An activity model for phase equilibria in the H2O-CO2-NaCl system
Benoît Dubacq, Mike J. Bickle, Katy A. Evans

To cite this version:

HAL Id: hal-00817855
https://hal.archives-ouvertes.fr/hal-00817855
Submitted on 25 Apr 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An activity model for phase equilibria in the H₂O-CO₂-NaCl system

Benoît Dubacq a,b,∗, Mike J. Bickle a, Katy A. Evans c

a Dept. of Earth Sciences, Univ. of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
b ISTeP, UMR 7193, UPMC, Univ. Paris 06, CNRS, F-75005 Paris, France
c Dept. Applied Geology, Curtin Univ. of Technology, GPO Box U1987 Perth, WA 6845, Australia

Abstract

We present a semi-empirical thermodynamic model with uncertainties that encompasses the full range of compositions in H₂O-CO₂-NaCl mixtures in the range of 10-380°C and 1-3500 bars. For binary H₂O-CO₂ mixtures, the activity-composition model is built from solubility experiments. The parameters describing interactions between H₂O and CO₂ are independent of the absolute thermodynamic properties of the end-members and vary strongly non-linearly with pressure and temperature. The activity of water remains higher than 0.88 in CO₂-saturated solutions across the entire pressure-temperature range. In the H₂O-NaCl system, it is shown that the speciation of aqueous components can be accounted for by a thermodynamic formalism where activities are described by interaction parameters varying with intensive properties such as pressure and temperature but not with concentration or ionic strength, ensuring consistency with the Gibbs-Duhem relation. The thermodynamic model reproduces solubility experiments of halite up to 650°C and 10 kbar, and accounts for ion pairing of aqueous sodium and chloride ions with the use of associated and dissociated aqueous sodium chloride end-members whose relative proportions vary with salinity. In the H₂O-CO₂-NaCl system, an activity-composition model reproduces the salting-out effect with in-
teractions parameters between aqueous CO$_2$ and the aqueous species created by halite dissolution. The proposed thermodynamic properties are compatible with the THERMOCALC database (Holland and Powell, J.M.G., 2011, 29, 333-383) and the equations used to retrieve the activity model in H$_2$O-CO$_2$ can be readily applied to other systems, including minerals.

Keywords: Fluid-rock interactions, activity-composition model, H$_2$O-CO$_2$-NaCl, CO$_2$ solubility, minerals solubility, speciation, thermodynamics, salting-out effect, Carbon Capture and Storage, Enhanced Oil Recovery, water activity

1. INTRODUCTION

Fluids play a key role in the evolution of the lithosphere, at the surface (e.g. Nesbitt and Markovics, 1997; Tipper et al., 2006), where crust is created at subduction zones (e.g. Tatsumi, 1989; Hacker et al., 2003) as well as in the deep crust and upper mantle (Newton et al., 1980; Thompson, 1992), in seawater composition (Edmond et al., 1979), seismicity (Chester et al., 1993), mantle dynamics (Molnar et al., 1993), exhumation of subducted material (Angiboust et al., 2012), ore deposits (e.g. Wilkinson and Johnston, 1996, for H$_2$O-CO$_2$-NaCl) and melting (White et al., 2001). Aqueous solutions transform their host rock by dissolution - precipitation reactions and ion exchange, transporting geochemical fluxes and changing rock properties.

Concern about the environmental impacts of greenhouse gases emissions has created an interest in geological carbon storage where safe, long-term storage will require prediction of reactions between CO$_2$, aqueous formation fluids and reservoir minerals (Bickle, 2009; Wigley et al., 2012). Understanding the behavior of
mixed H₂O-CO₂ fluids is also important for modeling the global carbon cycle and estimating metamorphic CO₂ fluxes (Kerrick and Caldeira, 1998; Becker et al., 2008).

Description, quantitative modeling and prediction of these phenomena is based on knowledge of the thermodynamic properties of end-member minerals, fluids, and solutes, as well as activity-composition relationships, which describe the thermodynamic properties of mixtures as a function of their composition. Reaction rates have also been shown to depend on the approach to equilibrium.

Although the thermodynamic properties of mineral and fluid end-members are relatively well known, Oelkers et al. (2009) highlighted the importance of using internally consistent thermodynamic databases in geochemical modeling. Research in metamorphic petrology has produced reliable internally consistent thermodynamic databases, amongst which the regularly updated databases of THERMOCALC (Holland and Powell, 1998; Powell et al., 1998; Holland and Powell, 2003, 2011) and TWEEQ (Berman, 1988; Berman and Aranovich, 1996; Aranovich and Berman, 1996) provide thermodynamics properties for more than 150 minerals of petrological interest each, where enthalpies of formation of various end-members at standard state and their uncertainties have been estimated from calorimetric measurements and phase equilibria. THERMOCALC can be used with the database of Helgeson et al. (1981) for aqueous fluids and incorporates the facility for error propagation and for complex activity-composition calculations in fluids and mineral phases. However, replication of observed fluid properties by activity-composition expressions, particularly for salt-rich, mixed solvent fluids at pressure-temperature conditions where liquid and gas phases coexist, in the regions of the critical points of CO₂ and of water, and along the critical mixing
line of their mixtures, has proved more challenging.

A number of workers has developed activity-composition relationships for fluids that are salt-rich and/or mixed solvent and/or mixed phase or close to the critical point (e.g. Helgeson et al., 1981; Pitzer, 1973; Pitzer and Mayorga, 1973; Pitzer and Simonson, 1986; Chapman et al., 1989; Clegg and Pitzer, 1992; Clegg et al., 1992; Duan and Sun, 2003; Ji et al., 2005; Duan et al., 2006; García et al., 2006; Ji and Zhu, 2012). However, there is still a need for a model that:

1. replicates available data for mixed phase, salt-rich, mixed-solvent fluids over a large range of pressures and temperatures;
2. allows realistic propagation of uncertainties;
3. allows dissociation of ionic solutes such as NaCl;
4. can be extended readily to more complex systems;
5. is compatible with existing thermodynamic databases and software\(^1\);
6. is based on a relatively small number of fitted thermodynamic quantities, which facilitates fits for systems where data are sparse;
7. is based on physically realistic expressions with a minimum reliance on empirical expressions such as power-law series. Such an approach increases the ability of a model to extrapolate beyond the limits of experimental data.

In this paper, we use the the Debye-Huckel ASymmetric Formalism (DH-ASF) model developed by Evans and Powell (2006) to describe activity-composition

\(^1\)Mineral phases in fluid-rock systems in CO\(_2\) sequestration and geothermal environments have a strong influence on fluid compositions via fluid-rock reaction, and almost always involve phases with complex activity-composition relationships such as ternary carbonates and feldspars. At this time, there is no software capable of combining the most recent and sophisticated activity-composition models for fluids and mineral phases.
relations between H$_2$O-CO$_2$-NaCl in mixed solvent fluids up to 10 kbars and 650°C. The model is compatible with the computer program THERMOCALC. First, phase diagrams are constructed with the ASF model applied to the binary mixture of water and carbon dioxide. Then the DH-ASF model is parameterized to reproduce experimental results of halite solubility in water, taking the pairing of aqueous Na$^+$ and Cl$^-$ into account. Finally, the effect of aqueous NaCl on CO$_2$ solubility is fitted in the H$_2$O-CO$_2$-NaCl system. The choice of the H$_2$O-CO$_2$-NaCl chemical system is dictated by its geological importance and the large number of experimental results available. The approach is designed to be readily extended to additional end-members.

2. APPROACH FOR THERMODYNAMIC MODELING

There are a number of published approaches to modeling water-gas-minerals interactions and the dissolved species they involve. The fundamental challenges in modeling the thermodynamics of fluids are the choices of components and the parameterizations used to describe activity-composition relationships.

2.1. Terminology

In the following, we use end-members for components, defined as the smallest set of chemical formulae needed to describe the composition of all the phases in the system (Anderson and Crerar, 1993; Spear, 1993). We model thermodynamic equilibrium and the phases considered here are assumed to be chemically and physically homogeneous substances bounded by distinct interfaces with adjacent phases and may be minerals exhibiting solid-solutions, melts, aqueous liquids, gases or supercritical fluids.

A key to all symbols is provided in Table 1.
2.2. Thermodynamic background

The Debye-Hückel limiting law (Debye and Hückel, 1923a,b) and its extensions (e.g. Helgeson et al., 1981) have been extensively used to calculate the thermodynamic properties of solutions for geological applications but are restricted to ionic strengths below 0.1 molal, whereas solutions of interest such as sedimentary brines and metamorphic fluids have often higher ionic strengths (e.g. Houston et al., 2011).

The Pitzer model (Pitzer, 1973; Pitzer and Mayorga, 1973; Pitzer and Simonson, 1986; Clegg and Pitzer, 1992; Clegg et al., 1992) has provided a framework to express the activity coefficient, γ, of aqueous species at higher ionic strengths and can be applied to salt-bearing solutions from infinite dilution to fused salt mixtures. The large range of concentrations is accounted for by an activity model describing a short-range force term for highly-concentrated solutions, with interaction parameters fitted to a convenient expression such as a Margules expansion (e.g., Pitzer and Simonson, 1986), to which is added a Debye-Hückel term resulting from long-range ionic forces which dominate at low concentrations.

A different approach has been suggested by Duan et al. (2006) who proposed an activity model to calculate the solubility of CO$_2$ in aqueous fluids by mapping variations of the fugacity coefficient ϕ_{CO_2} in the two-phase mixture. ϕ_{CO_2} is linked to the activity of CO$_2$ in the mixture, a_{CO_2}, such as $a_{\text{CO}_2} = \frac{\phi_{\text{CO}_2}}{\phi_{\text{CO}_2}^0}X_{\text{CO}_2}$, where $\phi_{\text{CO}_2}^0$ is the fugacity coefficient of CO$_2$ in its pure phase and X_{CO_2} the mole fraction of CO$_2$ in the gas phase (Flowers, 1979). The ratio $\frac{\phi_{\text{CO}_2}}{\phi_{\text{CO}_2}^0}$ is the activity coefficient γ_{CO_2} (e.g., Holland and Powell, 2003). Duan and Sun (2003) note that ϕ_{CO_2} differs very little from $\phi_{\text{CO}_2}^0$ at temperatures between 0 and 260°C for all pressures lower than 2kbar, and subsequently assume them to be equal so that $\gamma_{\text{CO}_2} = 1$ and
\[a_{\text{CO}_2} = X_{\text{CO}_2}. \]

Duan et al. (2006) have extended this assumption to a mixing scheme where \(\phi_{\text{CO}_2} \) is only a function of pressure and temperature. However it is incorrect at conditions close to the closure of the H\(_2\)O-CO\(_2\) solvus because experimental results imply \(\gamma_{\text{CO}_2} \neq 1 \) (e.g. Todheide and Franck, 1963). We show below that \(\gamma_{\text{CO}_2} = 1.07 \) at 100°C - 1bar and \(\gamma_{\text{CO}_2} = 1.35 \) at 260°C - 2kbar.

Furthermore, assumptions in Duan and Sun (2003) reduce the chemical potential of CO\(_2\) in the gas phase \((\mu_{\text{CO}_2}^v(P, T, y) = RT \ln(P - P_{\text{H}_2\text{O}}) + RT \ln(\phi_{\text{CO}_2}^0), \) where \(y \) is amount of CO\(_2\) in the gas phase, \(T \) is temperature, \(P \) is pressure, and \(P_{\text{H}_2\text{O}} \) is boiling pressure for pure water at \(T \). This assumes that CO\(_2\) has no enthalpy of formation and describes \(\mu_{\text{CO}_2}^v \) as independent of the composition of the mixture but sensitive to \(P_{\text{H}_2\text{O}} \), even when the composition tends towards pure CO\(_2\). This model is therefore inconsistent with other work (e.g., Holland and Powell, 1998), and also has the disadvantage that little information is provided on the activity of water in the mixture.

SAFT (Statistical Associating Fluid Theory, Chapman et al., 1989) equations of state (EOS) can be altered to describe variations of \(\phi_{\text{CO}_2} \) and have been shown by Ji et al. (2005) and Ji and Zhu (2012) to reproduce well the experimentally-derived solubility and density of H\(_2\)O-CO\(_2\) mixtures to which their short-range parameters are fitted over the range 20-200°C and 1-600 bars. However their predictive power is not greater than other semi-empirical, simpler models.

2.3. The ASF and DH-ASF models

In this study, we use both the ASF model developed by Holland and Powell (2003) and its extension for aqueous species (DH-ASF, from Evans and Powell, 2006). ASF and DH-ASF are frameworks for activity-composition models used in the THERMOCALC software together with its internally consistent database.
2.3.1. ASF

For a binary mixture, the ASF model is essentially equivalent to the sub-regular model (e.g. Thompson, 1967) where the shape of the Gibbs free energy function along the mixture is a function of two Margules parameters determining the activity coefficients needed to describe the non-ideal mixing (see De Capitani and Peters, 1982). ASF differs from the sub-regular model in that it links the shape of the Gibbs free energy function along a mixture to the relative molar volumes of the end-members, in a mixing scheme derived from the van Laar equation, and there are no ternary interaction parameters in ASF.

