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Abstract

In this paper, we consider nonparametric copula inference under bivariate censor-
ing. Based on an estimator of the joint cumulative distribution function, we define a
discrete and two smooth estimators of the copula. The construction that we propose
is valid for a large number of estimators of the distribution function, and therefore
for a large number of bivariate censoring frameworks. Under some conditions on
the tails of the distributions, the weak convergence of the corresponding copula
processes is obtained in l∞([0, 1]2). We derive the uniform convergence rates of the
copula density estimators deduced from our smooth copula estimators. Investigation
on the practical behavior of our estimators is done through a simulation study and
two real data applications, corresponding to different censoring settings. We use
our nonparametric estimators to define a goodness-of-fit procedure for parametric
copula models. A new bootstrap scheme is proposed to compute the critical values.
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1 Introduction

When it comes to analyzing dependence between random variables, copula models have
appeared as a common and flexible tool. According to Sklar’s Theorem (Sklar (1959)),
the multivariate distribution function F (t1, . . . , td) = P(T1 ≤ t1, . . . , Td ≤ td) of a random
vector (T1, . . . , Td) can be coupled to its univariate marginal distributions Fj(tj) = P(Tj ≤
tj), for j = 1, ..., d, by the relation

F (t1, . . . , td) = C(F1(t1), . . . , Fd(td)), (1.1)

where C is a copula function, that is, by definition, a multivariate distribution on [0, 1]d

with uniform marginal distributions. The copula function appears as a quantity that
contains all the information about the dependence structure of the random vector, and is
unique in the case where the marginal distributions are continuous. In numerous situations
in lifetime data analysis, estimation of C must be performed from indirect observations of
the variables (T1, ..., Td), due to the presence of censoring (see e.g. Fleming and Harrington
(1991) for a description of censoring mechanism). The aim of the present paper is to
define a new class of nonparametric estimators of the copula function C that is adapted
to various schemes of multivariate random censoring. We derive asymptotic properties of
these estimators, and investigate their practical behavior through a simulation study and
some applications to real data.

Copula models represent a flexible alternative to fully parametric models of multi-
variate distribution function, allowing to study the dependence structure separately from
the marginal distributions. This property of copula becomes of prime importance for
applications in economics and insurance. A detailed introduction to copula theory and
dependence modeling can be found in Joe (1997) or Nelsen (2006). For a recent survey on
copula models in econometrics we refer to Patton (2012). Various applications in finance
and/or insurance are considered by Frees and Valdez (1998), Embrechts et al. (2003),
Cherubini et al. (2004) and Bouyé et al. (2007).

Copula estimation for uncensored data has been extensively studied in the literature.
Several statistical procedures are available (see e.g. Genest and Rivest (1993), Tsukahara
(2005) for parametric or semiparametric modeling, and Choros et al. (2010) for a global
review of the existing methods). A nonparametric estimation approach was introduced
by Deheuvels (1979), who defined the empirical copula function. We refer to Fermanian
et al. (2004) and Segers (2012) for some recent studies of asymptotic properties of this
estimator. Unlike parametric or semiparametric models, the empirical copula function
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is not affected by misspecification (see Fermanian and Scaillet (2005) for more details).
Therefore, nonparametric approaches are required to construct goodness-of-fit procedures,
such as those studied in Fermanian (2005). The empirical copula is an irregular discrete
estimator and does not permit a copula density estimation. Its smooth versions were
considered by several authors, see e.g. Fermanian et al. (2004), and Omelka et al. (2009)
who proposed techniques designed to reduce boundary bias.

Such nonparametric estimators all rely on the empirical distribution function of
(T1, ..., Td). Under random censoring, this empirical estimator is unavailable, since the
variables Tj subject to censoring are not directly observed. Parametric or semiparametric
approaches can be adapted, by performing maximum likelihood estimation with a form
of the likelihood criterion which takes the incompleteness of the observations into ac-
count, see Shih and Louis (1995). On the other hand, the extension of nonparametric
procedures to the censored framework requires to replace the unavailable empirical dis-
tribution function by a suitable nonparametric estimator of F . Many estimators of F
have been proposed in the literature, see e.g. Dabrowska (1988), Akritas and Van Keile-
gom (2003), van der Laan (1996), see also a review of most existing procedures in Lopez
and Saint-Pierre (2012). Depending on the identifiability assumptions on the censoring
mechanism, different procedures can be introduced to take specific forms of censoring
into account. Wang and Wells (1997) and Lopez and Saint-Pierre (2012) considered esti-
mators which are consistent under some restrictions on the dependence structure of the
censored variables, Gribkova et al. (2013) proposed an estimator which is adapted to a
simplified censoring framework, corresponding to some specificity of insurance datasets.
Goodness-of-fit procedures for censored copula models have been studied by Wang and
Wells (2000), Luciano et al. (2008), Gribkova et al. (2013) (who used an extension of
the procedure of Genest and Rivest (1993)), but are only valid in the particular case of
Archimedean copula models.

