 
System.identityHashCode() function and its next time of 
checkpoint. The next time of checkpoint is calculated as the 
current time returned by the System.currentTimeMillis() plus 
the period of update: Using a priority queue for keeping the 
next checkpoint times for the objects has several advantages. 
Firstly, we retrieve the next checkpoint time in O(1) time. 
Secondly, having the objects sorted by the time of checkpoint 
allows us to checkpoint only the elements from the priority 
queue which have the next checkpoint time lower than the 
current time plus an interval of time defined by a private field 
of the Checkpoint class. We use this interval of time, 
EPS_TIME, in order to include in the current checkpoint those 
objects with next checkpoint times very close in the future to 
the actual time. As a result, we eliminate the possibility of 
taking two checkpoints too close in time to one another. Our 
goal is not to take checkpoints below the 
CHECKPOINT_LIMIT time, so as to avoid the unnecessary 
load on the system. 

We designed a checkpoint hash-table structure that holds 
the actual objects along with metadata used to construct the 
objects, since not all programmer registered objects and 
automatically registered objects are saved in the same 
checkpoint. We also store the necessary information for 
determining the times at which the objects have to be 
checkpointed. An object may be constructed solely from 
entries of the hash-table from the most recent checkpoint or it 
may have fields which are stored in prior checkpoints. 
Moreover, in the hash-table checkpoint we could have only 
the identifier of a prior checkpoint where the object is actually 
stored. As a result, in order to restore the checkpointed data, 
we do not need only the most recent checkpoint file, but 
instead we need a series of checkpoint files. In our 
implementation we actually store in memory two checkpoint 
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hash-tables, the one constructed during the previous 
checkpoint and the one constructed during the current 
checkpoint, in order to avoid iterating recursively through the 
list of registered objects and their fields, at every checkpoint. 

The key of the hash-table is an integer obtained using the 
System.identityHashCode() function, which returns a unique 
hash code value for the object. The values stored in the hash-
table for each entry depend on the given object’s type. We 
store different information for a Checkpointable object, a 
CheckpointableVector and a CheckpointableHashTable. Also, 
if the object is not to be saved in the current checkpoint, the 
value holds only the identifier of the previous checkpoint 
where the object can be found. There are four types of values 
stored in the hash-table: ValueId, ValueObject, ValueVector 
and ValueHash. 

For a Checkpointable object we use the ValueObject which 
has:  

• a string representing the object’s class name 

• the identifier (string) of the object as given at 
registration or null if the object is automatically registered 

• a list of keys and objects, depending on the object’s 
fields (obtained with the aid of the Java Reflection Application 
Programming Interface) 

• the object’s period of update 

If an object’s field implements the Checkpointable 
interface, we save in the list the key of the entry in the hash-
table for this field. Otherwise, if the field is one of the 
following: a primitive data type, a String, a primitive wrapper 
class type, we add in the list directly the value of the field. 

The final and static fields are not saved, since these types 
of fields are considered to represent the state of the class, not 
that of a particular object. In addition to this, the fields of a 
Checkpointable object which do not implement the 
Checkpointable interface will not be registered in the hash-
table and, consequently, will not be saved in checkpoints. 

 For a CheckpointableVector we use the ValueVector, 
which stores: 

• a hash-table: the key is the position of the element 
and the value is represented by the key calculated using the 
System.identityHashCode() function for the element 

• the identifier (string) of the vector as given at 
registration 

• the vector’s period of update. 

For a CheckpointableHashTable, the ValueHash contains: 

• a hash-table: the key is represented by the key from 
the CheckpointableHashTable hash-table for the element and 
the value is represented by the key calculated using the 
System.identityHashCode() function for the element 

• the identifier (string) of the hash table as given at 
registration  

• the hash-table’s period of update. 

D. Saving Data to Checkpoint Files and Restoring Data 

Saving data to files. The hash-table structure is serialized 
and saved in a file which has the name given by the user and 
the checkpoint identifier appended to this name. In order to 
reduce the size of the checkpoint file and to reduce the 
serialization time, we implemented the Externalizable 
interface for the Value objects. The Value interface extends 
the Externalizable interface. The ValueId, ValueHash, 
ValueVector and ValueObject classes implement two 
additional methods: 

• public void writeExternal (ObjectOutput out) throws 
IOException; 

• public void readExternal (ObjectInput in) throws 
IOException, ClassNotFoundException; 

In this way we defined our own protocol for writing to and 
reading from the checkpoint file. For ValueId we use only 
writeInt() and readInt(). For ValueObject we use writeInt() 
and readInt() for the period of update, writeUTF() and 
readUTF() for the name of the class, and for the list we first 
write its size and then write every object with writeObject() 
and read the object with readObject(). We proceed in the same 
manner for ValueVector and ValueHash and for the hash-table 
structure. There is no difference in how a class that 
implements Externalizable is used. When we call 
writeObject() or readObject(), the two methods will be called 
automatically. 

The ValueId class is used for an object which must not be 
saved in the current checkpoint. We store only the identifier of 
the most recent checkpoint where the object can be found. The 
structure of the hash-table is presented in the following figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2. Checkpoint hash table structure. 