The chemical potential of an end-member \(l \) in a solution can be expressed as:

\[
\mu_l(x_l) = \mu_l^0 + RT \log(x_l) + RT \log(\gamma_l)
\]

(1)

where \(R \) is the ideal gas constant, \(T \) is temperature, \(\mu_l \) is the chemical potential of \(l \), \(\mu_l^0 \) the chemical potential of \(l \) at standard pressure and temperature, \(x_l \) is the mole fraction of \(l \) and \(\gamma_l \) the activity coefficient of \(l \). With the ASF formalism of Holland and Powell (2003), a single activity-composition model constrains the activities of the two end-members in the two phases along a binary mixture. The activity coefficient \(\gamma_l \) of \(l \) in a system with \(n \) end-members is expressed as:

\[
RT \log(\gamma_l) = -\sum_{i=1}^{n-1} \sum_{j>i}^{n} q_i q_j W_{ij}^\ast
\]

(2)

where \(i \) and \(j \) are end-members of the mixture, \(q_i = 1 - \Phi_i \) when \(i = l \), and \(q_i = -\Phi_i \) when \(i \neq l \) where \(\Phi_i \) and \(W_{ij}^\ast \) are the size parameter-adjusted proportion and interaction energy defined respectively as:

\[
\Phi_i = \frac{x_i \alpha_i}{\sum_{j=1}^{n} x_j \alpha_j}
\]

(3)
\[W_{ij}^* = W_{ij} \frac{2\alpha_i}{\alpha_i + \alpha_j} \] (4)

\(W_{ij} \) describes the magnitude of the excess Gibbs free energy function in terms of the parameters \(\alpha_l \) attributed to each end-member. This model yields the following expression for the excess Gibbs energy \(G_{xs_m}(x) \) of a mixture comprised of \(n \) end-members:

\[
G_{xs_m}(x) = \sum_{l=1}^{n} x_l R T \log(\gamma_l) = \sum_{i=1}^{n-1} \sum_{j>i}^{n} \Phi_i \Phi_j \frac{2\sum_{l=1}^{n} \alpha_l x_l^2}{\alpha_i + \alpha_j} W_{ij}
\] (5)

The asymmetry of the excess Gibbs free energy function is controlled by the ratio of the different \(\alpha \) values, which describe the properties of the end-members in the mixture and have been primarily related to their relative volumes in the mixture, although these parameters may be adjusted to fit experimental constraints (Holland and Powell, 2003). There are therefore \(n - 1 \) independent \(\alpha \) parameters and one of them may be set to unity (Holland and Powell, 2003). In a binary \(i - j \) solution where \(\alpha_i = \alpha_j \), the model is symmetric and the expression of \(G_{xs_m}(x) \) reduces to the sub-regular symmetric model where \(G_{xs_m}(x) = W_{ij} x_i x_j \). The ASF model assumes that neither \(\alpha_i \) nor \(W_{ij} \) vary with the composition of the solution although they may vary with pressure and temperature to satisfy the Gibbs-Duhem equation (see Spear, 1993).

In the case of a binary mixture with a solvus, \(\alpha_i \) and \(W_{ij} \) can be evaluated solely from the compositions at binodal equilibrium and/or from the conditions of critical mixing, a separation of a two-phase system from a single-phase system. Details of the derivation of the parameters are given in Appendix A where the equations have been obtained in a manner similar to the derivation of De Capitani and Peters (1982) for the subregular model. It is noteworthy that in this case the
chemical potentials of the end-members at standard state are not required to calculate compositions along solution binaries; it is thus possible to construct phase diagrams of binary solutions from the activity model alone, which can therefore be used with any database. Uncertainties on the activity-composition model may then be estimated independently from the uncertainties on the thermodynamic properties of the end-members.

2.3.2. DH-ASF

The DH-ASF model of Evans and Powell (2006) is an extension for aqueous species of the ASF model. DH-ASF shares fundamental similarities with Pitzer models in that it adds a short-range force term (described by ASF) to the Debye-Hückel term to express the excess Gibbs energy of a mixture. DH-ASF and ASF both use standard states where the considered component is in its pure phase ($x = 1$) and has unit activity at any pressure and temperature. For aqueous species, DH-ASF includes components for which thermodynamic data are derived from dilute solutions and therefore their standard state is always hypothetical. A schematic representation of the variations of the chemical potential of an aqueous species with concentration is shown in appendix B together with the standard state used here and the usual 1M standard state. Details of the method are described by Evans and Powell (2006) and the corresponding codes have been made available by Evans and Powell (2007). With this method, it is possible to model mixed solvent fluids because no distinction is made between constituents forming both co-solvents and what would be traditionally viewed as a solute, such as CO$_2$, in which case the concept of solvent and solutes becomes restrictive. The method uses mean ionic compounds to describe aqueous species. For charged species such as A$^{n+}$ and B$^{m-}$, mean ionic compounds are obtained by summing cations
and anions to form $m + n$ hypothetical neutral species $(A_mB_n\pm)^{1/(m+n)}$. This ensures the electro-neutrality of the mixture and allows a simple description of ion pairing and common ion effects. The stoichiometric factor of $1/(m + n)$ ensures that the calculated number of moles of entities present in solution is correct, which is important for the entropy contributions to the free energy. For example, one mole of CaCl_2 dissolving into one mole of Ca^{2+} and two moles of Cl^-, with no ion pairing, would produce three moles of $(\text{CaCl}_2\pm)^{1/3}$.

The thermodynamic properties of mean ionic compounds are calculated from the sum of the properties of their constituents and extrapolated to standard state at unit mole fraction as shown in appendix B.

Evans and Powell (2006, 2007) proposed parameterizations using DH-ASF in several binary and ternary systems, including $\text{H}_2\text{O}-\text{CO}_2-\text{NaCl}$, at temperatures greater than 400°C, where mixing parameters are either constant, linear functions of temperature, or proportional to the volume of water. Such simple models do not express activity-composition data adequately at lower pressures and temperatures, such as in the range of the two-phase $\text{H}_2\text{O}-\text{CO}_2$ domain (Fig. 1) because experimental results imply mixing parameters vary non-linearly with pressure, temperature and the properties of the solvent as shown later.

2.4. Selected equations of state

For aqueous species, we use the EOS of Holland and Powell (1998), modified from Holland and Powell (1990) to incorporate the density model of Anderson et al. (1991). This EOS is selected as a simple tool to estimate the thermodynamic properties of aqueous species at standard state over a large range of pressures and temperatures. We use the EOS for water given in the 2009 revised release of the International Association for the Properties of Water and Steam (IAPWS, avail-
able at http://www.iapws.org) and the Sterner and Pitzer (1994) EOS for CO₂ to calculate their respective densities, volumes and fugacities. The other routines for calculation of fugacities investigated during our study are not appropriate for the pressure and temperature range of interest: the CORK EOS (Holland and Powell, 1991) have not been constrained at temperatures lower than 100°C for either water or carbon dioxide, and the EOS derived by Pitzer and Sterner (1994), currently used in THERMOCALC, fails to reproduce the density of water accurately at temperatures less than 130°C with a maximum density at about 45°C at all pressures less than 1kb rather than at 4°C at 1 bar. We also use the equations given by the IAPWS in their 1997 release to calculate the dielectric constant of water. The thermodynamic properties of the end-members used in this study are taken from the THERMOCALC database (Powell et al., 1998; Holland and Powell, 1998, 2003, 2011).

3. BINARY MIXTURES OF H₂O AND CO₂

The phase diagram controlling the solubilities of CO₂ and H₂O in the aqueous and CO₂-rich phases can be modeled with two components, for which we use the end-members H₂O and CO₂. Supplementary components such as carbonate species in the aqueous solutions are not required to calculate solubilities.

3.1. Derivation and parameterization of the activity model

Although the H₂O-CO₂ system has been extensively studied and different parameterizations are available for calculating CO₂ solubility in water or brines, there is currently no activity-composition model which encompasses both low pressures and temperatures and high-grade metamorphic conditions. The very
simple model of Holland and Powell (2003) where \(W_{\text{H}_2\text{O-Co}_2} = 10.5 \frac{V_{\text{Co}_2}}{V_{\text{Co}_2} + V_{\text{H}_2\text{O}}} \).
\(\alpha_{\text{Co}_2} = V_{\text{Co}_2} \) and \(\alpha_{\text{H}_2\text{O}} = V_{\text{H}_2\text{O}} \) is based on the high pressure and temperature experiments by Aranovich and Newton (1999) and gives a satisfactory fit to the experimental data at pressures greater than 5 kbars but deviates from other experimental constraints at lower pressures (Fig. 1). The models developed by Spycher et al. (2003); García et al. (2006); Ji et al. (2005); Ji and Zhu (2012) or Duan and co-workers (Duan et al., 1992, 1995, 1996, 2000, 2003, 2006, 2008; Duan and Sun, 2003; Duan and Li, 2008; Duan and Zhang, 2006; Hu et al., 2007; Li and Duan, 2007; Mao and Duan, 2009) allow calculation of the solubility of \(\text{CO}_2 \) and densities of mixtures at various pressures and temperatures. Akinfiev and Diamond (2010) have proposed a thermodynamic model from a compilation and critical analysis of experimental results in the system \(\text{H}_2\text{O-Co}_2-\text{NaCl} \) reproducing the solubility of \(\text{CO}_2 \) and NaCl. However, their model is restricted to a small pressure-temperature range (less than 100°C and 1 kbar). As shown earlier, the models of Duan and Sun (2003) and Duan et al. (2006) rely on erroneous assumptions. The thermodynamic models of Duan et al. (1992); Spycher et al. (2003); Ji et al. (2005) and Ji and Zhu (2012) account for the composition of the gas phase, but these models are either poorly constrained at low pressures and temperatures (e.g. Duan et al., 1992, is valid at conditions > 100°C-200 bars) or restricted to low temperatures (<100°C, Spycher et al., 2003) or low pressures (<600 bars, Ji et al., 2005; Ji and Zhu, 2012). None of the above models give uncertainties on their calculated parameters.

We use the ASF formalism, with \(\alpha_{\text{H}_2\text{O}} \) set to 1 and \(W_{\text{H}_2\text{O-Co}_2} \) and \(\alpha_{\text{Co}_2} \) functions of pressure and temperature, to model the mutual solubilities of \(\text{H}_2\text{O} \) and \(\text{CO}_2 \) up to temperatures of 370°C and pressures of 3500 bars. Figure 2a-c show
the values of $W_{H_2O-CO_2}$ and α_{CO_2} as a function of pressure and temperature calculated for experimental results where both the amount of CO$_2$ in the aqueous phase and the amount of water in the CO$_2$-rich phase are measured. To do this, the experimental data gathered by Spycher et al. (2003) at temperatures lower than 110°C and the results of Todheide and Franck (1963) ranging from 50°C to 350°C and from 200 to 3500 bar have been used assuming binodal equilibrium. We have also used the results of Sterner and Bodnar (1991) and Mather and Franck (1992) who investigated the discrepancy between the measurements of Todheide and Franck (1963) and that of Takenouchi and Kennedy (1964), who report a solubility of water in the CO$_2$-rich phase about 20% higher at 1kb and 200°C, as noted by Joyce and Holloway (1993). Sterner and Bodnar (1991) and Mather and Franck (1992) found agreement with Todheide and Franck (1963) and therefore, we discarded the results of Takenouchi and Kennedy (1964) obtained at temperatures greater than 110°C. The CO$_2$ solubilities measured by Takenouchi and Kennedy (1964) and Takenouchi and Kennedy (1965) also differ from Todheide and Franck (1963), especially at pressures below 600 bars and temperatures above 200°C, whereas the results of Todheide and Franck (1963) are generally higher. The results of Takenouchi and Kennedy (1965) have therefore not been used to parameterize the model in H$_2$O-CO$_2$, but their measurements in H$_2$O-CO$_2$-NaCl were used as described below.

When not given in the original publication, experimental uncertainties have been estimated as ±3% of the measured CO$_2$ content in the water-rich phase and ±1% of the measured CO$_2$ content in the CO$_2$-rich phase, in line with the commonly reported uncertainties. Although reported compositions vary, there is a general agreement between Todheide and Franck (1963) and Takenouchi and
Kennedy (1964) on the pressure and temperature conditions of critical mixing.

To the previously described experimental results, we have added the measurements of CO$_2$ solubility reviewed and selected by Diamond and Akinfiev (2003) in the range 0-100°C and 1-1000 bars (namely: Sander, 1912; Hähnel, 1920; Kritschewsky et al., 1935; ?; Wiebe and Gaddy, 1939, 1940; Bartholomé and Friz, 1956; Vilcu and Gainar, 1967; Matous et al., 1969; Stewart and Munjal, 1970; Malinin and Saveleva, 1972; Malinin and Kurovskaya, 1975; Zawisza and Malesinska, 1981; Gillespie and Wilson, 1982; Müller et al., 1988; Namiot, 1991; King et al., 1992; Teng et al., 1997; Bamberger et al., 2000; Yang et al., 2000; Servio and Englezos, 2001; Anderson, 2002). When these measurements do not include the composition of the gas phase, it has been evaluated for each experimental point from a version of the model with $W_{\text{H}_2\text{O}-\text{CO}_2}$ and α_{CO_2} derived from the dataset without these measurements. The estimated gas composition was given a very large uncertainty (100% of the water content) to ensure that the uncertainty on $W_{\text{H}_2\text{O}-\text{CO}_2}$ and α_{CO_2} is effectively constrained by the measured aqueous composition, giving negligible weight to the estimated gas compositions.