In the present paper, we propose a general procedure of nonparametric copula estima-
tion under multivariate censoring, based on the availability of a nonparametric estimator
of the distribution function. This estimator is required to be of some generic form, which
is compatible with many multivariate censoring schemes (that is under various types of
identifiability assumptions). We construct three classes of copula estimators. The first
one is non-smooth and can be considered as an extension of Deheuvels (1979). The two
others are smooth estimators, based on kernel estimation of the distribution of either the
variables (Tj)1≤j≤d, or a transformed version of them (such as the one proposed by Omelka
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et al. (2009) to reduce boundary effects in copula smoothing). The weak convergence of
the corresponding copula processes is obtained. Moreover, we derive uniform asymptotic
convergence rates of the copula density estimators obtained through differentiation of our
smooth copula estimators. The practical behavior of these new estimators is investigated
through a simulation study, and two applications to real datasets. As a by-product of
our estimators, we propose a goodness-of-fit procedure (with computation of the critical
values through a new bootstrap scheme) which is consistent for a large number of copula
models, even in a non-Archimedean framework.

The rest of the paper is organized as follows. In section 2, we introduce the general
multiple censoring model that we consider. We describe some examples of specific censor-
ing schemes that will be covered by our general framework. Empirical copula estimators
are defined and studied in section 3. Section 4 is devoted to the construction and theo-
retical study of smooth copula estimators. Simulation studies and real data applications
are considered in section 5. Technical arguments are presented in the Appendix section.

2 Model description and examples

In this section, we describe the general framework of the present paper. Section 2.1
presents the general setup along with some notations and first model assumptions. Several
classical examples are recalled in section 2.2.

2.1 General setup

Throughout this paper, we will focus on the two-dimensional case for the sake of simplicity.
The extension of our results to higher dimensions is straightforward.

Consider a random vector (T1, T2) with the cumulative distribution function F (t1, t2) =

P(T1 ≤ t1, T2 ≤ t2) and marginal distribution functions F1, F2. We will denote by C the
associated copula function, that is

F (t1, t2) = C(F1(t1), F2(t2)).

To ensure the unicity of the copula function C, we will assume that the variables T1 and
T2 are continuous.

In some cases, in particular in lifetime data analysis, one of these two variables (or
even both of them) may be subject to censoring, and thus may not be directly observed.
Instead of observing the variable Tj (j = 1, 2), one observes a minimum between it and
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another (censoring) random variable, which will be denoted by Cj. The available data is
then composed of i.i.d. replications (Y1i, Y2i, δ1i, δ2i)1≤i≤n of random vector (Y1, Y2, δ1, δ2),

where Yj = min(Tj, Cj) and δj = ITj≤Cj for j = 1, 2. Sometimes, in addition to this
information, one may observe some auxiliary variables. Such situation is illustrated by
our Example 3 below. Throughout this paper, we will assume that the support of the
distribution of Tj is included in the support of the corresponding censoring variable Cj for
j = 1, 2. This assumption is classical in lifetime data analysis. If it is not verified, a part
of the distribution is not observed and thus the distribution function cannot be estimated
consistently on the whole support of (T1, T2).