Restoring Data. Our proposed Application Programming 
Interface provides a method called restore, which returns a 
HashMap containing the registered objects reconstructed using 
the data from the checkpoints. The key of the hash represents 
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the identifier given as an argument for the registration 
function. 

Firstly, given the name of the checkpoint file and the 
directory where the files were being saved, the function 
determines the most recent checkpoint file, using a 
FilenameFilter. Secondly, the hash-table contained in this 
checkpoint file is deserialized and, after this, we iterate 
through the keys’ set, constructing each object, using Java 
Reflection. An object is added to the list of restored objects 
and is automatically re-registered, thus allowing it to be saved 
at the next checkpoint according to its period of update.   

The function recursively constructs an object, using the 
information from the corresponding entry stored in the hash-
table. If the information for constructing the object is found in 
the current checkpoint, we get the object’s class name and, 
afterwards, we use the static method Class.forName(String x), 
which returns the Class object associated with the class or 
interface with the given string name. Next, we invoke the no-
arguments constructor of the class to create and initialize a 
new instance of the constructor's declaring class: 

If the object’s class is CheckpointableVector, we construct 
each element of the vector and add it to the new 
CheckpointableVector instance created. We proceed in the 
same manner for the CheckpointableHashTable objects. For 
reconstructing a Checkpointable object, we obtain the fields of 
the class. The values of the fields which do not represent 
Checkpointable objects are set using the method set(obj, 
currentField). Before this, the field was made accessible with 
the setAccessible method. 

If the information stored for the object is of type ValueId, 
we restore the checkpoint file whose identifier was found in 
the entry for the object. After this, we recursively call the 
construction function with the new restored checkpoint. 

VI. EXPERIMENTAL EVALUATION 

A. Validation Tests 

For the validation testing we constructed various scenarios 
for testing our Application Programming Interface. In our tests 
we used different types of objects. Each object (and object 
field) was assigned an identifier and was registered with a 
certain period of update. We started a thread that updated the 
fields of the registered objects with the frequency of the 
assigned period of update. We let the checkpoint thread run 
for a few (5) maximum update periods. 

We checked that each checkpoint contained the objects 
that had to be checkpointed during a certain period and the 
correct checkpoint ID reference for the others. We restored the 
objects from various checkpoint files, obtaining the expected 
objects with their identifiers. We also verified that the cleanup 
thread correctly deletes the old checkpoint files and that all the 
objects can be restored from the remaining files. 

B. Performance Tests 

We conducted a series of tests in order to establish the 
performance of the checkpoint mechanism. We chose the 
following periods of update: 10 seconds, 20 seconds, 50 

seconds, 100 seconds and 150 seconds. The checkpoint 
minimum limit is 10 seconds. The tests were conducted for 
100 000 objects and 500 000 objects. Each object has been 
assigned one of the periods listed above.  We formed 5 groups 
of equal size. We started a thread that updated the fields of the 
registered objects with the frequency of the assigned period of 
update and let it run until it updated five times the objects in 
the category of 150 seconds. We also started the checkpoint 
thread and we measured every checkpoint (processing time 
and writing to file). 

For the second round of tests, we started the updating 
thread and a modified checkpoint thread that serialized the 
whole graph of objects every 10 seconds (the minimum update 
period of an object). We wanted to compare our proposed 
solution with simple serialization of all the objects. Even if we 
save fewer objects per checkpoint, our solution might take 
more time to decide which objects it should save. 

The measurements were performed on a system with Intel 
Core 2 Duo, 2.5GHz, 3GB RAM. 

For 100000 objects (1000 types of objects, 100 objects of 
each type), the average time per checkpoint for our 
implementation was 190ms, whereas for serialization of the 
whole graph, the mean time per checkpoint was 220ms. Also, 
the average size of a checkpoint file was 2.8MB in our 
approach and 5.2MB in the serialization case. 

We tested similarly with 500000 objects (1000 types of 
objects, 500 objects of each type). The average time per 
checkpoint for our approach was 1450ms, whereas for 
serialization of the whole graph, the mean time per checkpoint 
was 1600ms. 

As we can see from the results presented above, we have 
obtained a checkpointing overhead of about 90% of the 
serialization time of the whole graph. It may not seem a 
significant improvement, but in long running applications, it 
can make a difference. Also, the average size of the 
checkpointing files was visibly smaller in our approach, 
needing less storage space. This is particularly useful for 
applications that need to maintain the history of the updates. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we presented a novel application-assisted 
checkpoint-restart mechanism. The mechanism and its 
associated API were designed for Java applications (and, thus, 
our implementation is also Java-based). Experimental 
evaluation has shown that our system improves upon the 
standard Java serialization both in terms of running time and 
(particularly) in terms of disk space. 

As future work we intend to improve our checkpoint 
protocol, in order to obtain better improvements in running 
time compared to the standard Java serialization mechanism. 
Moreover, we intend to expand our checkpoint mechanism to 
distributed applications and distributed (shared) objects. 
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