As shown on figure 2, neither $W_{\text{H}_2\text{O}-\text{CO}_2}$ nor α_{CO_2} are linear functions of pressure and temperature, and they vary rapidly close to the phase transitions of the end-members. At conditions below the critical point of water, the solvus closes on the composition of water. In this case the value of α_{CO_2} tends towards $+\infty$ and it is not possible to use ASF at the exact conditions of boiling water. This feature is nonetheless a strong constraint on the shape of the $\alpha_{\text{CO}_2} = f(P, T)$ surface (Fig. 2c). The scale of the α_{CO_2} diagram on figure 2c has been chosen to exclude the very high values from experimental results close to the boiling curve of water. Interestingly, the quantity $W_{\text{H}_2\text{O}-\text{CO}_2}/RT$ is remarkably linear over the range of
pressure and temperature where CO₂ is liquid or supercritical. \(\alpha_{\text{CO}_2} \) is similarly nearly linear with pressure and temperature at pressures greater than 500 bars. The data scatter close to the following least squares fits to linear relationships:

\[
\frac{W_{\text{H}_2\text{O}-\text{CO}_2}}{RT} = 5.41 - 0.276P - 1.07T \times 10^{-2} \tag{6}
\]

\[
\alpha_{\text{CO}_2} = 0.742 - 0.0974P + 3.32T \times 10^{-3} \tag{7}
\]

with correlation coefficients \((r^2)\) of 0.97 for \(\frac{W_{\text{H}_2\text{O}-\text{CO}_2}}{RT} \) and of 0.96 for \(\alpha_{\text{CO}_2} \).

However, the approximate linear relationships break down at lower pressures in the vicinities of the boiling curve of water and the critical point of CO₂. To capture the precision of the experimental results, we have parameterized \(\frac{W_{\text{H}_2\text{O}-\text{CO}_2}}{RT} \) and \(\alpha_{\text{CO}_2} \) with polynomial functions of the density of the co-solvents H₂O and CO₂. This accounts for the abrupt changes in the parameters in pressure-temperature space (Fig. 2d). \(\frac{W_{\text{H}_2\text{O}-\text{CO}_2}}{RT} \) and \(\alpha_{\text{CO}_2} \) have been modeled as ratios of polynomials of the form \(\frac{N_i}{D_i} \), with:

\[
N_i = 1 + k_{i,1}a + k_{i,2}a^2 + k_{i,3}a^3 + k_{i,4}a^4 + k_{i,5}b + k_{i,6}b^2 \\
+ k_{i,7}b^3 + k_{i,8}b^4 + k_{i,9}a.b + k_{i,10}a^2.b^2 \tag{8}
\]

\[
D_i = k_{i,11} + k_{i,12}a + k_{i,13}a^2 + k_{i,14}a^3 + k_{i,15}a^4 + k_{i,16}b \\
+ k_{i,17}b^2 + k_{i,18}b^3 + k_{i,19}b^4 + k_{i,20}a.b + k_{i,21}a^2.b^2 \tag{9}
\]

where \(i \) represents either \(\frac{W_{\text{H}_2\text{O}-\text{CO}_2}}{RT} \) or \(\alpha_{\text{CO}_2} \), \(a \) is the density of pure H₂O and \(b \) is that of CO₂. The use of ratios of polynomial equations has been chosen to accommodate trends towards infinity. Values for \(k_{\text{H}_2\text{O}-\text{CO}_2}/RT \) and \(k_{\alpha_{\text{CO}_2}} \) are given in tables D1 and D2 of Appendix D.
Simpler expressions than equations 8 and 9 would be preferable but the approach used here gives accurate results for both critical mixing and reciprocal solubilities of CO\(_2\) and H\(_2\)O over the whole pressure-temperature range.

The adjustable parameters were calibrated by minimization of the reduced \(\chi^2\) (defined as \(\chi^2_\nu = \frac{1}{\nu} \sum_{j=1}^{n} \frac{(v_{Mj}-v_{Cj})^2}{\sigma_j^2}\) where \(v_{Mj}\) and \(v_{Cj}\) are measured and calculated values for experiment \(j\) and \(\nu\) the degree of freedom) using the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963). To reduce the number of adjustable parameters, an \(F\) test (as defined by Bevington and Robinson, 2002) has been run where parameters were successively zeroed until the quality of the fit was significantly lowered.

The fits to the experimental results and calculated phase diagrams are illustrated in figures 3 and 4. At pressures lower than the critical point of water, the solvus closes on the boiling curve of water with a CO\(_2\)-free composition (i.e. on the y axis of Fig. 3a, 3b and 3c). At pressures higher than the critical point of water, the temperature of critical mixing decreases with increasing pressure (Fig. 1 and 3d). CO\(_2\) solubility is also well calculated at low pressures and temperatures, where the sharp difference of increase in CO\(_2\) solubility with pressure along the boiling curve of CO\(_2\) is well reproduced (figure 4).

Uncertainties on the adjustable parameters of equations 8 to 9 have been estimated with the help of a Monte-Carlo simulation. The system was calculated 1000 times by allowing the compositions of the experimental results used to calculate \(\alpha_{\text{H}_2\text{O-CO}_2}\) and \(\alpha_{\text{CO}_2}\) to vary within the limits of their uncertainty (or defined by the misfit of the model to the data when this was greater than experimental uncertainty). The resulting covariance matrices are given in tables D1 and D2 of appendix D and allow the uncertainty on the compositions to be recovered from
the uncertainty on $G_m^s(x)$ with the usual error propagation equation (e.g. Bevington and Robinson, 2002, their equation 3.13).

The calculated parameters are strongly correlated due to the nature of the functions and the covariance terms can consequently not be neglected.

An indicative map of uncertainties in calculated CO$_2$ solubility is provided in figure 5. At pressures greater than 500 bars, experiments are generally reproduced within their uncertainties (of the order of 10% of the measured value at low temperatures). At low pressure and high temperature, the model can diverge from experimental values, especially in the vicinity of the boiling curve of water where CO$_2$ solubility is very small. Below the critical point of CO$_2$, the model reproduces the experiments less well at very low pressures where the CO$_2$ concentrations are very small.

3.2. Activities of water and carbon dioxide in saturated mixtures

Phase assemblages may be very sensitive to variations of the activity of water, in both low- and high-grade metamorphic rocks (Greenwood, 1967; Ferry, 1984; Nicollet and Goncalves, 2005; Le Bayon et al., 2006; Vidal and Dubacq, 2009). The dilution of water by addition of CO$_2$ in solution decreases the activity of water (e.g., Santosh and Omori, 2008) and may consequently decrease the temperatures of dehydration reactions.

Figure 6 illustrates the calculated activity of water (a_{H_2O}, Fig. 6a) and activity coefficient of water (γ_{H_2O}, Fig. 6b) in a CO$_2$-saturated aqueous phase in the pressure-temperature range where two phases coexist. At low pressure, a_{H_2O} decreases with increasing pressure roughly parallel to the water vapor curve. At pressures higher than 1kb, a_{H_2O} is more sensitive to temperature. a_{H_2O} remains elevated even in the vicinity of the critical curve (dashed line on Fig. 6), because
the composition of the mixture tends to that of water along the boiling curve of water; at pressures higher than the critical point of water, the positive deviation from ideal gas behavior (γ_{H_2O} and $W_{H_2O-CO_2} > 0$) increases a_{H_2O} and compensates for the dilution of water by CO$_2$: for example, at 270°C and 1 kbar, the water-rich phase is a mixture of 18 mol. % of CO$_2$ and 82 mol. % of water but the water activity is as high as 0.91.

Figure 6c and d present a_{CO_2} and γ_{CO_2} in the water-saturated CO$_2$-rich phase as a function of pressure and temperature. γ_{CO_2} is significantly greater than one over a large range of pressures and temperatures, especially close to the boiling curve of water. At 1 bar, $\gamma_{CO_2} = 1.01$ at 50°C and $\gamma_{CO_2} = 1.07$ close to 100°C. Generally, the calculated a_{CO_2} decreases with temperature but increases with pressure. Very low a_{CO_2} is obtained at low pressure in the vicinity of the boiling curve of water, and a_{CO_2} becomes gradually less sensitive to pressure with increasing pressure.

3.3. Density calculations for H$_2$O-CO$_2$ mixtures

Densities calculated with the present model show a good accuracy at conditions greater than the boiling curves of CO$_2$ and water, at both low and high CO$_2$ concentrations. As shown in table 3, the densities of the water phase saturated in CO$_2$ measured by Teng et al. (1997) at temperatures lower than 20°C are reproduced within 4% at pressures greater than 150bars. The measurements of Hnedkovský et al. (1996), carried out below CO$_2$ saturation (~0.15mol/kgH$_2$O), are reproduced well away from the boiling curve of water but there is a significant deviation with the calculated values (>10%) at low water density. In the gaseous field of CO$_2$, density calculations do not give satisfactory results either. This is attributed to the use of H$_2$O and CO$_2$ as end-members in the calculations. In the gaseous field of CO$_2$, the volume of the CO$_2$ end-member is very sensitive to
pressure with the result that the calculated density shows a comparable sensitivity. Consequently, even if errors on the activity model are small, errors on the calculated densities are large at very low densities. Similarly, the experimental results at 59°C of Li et al. (2004) are well reproduced above 100 bars after recalibration for systematic deviations (see Duan et al., 2008). A map of densities calculated over the range 0.1-3kb and 50-370°C is presented in figure 7.

4. ACTIVITY MODEL IN H₂O-NaCl

The H₂O-NaCl system has been extensively studied for decades (see Driesner and Heinrich, 2007, for a review). The solubility of halite is known to be more sensitive to temperature than to pressure (e.g., Bodnar, 1994), and NaCl dissociates into several species in solution (see Oelkers and Helgeson, 1993b; Sharygin et al., 2002) because of the pairing of Na⁺ and Cl⁻ ions. The neutral aqueous sodium chloride species NaCl⁰ is thought to dominate the associated NaCl species in solution over a large range of pressure, temperature and composition (Sharygin et al., 2002), but it has been proposed that polynuclear species (Na₂Cl⁺, NaCl₂⁻, etc) also occur (e.g., Oelkers and Helgeson, 1993a,b; Sherman and Collings, 2002). The derivation of thermodynamic properties of such polynuclear species is beyond the scope of this study and all associated species are here considered as NaCl⁰.

4.1. DH-ASF formalism and the Anderson et al. density model

With the DH-ASF model, Na⁺ and Cl⁻ ions are represented by a mean ionic end-member (NaCl±)₁/₂ as defined in section 2.3, and the reaction describing halite NaCl(cr) dissolution is:

\[\text{NaCl}_{(cr)} \leftrightarrow 2(\text{NaCl±})_{1/2} \] (10)
The pairing of Na\(^+\) and Cl\(^-\) into NaCl\(^0\) (or its dissociation) is calculated with the reaction:

\[
2(\text{NaCl±})_{1/2} \leftrightarrow \text{NaCl}^0
\]

(11)

The total number of moles of dissolved NaCl is thus equal to \((1/2)(\text{NaCl±})_{1/2} + \text{NaCl}^0\). The subscript \(1/2\) will be dropped from this point onwards for convenience.

The thermodynamic properties of NaCl± have been calculated from that of Na\(^+\) and Cl\(^-\) from Helgeson et al. (1981) as used in the THERMOCALC database (Holland and Powell, 2011). It has been found necessary to recalculate the heat capacity terms \((C_p^0\) and \(b_{C_p}\), see Holland and Powell, 1998) of NaCl± by fitting them to the measurements reported in Pitzer et al. (1984) as shown in figure 8a. The regressed values are \(C_p^0 = -0.0417156 \text{ kJ/K}\) and \(b_{C_p} = -20.8763 \times 10^5 \text{ kJ.K}^2\). The volumes calculated at infinite dilution of NaCl± using the calculated heat capacity via the modified Anderson et al. (1991) density model EOS fit the volumes inferred from experimental results (Fig. 8b). However, volumes obtained above the critical temperature of water show an unreasonable pressure dependency at pressures lower than about 1 kbar, as illustrated in figure 8c. This has been identified as originating from the use of the ratio \(\rho_{\text{H}_2\text{O}}/\rho_{\text{H}_2\text{O}}^0\) in the derivation of the chemical potential of Anderson et al. (1991, Fig. 8d), where \(\rho_{\text{H}_2\text{O}}^0\) is the density of water at standard pressure and temperature and \(\rho_{\text{H}_2\text{O}}\) is the density of water at the considered pressure-temperature. It is therefore not possible to calculate accurate densities for aqueous fluids in the range of approximately 370-550°C at pressures below about 1 kbar with this EOS, which nevertheless shows good accuracy in many geologically relevant thermal gradients.