As we have already mentioned in the introduction, different bivariate distribution
function estimators can be considered, depending on the censoring scheme. However,
most of them can be written in some generic form. We will assume throughout the paper
that F can be estimated consistently by an estimator Fn of the following form,

Fn(t1, t2) =
1

n

n∑
i=1

WinIY1i≤t1,Y2i≤t2 , (2.1)

where Win are random weights, designed to compensate asymptotically the bias caused
by the particular structure of the data. The appropriate weight Win to be used depends
strongly on the identifiability conditions that are required to infer on F. Basically, these
assumptions describe a dependence structure between (C1, C2) and (T1, T2), and may differ
from one application to another. In all the examples that we consider, we will assume
that Win = δ1iδ2iĝ(Y1i, Y2i), where ĝ is a function estimated from the data, converging
towards a limit function g, where g satisfies the following condition,

∀φ ∈ L1, E [δ1δ2g(Y1, Y2)φ(Y1, Y2)] = E[φ(T1, T2)]. (2.2)

Classical situations where the indicated assumptions hold, are described in the following
subsection.

2.2 Examples

In the examples that we propose, we only consider estimators of the distribution function
that correspond to a positive measure. The results that we derive in the following can be
adapted to distributions with eventual negative masses at some observations, such as the
estimator considered by Dabrowska (1988) (see also Pruitt (1991)). However, the resulting
copula estimators are not true copula functions due to this negative mass, therefore we
do not focus on such cases.
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Example 1: censoring acts only on one of the two variables

In this situation, C2 = ∞ a.s., and consequently Y2 = T2 and δ2 = 1 a.s. In such a
setting, the estimator F(1)

n defined by Stute (1993) is of the form (2.1), that is

F(1)
n (t1, t2) =

1

n

n∑
i=1

W
(1)
in IY1i≤t1,Y2i≤t2 , (2.3)

where the random weights W (1)
in are the jumps of the Kaplan-Meier estimator of the

distribution function of T1. This estimator is consistent provided that C1 is independent
from T1, and P(T1 ≤ C1|T2, T1) = P(T1 ≤ C1|T2). A practical way of rewriting W

(1)
in

consists of linking this jump to the Kaplan-Meier estimator of the censoring variable C1.

Indeed, defining a Kaplan-Meier estimator of the censoring variable,

Ĝ(t) = 1−
∏

i:Y1i≤t

(
1− 1∑n

j=1 IY1j≥Y1i

)1−δ1i

,

according to Satten and Datta (2001),

W
(1)
in =

δ1i

1− Ĝ(Y1i−)
.

Introducing G(t) = P(C1 ≤ t), this weight can be seen as an approximation of

W
(1)
i =

δ1i

1−G(Y1i−)
.

Example 2: censoring variables linked through a copula function

This situation is described in Lopez and Saint-Pierre (2012). In this framework,
(C1, C2) is supposed to be independent from (T1, T2). Another assumption is made on
the joint distribution of the random vector (C1, C2). It is assumed that the joint survival
function SG can be expressed as

SG(c1, c2) = P(C1 ≥ c1, C2 ≥ c2) = CG(S1(c1), S2(c2)),

where CG is a known survival copula, and S1 and S2 are the marginal survival functions
of C1 and C2. Note that the last assumption can be relaxed by estimating CG from a
parametric model. The only impact of this additional modeling is a modification of the
asymptotic distribution of the distribution function estimator, without any modification of
the convergence rate provided that the parametric model is sufficiently regular. Denoting
by Ŝ1 and Ŝ2 the Kaplan-Meier estimators of S1 and S2, the estimator of Lopez and
Saint-Pierre (2012) corresponds to

W
(2)
in =

δ1iδ2i

CG(Ŝ1(Y1i), Ŝ2(Y2i))
,
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with its limit equal to W (2)
i = δ1iδ2i[CG(S1(Y1i), S2(Y2i))]

−1.

Example 3: censoring variables differ only through an additional observed

variable

Here we consider a model, studied in Gribkova et al. (2013). It corresponds to a
classical situation, appearing when it comes to study the insurance contracts, related to
two individuals (generally two members of a same couple). If, for example, T1 (resp. T2)
is the total lifetime of the husband (resp. his wife), the censoring variables C1 and C2

are their ages at a moment of the exit from the study, for a reason different from death.
The observed variables are then Y1 = T1 ∧ C1 and Y2 = T2 ∧ C2. Besides these variables,
the age difference ε between two members of the couple is generally observed. In most
cases, the two members of the couple, if both alive, exit the study at the same time. This
leads to a link between two censoring variables through the relationship C2 − C1 = ε.