The thermodynamic properties of the end-member NaCl\(^0\) were based on those
of molten halite (Evans and Powell, 2006).

The uncertainties on the formation enthalpy ΔH_f^0, as reported by Holland and Powell (2011) for halite, NaCl± and NaCl0, are of similar relative magnitude at $\sim 0.5\%$ of their ΔH_f^0. This corresponds to a precision of $\sim \pm 0.1$ molal for the calculation of the solubility of halite at STP.

4.2. Parameterization of the activity model

The relative amounts of NaCl± and NaCl0 vary non-linearly as a function of the concentration of aqueous sodium chloride and may be described by five parameters between the end-members in equations 10 and 11: $W_{\text{NaCl±-H}_2\text{O}}$, $W_{\text{NaCl}^0-\text{H}_2\text{O}}$, $W_{\text{NaCl±-NaCl}^0}$, $\alpha_{\text{NaCl±}}$ and α_{NaCl^0}. It is assumed that $W_{\text{NaCl±-NaCl}^0} = 0$ as this term has little effect on the calculated equilibria.

Solubility, density and conductivity measurements were used to parameterize the activity model. Selected solubility experiments range from 15 to 650°C and from 1 bar to 10 kbar (table 2). The data are mostly consistent, with the exception of the high pressure measurements of Sawamura et al. (2007) who report solubility values for halite higher by up to 2% than the measured values at 2-3 kbar and 25°C of Adams (1931, figure 9).

Measurements of the conductance of NaCl solutions are used to estimate the degree of dissociation of NaCl0 into Na$^+$ and Cl$^-$ (eq. 11) via:

$$x_{\text{NaCl±}} = \Lambda e / \Lambda e$$

where $x_{\text{NaCl±}}$ is the fraction of NaCl dissolved as NaCl±, Λe is the experimentally determined equivalent conductance and Λe is the equivalent conductance of a hypothetical completely dissociated NaCl solution of the same effective ionic strength (Oelkers and Helgeson, 1988). The procedure selected to calculate $\Lambda e / \Lambda e$
is described in Appendix C, and we used the measurements of Bianchi et al. (1989), Chambers et al. (1956) and Quist and Marshall (1968). At 25°C and 1 bar, the calculated $\Lambda_\epsilon/\Lambda e$ indicate that, within uncertainties of the data, corrections and equations used, at least 95% of the aqueous NaCl is dissociated up to 5.35 molal, in agreement with Monica et al. (1984) but strikingly different from the results of Sherman and Collings (2002) whose molecular dynamic simulations predict about 50% of aqueous NaCl to be as NaCl0 or larger polynuclear species at 6 molal. Only values of x_{NaCl} estimated from conductance measurements have been used in this work. At constant molality, $\Lambda_\epsilon/\Lambda e$ decreases with temperature and increases with pressure, as noted by Oelkers and Helgeson (1988) and shown in figure 10.

The calculated volume of the NaCl$^\pm$ end-member at its hypothetical pure standard state depends on both 1) the thermodynamic properties of the usual hypothetical Na$^+$ and Cl$^-$ 1 molal aqueous species derived from infinite dilution and 2) on the interaction parameters $W_{\text{NaCl}^\pm-H_2O}$ and α_{NaCl^\pm} because they affect the chemical potential of the NaCl$^\pm$ end-member within the DH-ASF framework. NaCl being largely dissociated under 100°C, NaCl0 has little effect on the Gibbs energy of the mixture and on its pressure dependency. Consequently, the pressure dependency of $W_{\text{NaCl}^\pm-H_2O}$ and α_{NaCl^\pm} are constrained mainly by the chosen density measurements (Surdo et al., 1982). The temperature dependency of these parameters has been estimated together with that of $W_{\text{NaCl}^0-H_2O}$ and α_{NaCl^\pm} by fitting high-temperature solubility experiments (Fig. 9a) and the calculated degree of association (Fig. 10a, equation C1).

The following expressions have been found to provide a good description of the system in the pressure-temperature range 1 bar-10 kbar and 20-650°C, as shown
in figures 9, 10 and 11:

\[
W_{NaCl^0 - H_2O} = C_1 + C_2.P + C_3.T + C_4.P^2
\]
(13)

\[
\alpha_{NaCl^0} = C_5 + C_6.P + C_7.T
\]
(14)

\[
W_{NaCl^\pm - H_2O} = C_8 + C_9.T_{400} + C_{10}.T_{400}^2 + C_{11}.P + C_{12}.P^2
\]
(15)

\[
\alpha_{NaCl^\pm} = C_{13} + C_{14}.T + (C_{15} + C_{16}.T)P
\]
(16)

where \(T_{400}\) is temperature below 400K such as \(W_{NaCl^\pm - H_2O}\) is independent of temperature above 400K. Values for the \(C\) constants are given in Table D3 of Appendix D.

4.3. Results and error propagation

The correlation between the calculated and measured solubilities is good (Fig. 9). This model gives a better fit to high-temperatures data than the model of Mao and Duan (2008, dotted line on Fig. 9). The obtained parameters agree well with the results of Aranovich and Newton (1996) who found that the system is very close to ideality around 2 kbar and 500°C (\(W_{NaCl^0 - H_2O} = 0.56\) kJ.mol\(^{-1}\)). Density measurements in the aqueous phase are very well reproduced below the critical point of water and are in close agreement with the model of Driesner (2007). At higher temperatures, our model diverges from the model of Driesner (2007) (Fig. 11b and c) for pressures around 1 kbar and below. The calculated dissociation of \(NaCl^0\) presented in figure 10a is consistent with the measurements of Quist and Marshall (1968) as they show the same variations with pressure and temperature but appear offset from a few to about 15 percents, which could not be reproduced without allowing unrealistically low values for \(\alpha_{NaCl^0}\). The uncertainties associated with the original values of \(\Lambda e\) and \(\Lambda_0\) reported by Quist and Marshall (1968)
cumulate to a minimal uncertainty of about 10% of the given x_{NaCl^\pm} value at water densities below 0.5 and between 4 and 10% at higher densities. Because 1) uncertainties associated with the use of equations C2 and C3 are unknown, 2) the possible role of large polynuclear species, although unclear (Sharygin et al., 2002), can not be ruled out and 3) the low ratio of $NaCl^\pm$ to $NaCl^0$ makes $W_{NaCl^\pm-H_2O}$ poorly constrained at temperatures greater than 500°C, we have adopted the simplest expression that could be derived for the activity model in which $W_{NaCl^\pm-H_2O}$ is independent of temperature above 400K and α_{NaCl^\pm} varies linearly with pressure but with a temperature-dependent slope. Overall, the model gives a better fit to the data and is in better agreement with other models for high density solutions than for low density solutions, partially because of the use of the density model of Anderson et al. (1991), but also because the lack of theory together with the scarcity of precise high-temperature high-concentration experimental data made assumptions on the pressure-temperature dependency of the thermodynamic parameters necessary.

Error propagation has been performed by a Monte-Carlo simulation where the system has been refitted 100 times, by varying the original experimental results within the misfit of the model to the data and the enthalpy of formation of the aqueous species within their uncertainties. To simplify the propagation of errors on the activity model, the correlation of uncertainties associated with the enthalpy of formation of the aqueous species given in the THERMOCALC database has been neglected. The covariance matrix associated with C_1 to C_{16} is given in Table D3.
5. THE H\textsubscript{2}O-CO\textsubscript{2}-NaCl SYSTEM

The solubility of CO\textsubscript{2} in the water phase decreases with increasing salinity of the aqueous phase (termed salting-out, e.g.: Markham and Kobe, 1941; Drummond, 1981; Nighswander et al., 1989; Rumpf et al., 1994). The combination of the subsystems H\textsubscript{2}O-CO\textsubscript{2} and H\textsubscript{2}O-NaCl needs two additional interaction parameters to describe H\textsubscript{2}O-CO\textsubscript{2}-NaCl: \(W_{CO_2-NaCl}^{0} \) and \(W_{CO_2-NaCl}^{±} \). Salting-out implies positive values for these parameters. The magnitudes of \(W_{CO_2-NaCl}^{0} \) and \(W_{CO_2-NaCl}^{±} \) are expected to be high given that NaCl is barely incorporated in the CO\textsubscript{2}-rich phase in the absence of water, even at high pressure and temperature: the measurements of Zakirov et al. (2007) indicate a NaCl mole fraction of \(30 \times 10^{-7} \) in the CO\textsubscript{2} phase at 670 bars and 400°C. In H\textsubscript{2}O-CO\textsubscript{2}-NaCl, taking the CO\textsubscript{2}-rich phase to be free of NaCl is an acceptable approximation up to at least 300°C (e.g. Hu et al., 2007, and references herein). With this assumption, the solubility of CO\textsubscript{2} in the aqueous NaCl solution can be calculated by minimizing the Gibbs free energy of the system, composed of a water-saturated CO\textsubscript{2}-rich phase and of the aqueous phase at fixed NaCl content. The relative proportions of NaCl0 and NaCl± are calculated by solving equation 11 with the appropriate interaction parameters (eq. 8,9,13,14,15,16).

As pointed out by Hu et al. (2007), there is currently no accurate model to predict the solubility of CO\textsubscript{2} in NaCl brines at temperatures greater than about 60°C, mainly due to the scarcity of experimental results at these pressures and temperatures. In particular, the measurements of Takenouchi and Kennedy (1965) (ranging up to 1400 bars and 450°C) are not in agreement with other experiments at pressures below 300 bars, some of which we used here (Ellis and Golding, 1963; Drummond, 1981; Nighswander et al., 1989; Rumpf et al., 1994; Kiepe...
et al., 2002). The measurements of Takenouchi and Kennedy (1965) at zero NaCl content are also inconsistent (by up to 15%, see Fig. 12b) with the measurements of Todheide and Franck (1963) which we used to constrain the H$_2$O-CO$_2$ activity model. However, all the data of Takenouchi and Kennedy (1965) at $x_{NaCl} > 0$ have been kept in our regression as they are the major source of measurements available above 500 bars.

It was assumed that $W_{CO_2-NaCl^0} = W_{CO_2-NaCl^\pm}$ because the quality of the fit to the data is not statistically sensitive to the ratio $W_{CO_2-NaCl^0}/W_{CO_2-NaCl^\pm}$. $W_{CO_2-NaCl^0}$ and $W_{CO_2-NaCl^\pm}$ may then be estimated from solubility experiments independently of the thermodynamic properties of pure H$_2$O and CO$_2$ and of their uncertainties. However the values depend on the activity models in H$_2$O-CO$_2$ and H$_2$O-NaCl. As observed in the H$_2$O-CO$_2$ system, the quantity $W_{CO_2-NaCl^\pm}/(RT)$ shows smoother variations in pressure-temperature space than $W_{CO_2-NaCl^\pm}$, although both values increase strongly with pressure especially under 100 bars. For this reason, $W_{CO_2-NaCl^\pm}$ has been parameterized as a function of the natural logarithm of pressure:

$$W_{CO_2-NaCl^\pm}/(RT) = D_1 + D_2 \ln P + D_3 T + D_4 T \ln P + D_5 (\ln P)^2$$ (17)

where pressure is in bar and temperature in Kelvin. Values for D_1 to D_5 are given in table D4.

Figure 12 illustrates the calculated salting-out effect and presents the quality of the fit of the model to some of the experimental data. Error propagation has been carried out as in the previous systems by a Monte-Carlo simulation where experimental uncertainties are estimated from the misfit of the model with the experimental results. The covariance matrix for D_1 to D_5 is given together with their values in table D4. The correlation of uncertainties between parameters regressed
for the activity models in the subsystems H$_2$O-CO$_2$ and H$_2$O-NaCl and this system has been neglected because uncertainties from experiments and the models in the subsystems are smaller than in H$_2$O-CO$_2$-NaCl.

6. DISCUSSION

6.1. Accuracy and advantages of the method

The method used here to parameterize the H$_2$O-CO$_2$ activity model is independent of the thermodynamic properties of the co-solvents and successfully reproduces the experimentally-derived phase diagram over the whole two-phase domain. The solubility of CO$_2$ is also calculated well by other models, in particular Duan et al. (2006, figure 3), although it has been shown that this model does not provide a correct derivation of the chemical potential of CO$_2$. The models of Sypcher et al. (2003) and Akinfiev and Diamond (2010) give excellent fits to the aqueous phase experimental results at temperatures below 100°C. The principal advantages of the model presented here are 1) the facility to model the CO$_2$-rich phase, 2) the wider pressure-temperature range of applicability, and 3) the ease of error propagation provided by separate uncertainties for the activity model and the end-members.

In the H$_2$O-NaCl system, the DH-ASF activity model reproduces the experimental data on the solubility of halite over a wide range of pressures and temperatures. Here, the form of the pressure and temperature dependency of the activity parameters have been fitted to solubilities, densities and conductivity measurements, giving reasonable values for α_{NaCl^+} and α_{NaCl^0} whose variations over 10 kb and 600 °C do not exceed 0.4 and 0.8 α unit, respectively. Their pressure derivatives, implied by density measurements, are particularly small (at a max-
imum magnitude of 5×10^{-3} kbar$^{-1}$) and of opposite signs, making it difficult to
link them to variations of the properties of the solvent. The pressure dependen-
cies of $W_{\text{NaCl}^0 \cdot \text{H}_2\text{O}}$ and $W_{\text{NaCl}^\pm \cdot \text{H}_2\text{O}}$ are similarly small, which is imposed by the
insensitivity of halite solubility to pressure.

Results in H$_2$O - CO$_2$ - NaCl are compared in figure 12 to the model of Duan
and Sun (2003) on which the model of Duan and Zhang (2006) is based. At pres-
ssures and temperatures under 100°C and 100 bars, our model gives results very
similar to Duan and Sun (2003). At higher pressures and temperatures, the model
of Duan and Sun (2003) gives a better fit to the data of Takenouchi and Kennedy
(1965), which are often lower than expected from the measurements of Todheide
and Franck (1963), well reproduced by our model. For this reason, our model
gives solubilities greater than the data of Takenouchi and Kennedy (1965) and the
model of Duan and Sun (2003) at pressures and temperatures where Todheide and
Franck (1963) and Takenouchi and Kennedy (1965) are not in agreement (Fig.
12). However, the curvature of the CO$_2$ solubility is quite similar for both mod-
els at NaCl concentrations below 3 molal. The model presented in this study
has been fitted with essentially the same dataset as in Duan and Sun (2003) for
the system H$_2$O - CO$_2$ - NaCl, where high-pressure-temperature measurements
are restricted below about 4 molal NaCl. However our model gives different ex-
trapolation to higher concentrations than Duan and Sun (2003, e.g. Fig. 12b),
where their approach predicts an increase of the CO$_2$ solubility with increasing
NaCl molality, which might happen if for instance the formation of Na carbonate
complexes increases the solubility of CO$_2$, but is not supported by any data to
our knowledge. Our model, whose parameters do not depend on concentration,
predicts a continuous decrease in CO$_2$ solubility with increasing salinity over the
entire pressure-temperature range and up to 10 molal NaCl.

6.2. Range of applicability and limitations

The pressure-temperature range of the activity model proposed for H_2O-CO_2 is limited to the two-phase domain. Equations A11, A13, A18 and A19 provide a simple and accurate parameterization of the system H_2O-CO_2 but only over pressure-temperature conditions where two phases coexist. The parameterization can not be extrapolated to the one-phase domain below the critical point of water (Fig. 1): although \(a_{CO_2}/a_{H_2O}\) tends towards infinity near the boiling curve of water, there is no simple relation between \(a_{CO_2}\) and \(V_{CO_2}/V_{H_2O}\). Extrapolation of the model towards low temperatures or high pressures in the liquid field of CO_2 is speculative as there are few experimental results to constrain its pressure-temperature dependency. It has been noted in section 2.2 and figure 2b that away from the boiling curve of water and critical point of carbon dioxide, both \(W_{H_2O-CO_2}/RT\) and \(a_{CO_2}\) approximate a linear behavior. However, it is unlikely that the observed trends can be extrapolated over a larger range of pressures and temperatures. Models (e.g. Johnson, 1991; Holland and Powell, 2003, Fig. 1) suggest that the critical temperature increases significantly at pressure greater than 3.5 kb, implying that \(W_{H_2O-CO_2}\) increases with increasing pressure, opposite to the trend observed below 3500 bars. As shown in figure 13, the departures at higher temperatures from the model of Holland and Powell (2003), calibrated in the one-phase domain, imply that the decrease of \(W_{H_2O-CO_2}/RT\) with temperature (Fig. 2) is likely to be much smaller or reversed in the one-phase domain. In the two-phase domain, differences between the model of Holland and Powell (2003) and this model, of the order of 1.5 kJ/mol for \(W_{H_2O-CO_2}\) around 3kbar and 200°C (Fig. 13), are very significant for the solvus as illustrated on figure 3d. For the
same conditions, the precision on the activity model in this work is that obtained from the experimental data, of the order of 0.1 kJ/mol for $W_{\text{H}_2\text{O-CO}_2}$ and 0.01 for $\alpha_{\text{CO}_2}/\alpha_{\text{H}_2\text{O}}$.

There are therefore abrupt changes in the parameters describing the thermodynamic properties of the mixture both along the critical mixing curve (Fig. 13) and along the phase transitions of the end-members (e.g. steps in $W_{\text{H}_2\text{O-CO}_2}$ along the boiling curve of CO$_2$, Fig. 2d; $\alpha_{\text{CO}_2} \rightarrow \infty$ along the boiling curve of water, Fig. 2c).

For these reasons the model (equations 8-9) should not be extrapolated to the one-phase region (Fig. 1) where the model of Holland and Powell (2003) is appropriate (and conversely the model of Holland and Powell (2003) should not be used in the two-phase domain). The critical curve which delimits the domain of applicability can be closely approximated from the critical point of water up to 3500 bars by:

$$T_c = q_1 + q_2.P + q_3.P^2 + q_4.\log(P)$$

where q_1 to q_4 are constants obtained by regression analysis ($R^2 = 0.993$) of the data of Todheide and Franck (1963) and Takenouchi and Kennedy (1964):

$q_1 = 195.3, q_2 = 90.36, q_3 = -8.945, q_4 = -107.9$.

Another limitation of our approach (derived from the phase rule and relying on a minimum number of end-members used to describe the system) is that speciation (and its effects) is hard to predict for high concentrations although easy to reproduce. In other words, experimental results are necessary to parameterize the model. For instance, the formation of Na carbonate complexes might result in increasing CO$_2$ solubility with increasing Na concentration, when our model predicts a continuous decrease of CO$_2$ solubility with increasing salinity. For the
same reason, CO\textsubscript{2} solubility in rock-buffered systems may be different from what is estimated with this model.

7. CONCLUSIONS

The model presented here is unique in that it replicates available data for mixed phase, salt-rich, mixed-solvent fluids close to the critical end point, allows realistic propagation of uncertainties, simulates dissociation of ionic solutes such as NaCl, can be extended readily to more complex systems as it uses transferable parameters, is compatible with existing thermodynamic databases and software, and is based, as far as possible, on physically realistic expressions with a minimum reliance on empirical expressions such as power-law series. The large number of empirically fitted constants is however a drawback to a well-constrained activity model.

It is possible to calculate accurate phase diagrams for CO\textsubscript{2}-H\textsubscript{2}O mixtures in the two-phase domain with macroscopic interaction parameters and associated uncertainties independently of the standard state chemical potentials of water and carbon dioxide. Such calculations are straightforward, fast, lead to a unique result and do not depend on the quality of the chosen thermodynamic database. They can be implemented in Gibbs energy minimization routines (e.g. Connolly, 2009; De Capitani and Petrakakis, 2010).

The interaction parameters $W_{\text{H}_2\text{O-CO}_2}$ and a_{CO_2} calculated from experimental results show non-linear variations with pressure and temperature, reflecting significant changes of solubilities and volumes for example along the vapor-liquid transition curves of water and carbon dioxide. This contrasts with the description of the higher temperature-pressure conditions applicable to metamorphic petrol-
ogy where the linear relation \(W_G = W_H - T \times W_S + P \times W_V \) holds for the many systems described by the subregular model or the ASF formalism. As a consequence, it is not possible to extrapolate mixing parameters in the one-phase domain from compositions at equilibrium in the two-phase domain in the \(\text{H}_2\text{O-\text{CO}}_2 \) system.

An activity model in the \(\text{H}_2\text{O-NaCl} \) system was derived with a similar thermodynamic formalism, DH-ASF (Evans and Powell, 2006), which uses hypothetical end-members with unit activity at standard state for aqueous species. This model requires a small number of concentration-independent interaction parameters, which we parameterized up to 10kbars and 650°C as a function of pressure and temperature using density, conductivity and solubility measurements.

The activity models in \(\text{H}_2\text{O-\text{CO}}_2 \) and \(\text{H}_2\text{O-NaCl} \) were combined to derive an activity model in the \(\text{H}_2\text{O-\text{CO}}_2-\text{NaCl} \) system where the decrease of \(\text{CO}_2 \) solubility with salinity is reproduced by positive values for \(W \) parameters between dissolved \(\text{NaCl} \) and \(\text{CO}_2 \). It is shown that this approach extrapolates to high salinities with a continuous decrease in \(\text{CO}_2 \) solubility, in contrast with the model of Duan and Sun (2003). The fit to the experimental data is good and uncertainties on all parameters of the activity model are estimated.

Addition of activity models for aqueous species and gases to the THERMOCALC database with the DH-ASF formalism is in progress (e.g. Evans et al., 2010).

8. ACKNOWLEDGMENTS

This work was supported by the EU Marie Curie GRASP RTN and the NERC through the CRIUS consortium. We thank Éric Lewin for help in regression anal-
ysis and Roger Powell, Tim Holland, Niko Kampman, Olivier Namur, Oli Shorttle
and Ed Tipper for helpful discussions. Jacques Schott (A.E.) and three anonymous
reviewers are thanked for their numerous comments and suggestions on previous
versions of the manuscript.
APPENDIX A

It is demonstrated here that if unmixing occurs in a binary $i-j$ solution, it is possible to calculate the values of the parameters W_{ij} and α_i/α_j from the compositions of the coexisting phases x_1 and x_2 at equilibrium, i.e. from the binodal solvus.

In a binary $i-j$ solution, where x is the proportion of the j end-member so that $x_i = 1 - x$, chemical potentials can be expressed as (e.g. Guggenheim, 1977):

$$
\mu_i(x) = \overline{G_m}(x) - x \frac{\delta G_m(x)}{\delta x}
$$

(A1)

$$
\mu_j(x) = \overline{G_m}(x) + (1 - x) \frac{\delta G_m(x)}{\delta x}
$$

(A2)

where $\overline{G_m}(x)$ is the molar Gibbs free energy of the mixture:

$$
\overline{G_m}(x) = (1 - x)\mu_i^0 + x\mu_j^0 + RT(1 - x) \log(1 - x)
+ RTx \log(x) + \overline{G_{mix}}^{xs}(x)
$$

(A3)

The Gibbs free energy of mixing $\overline{G_{mix}}^m(x)$ is the energy added to the mechanical mixture of the pure end-members:

$$
\overline{G_{mix}}^m(x) = RT(1 - x) \log(1 - x) + RTx \log(x) + \overline{G_{mix}}^{xs}(x)
$$

(A4)

Expressed with the ASF formalism, $\overline{G_{mix}}^{xs}(x)$ reduces to:

$$
\overline{G_{mix}}^{xs}(x) = \frac{2\alpha_i\alpha_j W_{ij}(1 - x)x}{(\alpha_i + \alpha_j)(\alpha_i(1 - x) + \alpha_jx)}
$$

(A5)

Note that in an ideal mixing scheme, $\overline{G_{mix}}^{xs}(x) = 0$ and $\overline{G_m}(x)$ is negative with a temperature-dependent minimum value at $x = 0.5$ reflecting the entropy of mixing.
Equilibrium implies that the chemical potential of each end-member must be the same in each phase:

\[\mu_i(x)_{x=x_1} = \mu_i(x)_{x=x_2} \]
(A6)

\[\mu_j(x)_{x=x_1} = \mu_j(x)_{x=x_2} \]
(A7)

Using equation A1 and equation A2, we obtain the two conditions A8 and A9:

\[\frac{\delta G_m(x_1)}{\delta x} = \frac{\delta G_m(x_2)}{\delta x} \]
(A8)

and

\[G_m(x_1) - G_m(x_2) = (x_1 - x_2) \frac{\delta G_m(x_1)}{\delta x} \]
(A9)

where

\[\frac{\delta G_m(x)}{\delta x} = \mu_i^0 - \mu_j^0 + RT \log \left(\frac{x}{1-x} \right) + 2\alpha_i \alpha_j W_{ij} (\alpha_i(x-1)^2 - \alpha_j x^2) \]
(A10)

In the special case of a symmetric solvus, the gradient of Gibbs energy with composition \(\frac{\delta G_m(x)}{\delta x} = 0 \) at binodal compositions.