The observations are then formed of i.i.d. replications (Y1i, Y2i, εi, δ1i, δ2i)1≤i≤n. In such
setting, a consistent estimator of the distribution function F is of the form (2.1), with the
weights given by

W
(3)
in =

δ1iδ2i

1− G̃(max(Y1i, Y2i − ε)−)
, (2.4)

where G̃(y) is a Kaplan-Meier estimator of G(y) = P(C1 ≤ y) (see Gribkova et al.
(2013)). The censoring variable is observed since one of the two lifetimes is censored,
so the estimator G̃(y) is based on the observations (inf(Ai, Ci),1Ci≤Ai)1≤i≤n, where Ai =

inf(T1i, T2i − εi).
Additional examples:

An estimator of the form (2.1) has also been considered by Lopez (2012). It can be
applied to a large set of situations, since it requires only that (T1, T2) is independent from
(C1, C2), without making any assumption on the dependence structure of two censoring
variables. Moreover, this estimator can be used in presence of bivariate left-truncation.
Since, for now, there does not exist any weak convergence result for this estimator, we
are unable to prove a weak convergence of the corresponding empirical copula process.
However, the uniform consistency property of this estimator permits to establish a uniform
convergence of the copula estimator, see Theorem 3.1 below.

3 Discrete nonparametric copula estimator

In this section, we first define a nonparametric copula estimator, which extends the em-
pirical copula of Deheuvels (1979) in our framework. The asymptotic properties of this
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estimator are considered in section 3.2 (uniform n1/2−consistency) and in section 3.3
(weak convergence of the corresponding empirical process).

3.1 Definition of the estimators

By the definition of the copula function C, we have

C(u, v) = F (F−1
1 (u), F−1

2 (v)), 0 ≤ u, v ≤ 1, (3.1)

where L−1 denotes the generalized inverse of a monotone function L. Therefore, the copula
function can be estimated nonparametrically by considering an empirical version of (3.1),
that is

Cn(u, v) = Fn(F−1
1n (u),F−1

2n (v)), 0 ≤ u, v ≤ 1, (3.2)

where Fn is defined in (2.1) and F1n(t1) = Fn(t1,∞), and F2n(t2) = Fn(∞, t2). In the un-
censored case, this definition reduces to that of the empirical copula estimator introduced
in Deheuvels (1979). If Fn is a true distribution function (that is, a monotonic function
with Fn(+∞,+∞) = 1), then Cn is a true copula function. For the examples considered
in the previous sections, in some situations, the total mass of Fn may be strictly less than
one (this is a classical issue for Kaplan-Meier estimator in the univariate case), leading
to estimators Cn with total mass less than one. In this case, the residual mass may be
affected to the point (1, 1) in order to retrieve a true copula function. In the case where
Fn allocates negative mass to some observations (for example the estimator of Dabrowska
(1988)), this definition can not be used since Fjn (for j = 1, 2) may not be monotonic
and F−1

jn may not be defined. Nevertheless, (3.2) is asymptotically equivalent, up to the
terms of order OP (1/n) uniformly on u and v, to

C̃n(u, v) =
1

n

n∑
i=1

Win1F1n(Y1i)≤u,F2n(Y2i)≤v, (3.3)

which is still valid for non-monotonic functions Fjn (although, in this case, Cn is not a
copula).

In the following sections 3.2 and 3.3, we study the asymptotic behavior of the esti-
mator Cn. Compared to the uncensored case, the main difficulty here is to handle the
weights Win. Indeed, in absence of censoring, one observes a sample composed of i.i.d.
observations, each of them contributing to the estimator with the same weight equal to
n−1, while in our setting each weight is random and depends on the whole sample.
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3.2 Uniform n1/2−consistency

As in the uncensored case, asymptotic properties of the empirical copula estimator are
derived from the corresponding properties of the underlying distribution function estima-
tor Fn. Thus, the n1/2−consistency of Cn only requires the n1/2−convergence of Fn, as
stated in the following Theorem.

Theorem 3.1 Assume, without loss of generality, that (T1, T2) are almost surely positive,
and assume that Fjn is monotonic for j = 1, 2. Let T1 = [−∞, A1], and T2 = [−∞, A2],

such that
sup

t1∈T1,t2∈T2
|Fn(t1, t2)− F (t1, t2)| = OP (n−1/2),

and, for j = 1, 2,

sup
t∈Tj
|Fjn(t)− Fj(t)| = OP (n−1/2).