Combining equations A8 and A9 with equation A5 gives

\[W_{ij} = RT ((1 - x_2) \log \left(\frac{1 - x_2}{1 - x_1} \right) + x_2 \log \left(\frac{x_2}{x_1} \right)) \ast D \]
(A11)

where D is given by:

\[D = - \frac{(\alpha_i + \alpha_j)(\alpha_i(x_1 - 1) - \alpha_j x_1)^2(\alpha_i(x_2 - 1) - \alpha_j x_2)}{2\alpha_i^2 \alpha_j^2 (x_1 - x_2)^2} \]
(A12)

and

\[\alpha_j = \frac{\alpha_i(2(x_1 - 1)(x_2 - 1) \log \left(\frac{x_1 - 1}{x_2 - 1} \right) + (x_1 + x_2 - 2x_1 x_2) \log \left(\frac{x_1}{x_2} \right))}{(2x_2 - x_1)(2x_2 - 1) \log \left(\frac{x_1 - 1}{x_2 - 1} \right) - 2x_1 x_2 \log \left(\frac{x_1}{x_2} \right)} \]
(A13)
Defining $\alpha_i = 1$, only one of α_i and α_j varies independently and D can be expressed as $D = E/F$, where E and F depend only on x_1 and x_2:

\[
E = 2((x_1(2x_2 - 1) - x_2) \log\left(\frac{x_1 - 1}{x_2 - 1}\right) - 2x_1x_2 \log\left(\frac{x_1}{x_2}\right))^2(2(x_1 - 1)(x_2 - 1) \log\left(\frac{x_1 - 1}{x_2 - 1}\right) + (-2x_2x_1 + x_1 + x_2) \log\left(\frac{x_1}{x_2}\right))^2
\]
(A14)

\[
F = (x_2 - x_1)((x_1 - 1) \log\left(\frac{x_1 - 1}{x_2 - 1}\right) - x_1 \log\left(\frac{x_1}{x_2}\right))^2 \\
\quad \left(\left(\frac{x_1 - 1}{x_2 - 1}\right) - x_2 \log\left(\frac{x_1}{x_2}\right)\right) \quad (A15)
\]

\[
((-3x_2 + x_1(4x_2 - 3) + 2) \log\left(\frac{x_1 - 1}{x_2 - 1}\right) + (-4x_2x_1 + x_1 + x_2) \log\left(\frac{x_1}{x_2}\right))
\]

The conditions of critical mixing (consolute point along isotherms or isobars on phase diagrams such as presented in figure 3) are reached when:

\[
\frac{\delta^2G_m(x_c)}{\delta x^2} = \frac{RT_c}{x_c - x_C^2}(\frac{4\alpha_i^2\alpha_j^2W_{ij}}{(\alpha_i + \alpha_j)(\alpha_i + x_c(\alpha_j - \alpha_i))^3}) = 0
\]
(A16)

and

\[
\frac{\delta^3G_m(x_c)}{\delta x^3} = RT_c\left(\frac{1}{(x_c - 1)^2} - \frac{1}{x_c^2}\right)
\]

\[
+ \frac{12\alpha_i^2\alpha_j^2W_{ij}(\alpha_j - \alpha_i)}{(\alpha_i + \alpha_j)(\alpha_i + x_c(\alpha_j - \alpha_i))^4} = 0
\]
(A17)

where T_c is the critical temperature. This defines W_{ij} as:

\[
W_{ij} = RT_c\frac{(\alpha_i + \alpha_j)(\alpha_i(x_c - 1) - \alpha_jx_c)^3}{4\alpha_i^2\alpha_j^2(x_C^2 - x)^3}
\]
(A18)

and α_j as

\[
\alpha_j = \frac{\alpha_i(x_C^2 - 1)}{x_c(x_c - 2)}
\]
(A19)
The two coexisting compositions can be calculated by minimizing the Gibbs free energy of the system (see Connolly, 2009; De Capitani and Petrakakis, 2010) or by solving equations A8 and A9 for x_1 and x_2. Equation A8 gives:

\[
\frac{2\alpha_i^2\alpha_j^2W_{ij}(x_1 - x_2)(\alpha_i(x_1 + x_2 - 2) - \alpha_j(x_1 + x_2))}{(\alpha_i + \alpha_j)(\alpha_i(x_1 - 1) + \alpha_jx_1)^2(\alpha_i(x_2 - 1) - \alpha_jx^2)}
+ RT\left(\log\left(\frac{1-x_2}{1-x_1}\right) + \log\left(\frac{x_1}{x_2}\right)\right) = 0
\] (A20)

Equation A9 gives:

\[
\frac{-2\alpha_i^2\alpha_j^2W_{ij}(x_1 - x_2)^2}{(\alpha_i + \alpha_j)(\alpha_i(x_1 - 1) + \alpha_jx_1)^2(\alpha_i(x_2 - 1) - \alpha_jx^2)}
+ RT((x_2 - 1)\log\left(\frac{1-x_2}{1-x_1}\right) + x_2\log\left(\frac{x_1}{x_2}\right)) = 0
\] (A21)
APPENDIX B

The DH-ASF formalism allows description of both the Debye-Hückel effect arising from long-range interactions at low concentrations and short-range forces at high concentrations. The evolution of the chemical potential of the aqueous species A is illustrated in figure B1. The chemical potential of A at standard state μ^0_A is defined at $x_A = 1$. μ^0_A is augmented from the ideal line at $x = 1$ by the sum of all non-ideal contributions: long-range electrostatic forces at low concentrations where μ is below the ideal mixing line and short-range interactions at higher concentrations. At high dilutions of A, μ_A approaches ideal solution (dashed line on Fig. B1). With increased concentration of A, μ_A evolves to $\mu_A < \mu_{\text{ideal}}$ (e.g. at $x = x_1$) due to the Debye-Hückel effect. The effect of long-range interactions has been limited in the modeling to a maximum of 0.1 molal by Evans and Powell (2006). For solutions more concentrated than 0.1 molal, the activities of the end-members in solution are described by the short-range interaction parameters of the ASF model. On figure B1, these constrain the part of the diagram where μ_A is greater than the line of ideal mixing (e.g. at $x = x_2$).
Figure B1: Schematic illustration of the relationship between chemical potential of the aqueous species A and its concentration x_A in the DH-ASF formalism. The solid line indicates the measured chemical potential. The broken line shows the chemical potential of an ideal solution referenced to infinite dilution for A. The usual 1M standard state is indicated with a gray square, and its equivalent projected at $x=1$ along the ideal mixing line shown with an open square. The dotted line shows the chemical potential for an ideal solution referenced to a hypothetical ideal solution at $x=1$. μ_A^0, the standard state chemical potential of A used in the DH-ASF formalism, is shown with a closed square at $x_A = 1$, it differs from the ideal mixing line by the sum of long- and short-range interactions to the excess free energy. Modified after Evans and Powell (2006).
APPENDIX C

Measurements of the conductance of NaCl solutions are used to estimate the degree of dissociation of NaCl\(^0\) into Na\(^+\) and Cl\(^-\) (eq. 11) via:

\[
 x_{\text{NaCl}^\pm} = \Lambda_\epsilon / \Lambda e
\]

(C1)

where \(x_{\text{NaCl}^\pm}\) is the fraction of NaCl dissolved as NaCl\(^\pm\), \(\Lambda_\epsilon\) is the experimentally determined equivalent conductance and \(\Lambda e\) is the equivalent conductance of a hypothetical completely dissociated NaCl solution of the same effective ionic strength (Oelkers and Helgeson, 1988). \(\Lambda e\) is calculated from the limiting equivalent conductance of the electrolyte (\(\Lambda e^0\)). \(\Lambda e\) for NaCl solutions has been obtained with the equation of Monica et al. (1984), which is valid up to at least 6 molal:

\[
\frac{\Lambda e \eta}{\eta_0} = \left(\Lambda e^0 - \frac{B_2 \sqrt{c}}{1 + B_\alpha \sqrt{c}}\right)\left(1 - \frac{B_1 \sqrt{c}}{1 + B_\alpha \sqrt{c}} e^{0.2029 \kappa \alpha} - 1\right)
\]

(C2)

where \(\eta\) is the viscosity of the solution, \(\eta_0\) the viscosity of the pure solvent, \(c\) the concentration of NaCl and \(\alpha\) the ion size parameter taken from Helgeson et al. (1981). \(B_1\) and \(B_2\) are coefficients originating from the formula of Onsager (1927) and modified by Monica et al. (1984) such as \(B_1 = 8.2053 \times 10^5 \sqrt{\rho}/(\epsilon T)^{3/2}\) and \(B_2 = 82.48 \sqrt{\rho}/(\eta \sqrt{\epsilon T})\), with \(\rho\) density of the solvent and \(\epsilon\) dielectric constant of water, \(\kappa \alpha\) is a dimensionless quantity from the Debye-Hückel formula and is calculated as:

\[
\kappa \alpha = B_\alpha \sqrt{c} = 50.294 \sqrt{\epsilon T} / \sqrt{\epsilon T}
\]

(C3)

Equation C2 is a refinement of the Wishaw and Stokes (1954) equation which allows correction of the ionic mobility for changing viscosity and is based on the original equations proposed for dilute solutions by Falkenhagen et al. (1952).
Oelkers and Helgeson (1988) have used the Shedlovsky equation (Shedlovsky, 1938) to estimate the degree of association in solutions up to 0.1 molal for various electrolytes. However, the Shedlovsky equation is not valid for the calculation of Λe for solutions containing more than about 0.1m. For some high-temperature conditions, the calculated values of Λe are less than the observed Λe, leading to $x_{NaCl} > 1$.

Λe has been calculated for the data of Bianchi et al. (1989, 25°C, 1 bar, 0.5-3.6 molal), Chambers et al. (1956) (25°C, 1 bar, 0.1-5.35 molal) and from Quist and Marshall (1968) for solutions of 0.1molal NaCl in the range 100°C-600°C. For each experimental result, η_0 has been calculated with the IAPWS EOS of water. When not measured, η was calculated with the equation of Mao et al. (2009). The increase in viscosity for solutions of 0.1 molal NaCl or less has little impact on the calculated Λe and has been neglected for the data of Quist and Marshall (1968). The densities reported along with temperatures by Quist and Marshall (1968) were individually converted to pressures with the IAPWS EOS.
APPENDIX D

The following tables provide values and covariance matrices for coefficients used in the modeling and described in the text. The diagonal of a covariance matrix is the variance.
Table D1: Values of parameters and associated covariance matrix for equations 8 and 9 for $W_{\text{H}_2\text{O}\cdot\text{CO}_2}/RT$.

<table>
<thead>
<tr>
<th>Value</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
<th>k_5</th>
<th>k_6</th>
<th>k_7</th>
<th>k_8</th>
<th>k_9</th>
<th>k_{10}</th>
<th>k_{11}</th>
<th>k_{12}</th>
<th>k_{13}</th>
<th>k_{14}</th>
<th>k_{15}</th>
<th>k_{16}</th>
<th>k_{17}</th>
<th>k_{18}</th>
<th>k_{19}</th>
<th>k_{20}</th>
<th>k_{21}</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>-</td>
<td>1.14E-11</td>
<td>1.32E-11</td>
<td>2.09E-16</td>
<td>4.74E-09</td>
<td>7.14E-11</td>
<td>4.48E-15</td>
<td>4.90E-16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_2</td>
<td>3.5237E-05</td>
<td>-</td>
<td>1.32E-11</td>
<td>2.09E-16</td>
<td>7.14E-11</td>
<td>4.48E-15</td>
<td>4.90E-16</td>
<td>-</td>
<td>4.18E-09</td>
<td>6.88E-10</td>
<td>9.34E-12</td>
<td>1.38E-14</td>
<td>1.54E-17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_3</td>
<td>1.3372E-07</td>
<td>-</td>
<td>1.32E-11</td>
<td>1.33E-11</td>
<td>1.38E-15</td>
<td>1.36E-16</td>
<td>1.38E-17</td>
<td>1.76E-18</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_4</td>
<td>2.3366E-10</td>
<td>-</td>
<td>1.32E-11</td>
<td>1.33E-11</td>
<td>1.38E-15</td>
<td>1.36E-16</td>
<td>1.38E-17</td>
<td>1.76E-18</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_5</td>
<td>2.7484E-02</td>
<td>-</td>
<td>7.14E-11</td>
<td>2.79E-14</td>
<td>1.31E-06</td>
<td>1.68E-08</td>
<td>1.04E-10</td>
<td>1.31E-12</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_6</td>
<td>2.8683E-04</td>
<td>-</td>
<td>7.14E-11</td>
<td>2.79E-14</td>
<td>1.31E-06</td>
<td>1.68E-08</td>
<td>1.04E-10</td>
<td>1.31E-12</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_7</td>
<td>1.3932E-06</td>
<td>-</td>
<td>4.88E-13</td>
<td>8.40E-16</td>
<td>2.63E-18</td>
<td>1.04E-20</td>
<td>1.40E-22</td>
<td>1.51E-24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_8</td>
<td>1.7539E-09</td>
<td>-</td>
<td>1.37E-11</td>
<td>1.40E-14</td>
<td>2.18E-17</td>
<td>1.11E-19</td>
<td>1.66E-21</td>
<td>6.26E-24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_9</td>
<td>9.04E-16</td>
<td>-</td>
<td>1.67E-18</td>
<td>2.37E-21</td>
<td>1.31E-15</td>
<td>2.01E-15</td>
<td>1.25E-17</td>
<td>1.61E-20</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_10</td>
<td>-</td>
</tr>
<tr>
<td>k_{11}</td>
<td>2.5998E-02</td>
<td>-</td>
<td>1.66E-10</td>
<td>2.51E-13</td>
<td>1.34E-16</td>
<td>7.08E-19</td>
<td>5.32E-22</td>
<td>1.54E-25</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_{12}</td>
<td>7.8597E-04</td>
<td>-</td>
<td>6.82E-10</td>
<td>1.33E-12</td>
<td>2.56E-15</td>
<td>7.17E-19</td>
<td>4.48E-22</td>
<td>3.84E-25</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_{13}</td>
<td>7.3694E-06</td>
<td>-</td>
<td>4.82E-12</td>
<td>9.28E-15</td>
<td>2.27E-18</td>
<td>9.84E-22</td>
<td>6.16E-25</td>
<td>3.84E-28</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_{14}</td>
<td>4.3438E-08</td>
<td>-</td>
<td>2.56E-12</td>
<td>4.93E-15</td>
<td>1.01E-18</td>
<td>5.74E-22</td>
<td>4.20E-25</td>
<td>3.84E-28</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_{15}</td>
<td>5.2832E-11</td>
<td>-</td>
<td>4.14E-12</td>
<td>7.44E-15</td>
<td>1.04E-18</td>
<td>6.57E-22</td>
<td>4.68E-25</td>
<td>3.84E-28</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_{16}</td>
<td>-</td>
</tr>
<tr>
<td>k_{17}</td>
<td>-</td>
</tr>
<tr>
<td>k_{18}</td>
<td>9.7539E-04</td>
<td>-</td>
<td>4.55E-09</td>
<td>7.17E-12</td>
<td>2.78E-15</td>
<td>9.59E-18</td>
<td>4.48E-21</td>
<td>3.84E-24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_{19}</td>
<td>8.2717E-10</td>
<td>-</td>
<td>6.36E-11</td>
<td>4.25E-14</td>
<td>1.01E-17</td>
<td>5.62E-20</td>
<td>1.38E-23</td>
<td>3.84E-26</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_{20}</td>
<td>5.7627E-04</td>
<td>-</td>
<td>3.15E-11</td>
<td>1.01E-14</td>
<td>3.15E-17</td>
<td>6.64E-20</td>
<td>1.03E-23</td>
<td>3.84E-26</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>k_{21}</td>
<td>2.0350E-11</td>
<td>-</td>
<td>1.51E-11</td>
<td>5.45E-15</td>
<td>2.10E-18</td>
<td>3.98E-21</td>
<td>2.00E-24</td>
<td>3.84E-27</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>f1</td>
<td>f2</td>
<td>f3</td>
<td>f4</td>
<td>f5</td>
<td>f6</td>
<td>f7</td>
<td>f8</td>
<td>f9</td>
<td>f10</td>
<td>f11</td>
<td>f12</td>
<td>f13</td>
<td>f14</td>
<td>f15</td>
<td>f16</td>
<td>f17</td>
<td>f18</td>
<td>f19</td>
<td>f20</td>
<td>f21</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>4.5946E-05</td>
<td>8.70E-05</td>
<td>1.19E-06</td>
<td>8.91E-10</td>
<td>9.97E-13</td>
<td>1.82E-08</td>
<td>6.80E-14</td>
<td>6.69E-14</td>
<td>9.86E-08</td>
<td>4.14E-12</td>
<td>2.54E-04</td>
<td>8.27E-05</td>
<td>1.08E-06</td>
<td>-</td>
<td>-</td>
<td>2.75E-06</td>
<td>1.88E-09</td>
<td>-</td>
<td>7.60E-15</td>
<td>4.02E-07</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7.6283E-04</td>
<td>1.19E-06</td>
<td>2.54E-08</td>
<td>9.01E-11</td>
<td>1.79E-14</td>
<td>1.35E-10</td>
<td>3.18E-13</td>
<td>3.1E-16</td>
<td>9.90E-10</td>
<td>9.06E-14</td>
<td>2.42E-05</td>
<td>1.78E-06</td>
<td>2.23E-08</td>
<td>-</td>
<td>-</td>
<td>1.62E-07</td>
<td>2.92E-10</td>
<td>-</td>
<td>8.92E-14</td>
<td>7.61E-09</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6.2298E-07</td>
<td>9.80E-10</td>
<td>5.98E-11</td>
<td>1.54E-14</td>
<td>1.54E-17</td>
<td>1.1E-13</td>
<td>2.68E-16</td>
<td>1.17E-19</td>
<td>8.98E-13</td>
<td>6.78E-17</td>
<td>1.76E-08</td>
<td>3.34E-09</td>
<td>1.69E-11</td>
<td>-</td>
<td>-</td>
<td>1.19E-10</td>
<td>2.92E-13</td>
<td>-</td>
<td>1.51E-14</td>
<td>5.87E-12</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6.1752E-10</td>
<td>9.97E-15</td>
<td>1.79E-14</td>
<td>1.54E-17</td>
<td>1.96E-20</td>
<td>1.17E-16</td>
<td>3.01E-19</td>
<td>1.59E-22</td>
<td>6.87E-16</td>
<td>6.39E-20</td>
<td>4.62E-12</td>
<td>1.28E-12</td>
<td>1.61E-14</td>
<td>-</td>
<td>-</td>
<td>1.10E-13</td>
<td>5.03E-16</td>
<td>-</td>
<td>1.37E-22</td>
<td>5.67E-15</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5.4658E-09</td>
<td>1.82E-08</td>
<td>1.55E-10</td>
<td>1.1E-13</td>
<td>1.17E-16</td>
<td>9.01E-12</td>
<td>4.1E-14</td>
<td>4.80E-17</td>
<td>2.54E-13</td>
<td>4.39E-18</td>
<td>2.93E-07</td>
<td>7.97E-09</td>
<td>1.25E-10</td>
<td>-</td>
<td>-</td>
<td>2.82E-09</td>
<td>2.17E-12</td>
<td>-</td>
<td>1.27E-17</td>
<td>5.50E-11</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1.3101E-10</td>
<td>6.99E-14</td>
<td>1.31E-16</td>
<td>1.17E-19</td>
<td>1.59E-22</td>
<td>8.0E-17</td>
<td>2.31E-19</td>
<td>2.81E-22</td>
<td>1.11E-16</td>
<td>2.4E-22</td>
<td>4.2E-12</td>
<td>2.31E-15</td>
<td>1.48E-16</td>
<td>-</td>
<td>-</td>
<td>2.14E-15</td>
<td>5.29E-17</td>
<td>-</td>
<td>8.55E-25</td>
<td>9.73E-17</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2.7251E-09</td>
<td>9.86E-09</td>
<td>9.90E-10</td>
<td>8.98E-13</td>
<td>9.45E-16</td>
<td>2.54E-11</td>
<td>1.04E-13</td>
<td>1.11E-16</td>
<td>1.29E-10</td>
<td>3.8E-15</td>
<td>2.51E-07</td>
<td>6.51E-08</td>
<td>9.27E-10</td>
<td>-</td>
<td>-</td>
<td>1.18E-09</td>
<td>5.88E-12</td>
<td>-</td>
<td>2.33E-17</td>
<td>5.50E-10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3.7215E-09</td>
<td>1.41E-12</td>
<td>9.96E-14</td>
<td>6.87E-17</td>
<td>6.39E-20</td>
<td>4.39E-16</td>
<td>9.46E-19</td>
<td>2.43E-22</td>
<td>3.38E-15</td>
<td>3.24E-19</td>
<td>8.8E-16</td>
<td>6.31E-12</td>
<td>7.98E-14</td>
<td>-</td>
<td>-</td>
<td>5.64E-13</td>
<td>1.06E-16</td>
<td>-</td>
<td>7.35E-22</td>
<td>2.69E-14</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6.9846E-05</td>
<td>5.24E-04</td>
<td>6.2E-05</td>
<td>1.76E-08</td>
<td>1.62E-11</td>
<td>2.93E-07</td>
<td>1.76E-09</td>
<td>4.2E-12</td>
<td>5.1E-07</td>
<td>8.6E-10</td>
<td>5.9E-02</td>
<td>2.03E-03</td>
<td>2.11E-05</td>
<td>-</td>
<td>-</td>
<td>4.51E-05</td>
<td>4.48E-07</td>
<td>-</td>
<td>1.15E-12</td>
<td>7.51E-06</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5.0164E-02</td>
<td>8.27E-07</td>
<td>1.78E-09</td>
<td>1.34E-09</td>
<td>1.28E-12</td>
<td>7.97E-09</td>
<td>1.38E-11</td>
<td>2.31E-15</td>
<td>6.51E-08</td>
<td>6.31E-12</td>
<td>2.03E-03</td>
<td>1.30E-03</td>
<td>1.57E-06</td>
<td>-</td>
<td>-</td>
<td>1.39E-05</td>
<td>2.59E-08</td>
<td>-</td>
<td>2.03E-14</td>
<td>5.35E-07</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6.7895E-04</td>
<td>1.08E-07</td>
<td>2.23E-08</td>
<td>1.69E-11</td>
<td>1.61E-14</td>
<td>1.25E-10</td>
<td>5.08E-13</td>
<td>1.45E-16</td>
<td>9.27E-10</td>
<td>7.93E-12</td>
<td>1.1E-05</td>
<td>3.31E-06</td>
<td>4.36E-08</td>
<td>-</td>
<td>-</td>
<td>4.41E-07</td>
<td>2.54E-10</td>
<td>-</td>
<td>1.64E-16</td>
<td>6.75E-09</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table D2: Values of parameters and associated covariance matrix for equations 8 and 9 for α_{CO_2}.
Table D3: Values and covariance matrices for C_1 to C_{16} (equations 13 to 16).
<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
<th>D_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>5.046E01</td>
<td>8.15E00</td>
<td>-9.42E-01</td>
<td>-2.89E-02</td>
<td>5.76E-03</td>
<td>-1.41E-01</td>
</tr>
<tr>
<td>D_2</td>
<td>-3.533E00</td>
<td>-9.42E-01</td>
<td>2.69E-01</td>
<td>1.64E-03</td>
<td>-3.91E-04</td>
<td>-9.28E-03</td>
</tr>
<tr>
<td>D_3</td>
<td>-1.525E-01</td>
<td>-2.89E-02</td>
<td>1.64E-03</td>
<td>1.22E-04</td>
<td>-2.38E-05</td>
<td>7.87E-04</td>
</tr>
<tr>
<td>D_4</td>
<td>2.307E-02</td>
<td>5.76E-03</td>
<td>-3.91E-04</td>
<td>-2.38E-05</td>
<td>4.73E-06</td>
<td>-1.52E-04</td>
</tr>
<tr>
<td>D_5</td>
<td>-4.801E-01</td>
<td>-1.41E-01</td>
<td>-9.28E-03</td>
<td>7.87E-04</td>
<td>-1.52E-04</td>
<td>7.02E-03</td>
</tr>
</tbody>
</table>

Table D4: Values and covariance matrices for D_1 to D_5 (equation 17).
References

48

Kritschewsky I., Shaworonkoff N. and Aepelbaum V. (1935) Combined solubility of gases in liquids under pressure I Solubility of carbon dioxide in water from its mixtures with hydrogen of 20 and 30 degrees C and total pressure of 30

Li D. and Duan Z. (2007) The speciation equilibrium coupling with phase equilibrium in the H₂O-CO₂-NaCl system from 0 to 250 °C, from 0 to 1000 bar, and from 0 to 5 molality of NaCl. Chemical Geology 244, 730 – 751. doi: 10.1016/j.chemgeo.2007.07.023.

Malinin S. and Saveleva N. (1972) Experimental investigations of CO₂ solubility in NaCl and CaCl₂ solutions at temperatures of 25, 50 and 75 degrees and elevated CO₂ pressure. *Geokhimiya* pp. 643–&.

water at pressures up to 40 atm. *Collection of Czechoslovak Chemical Communications* **34**, 3982–2985.

Nighswander J., Kalogerakis N. and Mehrotra A. (1989) Solubilities of carbon-
dioxide in water and 1 wt-percent NaCl solution at pressures up to 10-mpa and
temperatures from 80 degrees C to 200 degrees C. *Journal of Chemical and*

Oelkers E. and Helgeson H. (1993a) Multiple ion association in supercritical aque-
1996) 61.

Oelkers E.H. and Helgeson H.C. (1988) Calculation of the thermodynamic and
transport properties of aqueous species at high pressures and temperatures: dis-
association constants for supercritical alkali metal halides at temperatures from
400 to 800°C and pressures from 500 to 4000 bar. *The Journal of Physical

Oelkers E.H. and Helgeson H.C. (1993b) Calculation of dissociation constants and
the relative stabilities of polynuclear clusters of 1:1 electrolytes in hydrother-
mal solutions at supercritical pressures and temperatures. *Geochimica et Cos-

for Water-Rock Interaction. In *THERMODYNAMICS AND KINETICS OF
WATER-ROCK INTERACTION* (eds. E. Oelkers and J. Schott), Mineralologi-
cal Society of America, vol. 70 of *Reviews in Mineralogy & Geochemistry*, pp.

277–298.

Vidal O. and Dubacq B. (2009) Thermodynamic modelling of clay dehydra-
tion, stability and compositional evolution with temperature, pressure and

equilibria in the system Na$_2$O-CaO-K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-H$_2$O (NCKF-
4929.2000.00303.x.

Wiebe R. and Gaddy V.L. (1939) The Solubility in Water of Carbon Dioxide at
50, 75 and 100°C, at Pressures to 700 Atmospheres. *Journal of the American

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Ideal gas constant ($= 8.314472 \text{J.mol}^{-1}.\text{K}^{-1}$)</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>STP</td>
<td>Standard temperature and pressure, 298.15K and 1 bar</td>
</tr>
<tr>
<td>T_C, x_C</td>
<td>Critical temperature and composition</td>
</tr>
<tr>
<td>μ_i</td>
<td>Chemical potential of end-member i</td>
</tr>
<tr>
<td>μ_i^0</td>
<td>Standard state chemical potential of i</td>
</tr>
<tr>
<td>x_i</td>
<td>Mole fraction of i</td>
</tr>
<tr>
<td>γ_i</td>
<td>Activity coefficient of i</td>
</tr>
<tr>
<td>a_i</td>
<td>Activity of i: $a_i = x_i \gamma_i$</td>
</tr>
<tr>
<td>σ_i^2</td>
<td>Variance of i</td>
</tr>
<tr>
<td>$\bar{G}_m^\text{mix}(x)$</td>
<td>Gibbs free energy of mixing</td>
</tr>
<tr>
<td>$\bar{G}_m(x)$</td>
<td>Gibbs free energy of the mixture</td>
</tr>
<tr>
<td>$\bar{G}_m^{\text{ex}}(x)$</td>
<td>Excess Gibbs free energy of the mixture</td>
</tr>
<tr>
<td>Φ_i</td>
<td>Proportion of i adjusted to a size parameter</td>
</tr>
<tr>
<td>W_{ij}^*</td>
<td>Interaction energy between i and j adjusted to a size parameter</td>
</tr>
<tr>
<td>W_j</td>
<td>Interaction energy between i and j</td>
</tr>
<tr>
<td>α_i</td>
<td>Size parameter for i</td>
</tr>
<tr>
<td>W_G, W_H, W_S, W_V</td>
<td>Interaction parameters on the Gibbs free energy, enthalpy, entropy and volume of mixing, respectively.</td>
</tr>
<tr>
<td>Λ_ϵ, Λe</td>
<td>Equivalent conductance, respectively experimentally-determined and hypothetical from a completely dissociated electrolyte</td>
</tr>
<tr>
<td>Λe^0</td>
<td>Limiting equivalent conductance</td>
</tr>
<tr>
<td>η, η_0</td>
<td>Viscosity, respectively of the solution and of the pure solvent</td>
</tr>
<tr>
<td>ρ</td>
<td>Density of the solution</td>
</tr>
<tr>
<td>ϵ</td>
<td>Dielectric constant of water</td>
</tr>
<tr>
<td>\hat{a}</td>
<td>Ion size parameter 69</td>
</tr>
</tbody>
</table>

Table 1: Key to symbols used in the text.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Pressure - temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams (1931)</td>
<td>25°C, 1-4 kbar</td>
</tr>
<tr>
<td>Compilation of data from Seidell (1940)</td>
<td>20-300°C, 1-4 kbar</td>
</tr>
<tr>
<td>Keevil (1942)</td>
<td>180-650°C, water vapor pressure</td>
</tr>
<tr>
<td>Clynne et al. (1981)</td>
<td>26-94°C, 1 bar</td>
</tr>
<tr>
<td>Farelo et al. (1993)</td>
<td>20-80°C, 1 bar</td>
</tr>
<tr>
<td>Pinho and Macedo (2005)</td>
<td>25-80°C, 1 bar</td>
</tr>
<tr>
<td>Sawamura et al. (2007)</td>
<td>20-40°C, 1-3 kbar</td>
</tr>
</tbody>
</table>

Table 2: Selected experimental results of halite solubility.
<table>
<thead>
<tr>
<th>P bars</th>
<th>T °C</th>
<th>molality CO$_2$</th>
<th>ρ_{Meas}</th>
<th>ρ_{Calc}</th>
<th>Deviation $%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>25</td>
<td>0.155</td>
<td>996.9</td>
<td>970.7</td>
<td>26.2</td>
</tr>
<tr>
<td>200</td>
<td>25</td>
<td>0.155</td>
<td>1005.3</td>
<td>1005.0</td>
<td>0.3</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
<td>0.155</td>
<td>996.0</td>
<td>996.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>0.155</td>
<td>966.5</td>
<td>965.8</td>
<td>0.7</td>
</tr>
<tr>
<td>200</td>
<td>150</td>
<td>0.155</td>
<td>926.4</td>
<td>926.7</td>
<td>-0.4</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>0.155</td>
<td>875.9</td>
<td>879.1</td>
<td>-3.7</td>
</tr>
<tr>
<td>200</td>
<td>250</td>
<td>0.185</td>
<td>813.4</td>
<td>821.0</td>
<td>-9.4</td>
</tr>
<tr>
<td>200</td>
<td>300</td>
<td>0.155</td>
<td>731.1</td>
<td>740.2</td>
<td>-12.4</td>
</tr>
<tr>
<td>280</td>
<td>350</td>
<td>0.155</td>
<td>631.7</td>
<td>642.1</td>
<td>-16.4</td>
</tr>
<tr>
<td>350</td>
<td>25</td>
<td>0.155</td>
<td>1011.7</td>
<td>1011.4</td>
<td>0.3</td>
</tr>
<tr>
<td>350</td>
<td>50</td>
<td>0.155</td>
<td>1002.2</td>
<td>1002.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>350</td>
<td>100</td>
<td>0.155</td>
<td>973.1</td>
<td>973.9</td>
<td>-0.8</td>
</tr>
<tr>
<td>350</td>
<td>150</td>
<td>0.155</td>
<td>934.1</td>
<td>934.7</td>
<td>-0.6</td>
</tr>
<tr>
<td>350</td>
<td>200</td>
<td>0.155</td>
<td>885.9</td>
<td>887.2</td>
<td>-1.4</td>
</tr>
<tr>
<td>350</td>
<td>250</td>
<td>0.185</td>
<td>827.7</td>
<td>831.3</td>
<td>-4.4</td>
</tr>
<tr>
<td>350</td>
<td>300</td>
<td>0.155</td>
<td>754.7</td>
<td>760.6</td>
<td>-7.8</td>
</tr>
<tr>
<td>197</td>
<td>10</td>
<td>1.741</td>
<td>1020.8</td>
<td>1016.4</td>
<td>-4.2</td>
</tr>
<tr>
<td>246</td>
<td>10</td>
<td>1.796</td>
<td>1021.7</td>
<td>1020.5</td>
<td>-1.2</td>
</tr>
<tr>
<td>295</td>
<td>10</td>
<td>1.840</td>
<td>1024.0</td>
<td>1023.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>197</td>
<td>15</td>
<td>1.702</td>
<td>1019.7</td>
<td>1015.8</td>
<td>-3.8</td>
</tr>
<tr>
<td>246</td>
<td>15</td>
<td>1.757</td>
<td>1021.0</td>
<td>1019.6</td>
<td>-1.3</td>
</tr>
<tr>
<td>295</td>
<td>15</td>
<td>1.801</td>
<td>1022.9</td>
<td>1022.0</td>
<td>-0.9</td>
</tr>
<tr>
<td>197</td>
<td>20</td>
<td>1.614</td>
<td>1017.7</td>
<td>1015.0</td>
<td>-2.7</td>
</tr>
<tr>
<td>246</td>
<td>20</td>
<td>1.675</td>
<td>1019.1</td>
<td>1019.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>295</td>
<td>20</td>
<td>1.719</td>
<td>1019.8</td>
<td>1021.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 3: Comparison of measured (ρ_{Meas}) and calculated (ρ_{Calc}) densities at various pressures, temperatures and CO$_2$ concentrations. Measurements at CO$_2$ concentrations around 0.15 M originate from Hnedkovský et al. (1996), and measurements above 1M CO$_2$ are taken from Teng et al. (1997).
Figure 2: Representative values of $W_{H_2O-CO_2}$ and a_{CO_2} from selected experimental results. a) and b) respectively show isobaric values of $W_{H_2O-CO_2}$ and $W_{H_2O-CO_2}/RT$ as a function of temperature. c) Isobaric values of a_{CO_2} as a function of temperature. Note the log scale to represent low pressure value of a_{CO_2}. d) Variations of $W_{H_2O-CO_2}$ (open symbols and dashed lines) and a_{CO_2} (closed symbols and plain lines) with pressure at 25°C. A step is seen at the boiling curve of CO$_2$. Lines are calculated with eq. 8 and 9. Uncertainties are smaller than the size of the point when not indicated.
Figure 3: Phase equilibrium in the H₂O-CO₂ system at various pressures and temperatures (cross-sections through figure 1). Lines are calculated and points are experimental results at the pressure-temperature corresponding to the lines closest to which they plot.

a) Pressure-composition phase diagram at different temperatures. The solvus closes at low pressure against the boiling curve of water (X CO₂ = 0). Dashed lines illustrate the dependency of the phase diagram to temperatures around 270°C. Corresponding experimental measurements are not indicated for clarity.

b), c) and d) show temperature-composition phase diagrams at different pressures. c) is a close-up view of b) for the water-rich phase. Dotted lines are calculated with the model of Duan and Sun (2003). The thick gray line in d) is calculated with the parameters of Holland and Powell (2003) plotted in figure 13.
Figure 4: a) Isopleths of calculated CO$_2$ solubility (mol. %) in pure water at low pressures and temperatures. The dark circle indicates the critical point of CO$_2$ and the dashed line is the liquid-gas transition of CO$_2$.
Figure 5: Map of uncertainties on CO$_2$ solubility, in percent of the calculated value. This map takes into account experimental uncertainties and the misfit of the model to the data.
Figure 6: Isoptleths of calculated a) water activity ($a_{\text{H}_2\text{O}}$) and b) water activity coefficient ($\gamma_{\text{H}_2\text{O}}$) in CO$_2$-saturated solutions, c) CO$_2$ activity (a_{CO_2}) and d) CO$_2$ activity coefficient (γ_{CO_2}) in the water-saturated CO$_2$-rich phase, between 25 and 380°C and 1 bar to 3 kbar. Dashed curves illustrate the two critical mixing lines. Points in a) represent pressure-temperature conditions of experimental results used in this study. The square indicates the critical point of water.
Figure 7: Calculated density isopleths of the CO$_2$-saturated aqueous phase over the range 0.1-3kb and 50-370°C, in kg.m$^{-3}$.
Figure 8: Heat capacity (C_p) and volume of NaCl± at infinite dilution (V^∞) calculated with the modified density model (Holland and Powell, 1998).

a) Heat capacity at 200 bars compared to measurements from Pitzer et al. (1984).
b) Comparison with the experimentally-derived volumes of Grant-Taylor (1981) and L’Vov et al. (1981).
c) Isotherms of calculated V^∞(NaCl±) up to 2 kbars.
d) Isotherms of the pressure derivative of ln(ρ_H2O/ρ_H2O^0), plotted on a log scale and used in the calculation of V^∞(NaCl±).

79
Figure 9: a) Solubility of halite calculated as a function of temperature with the model of Mao and Duan (2008, dotted line) and with the present model (bold line). The solubility is calculated at water vapor pressure below the critical point of water and along a linear pressure gradient linking experimental pressures above the critical point of water. b) Solubility of halite calculated at 25°C as a function of pressure. Points are experimental measurements indicated in table 2.
Figure 10: a) Fraction of dissociated aqueous NaCl (x_{NaCl^\pm}) as a function of pressure, calculated at different temperatures and compared to the degree of association calculated from the conductivity measurements of Quist and Marshall (1968) at 0.1 molal, as described in the text. b) x_{NaCl^\pm} calculated as a function of the total concentration of NaCl for various pressures and temperatures. The fraction of NaCl\(^0\) is $x_{NaCl^0} = 1 - x_{NaCl^\pm}$. Stars indicate halite saturation.
Figure 11: a) Density of NaCl solutions calculated at 1 bar (dark line) compared to the measurements of Surdo et al. (1982) at 25°C (open symbols) and 45°C (closed symbols). b) and c): density of NaCl solutions calculated at 400 and 500 °C for various pressures with this model (dark lines) and with the model of Driesner (2007) (thick gray lines).
Figure 12: a) Solubility of CO$_2$ as a function of concentration of NaCl, calculated at indicated pressure and temperatures with the present model and Duan and Sun (2003, dotted line labeled D&S03). Black circle at 25°C: Wiebe and Gaddy (1940). Grayed symbols are measurements of Drummond (1981) between 47 and 48 bars (circles) and at 42 bars (square). b) CO$_2$ solubility at 250°C calculated at 500 bars (left axis) and 2000 bars (right axis). Grayed circles are measurements of Takenouchi and Kennedy (1965) with unknown uncertainties. Open symbols are measurements of Todheide and Franck (1963) at 500 bars (circle) and 2000 bars (square), whose sizes indicate experimental uncertainty.
Figure 13: Comparison of values for $W_{\text{H}_2\text{O-CO}_2}$ at 3 kbar given by the model of Holland and Powell (2003, dashed line), by linear regression of $W_{\text{H}_2\text{O-CO}_2}/RT$ (gray line, see section 2.2) and by the model proposed in this study, in the two-phase domain (plain line) and extrapolated in the one-phase domain (dotted line).