Moreover, assume that supi=1,...,n:Y1i≤A1,Y2i≤A2
Win = OP (1). Denoting F1(T1) = [0, u1],

and F2(T2) = [0, u2], then, for any η > 0,

sup
u≤u1−η,v≤u2−η

|Cn(u, v)− C(u, v)| = OP (n−1/2).

Proof. Let ε < η. Note that,

sup
u≤u1−η,v≤u2−η

|Cn(u, v)− C̃n(u, v)| ≤ 2

n
sup

i=1,...,n:Y1i≤A1,Y2i≤A2

Win,

where C̃n is defined in (3.3).Therefore, it suffices to prove the uniform consistency of C̃n.
Next, observe that, for j = 1, 2, on the set Aε = {supt∈Tj ,j=1,2 |Fjn(t)− Fj(t)| ≤ ε},

|1Fjn(Yji)≤u − 1Fj(Yji)≤u| ≤ 1|Fj(Yji)−u|≤ε,

for Y1i ≤ A1 and Y2i ≤ A2. Defining, for u ≤ u1 − η and v ≤ u2 − η,

F∗n(u, v) =
1

n

n∑
i=1

Win1F1(Y1i)≤u1F2(Y2i)≤v,

we can deduce that, on Aε,

|C̃n(u, v)− F∗n(u, v)| ≤ 2

n

n∑
i=1

Win

{
1|F1(Y1i)−u|≤ε + 1|F2(Y2i)−v|≤ε

}
1Y1i≤A1,Y2i≤A2 .

The presence of 1Y1i≤A1,Y2i≤A2 in the last equation is due to the fact that only the terms
with Yji ≤ Aj (for j = 1, 2) give a positive contribution to the sum that defines F∗n and
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Cn. This is clear for F∗n. For C̃n, observe that, due to monotonicity, Yji > Aj implies
Fjn(Yji) ≥ Fjn(Aj) ≥ Fj(Aj)− ε. Moreover,

1

n

n∑
i=1

Win

{
1|F1(Y1i)−u|≤ε + 1|F2(Y2i)−v|≤ε

}
= F1n(F−1

1 (u+ ε))− F1n(F−1
1 (u− ε))

+F2n(F−1
2 (v + ε))− F2n(F−1

1 (v − ε)).

Using the uniform convergence of Fjn for j = 1, 2, we can deduce that, on Aε,

|C̃n(u, v)− F∗n(u, v)| ≤ 8ε,

Next, we take ε = 8−1Mn−1/2.We get, for n large enough, P(n1/2 supu≤u1−η,u≤u2−η |C̃n(u, v)−
F∗n(u, v)| > M) ≤ P(Ac

8−1Mn−1/2), where Ac denotes the complementary of the set A. We
then can deduce that limM→∞ ¯limn→∞P(n1/2 supu≤u1−η,u≤u2−η |C̃n(u, v)−F∗n(u, v)| > M) =

0. Moreover, F∗n converges uniformly towards C at rate n1/2 for u ≤ u1− η and v ≤ u2− η
from the rate of uniform convergence of Fn.

3.3 Weak convergence of the censored empirical copula process

To obtain asymptotic weak convergence of Cn, some additional properties on the esti-
mator Fn are required. First of them is the weak convergence of the empirical process
n1/2(Fn(t1, t2)− F (t1, t2)), which is stated in Assumption 1. Let l∞(T) denote a space of
all bounded functions f : T→ R.

Assumption 1 Assume that Fn(t1, t2) is an n1/2−consistent estimator of F (t1, t2) satis-
fying

Hn(t1, t2) :=
√
n(Fn(t1, t2)− F (t1, t2)) GF (t1, t2) in l∞(R2), (3.4)

where GF (t1, t2) is a tight gaussian process and  denotes the weak convergence.

The next requirement is related to the fact that the copula estimator (3.2) must be
invariant under the probability integral transform, see Fermanian et al. (2004) in the
uncensored case. To express this invariance in our framework, define the pseudo-variables
(T ∗1 , T

∗
2 , C

∗
1 , C

∗
2) as

(T ∗1 , T
∗
2 , C

∗
1 , C

∗
2) = (F1(T1), F2(T2), F1(C1), F2(C2)),

and, for j = 1, 2,

Y ∗j = min(T ∗j , C
∗
j ), δ∗j = IT ∗j ≤C∗j .
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We will denote by (Y ∗1i, Y
∗

2i, δ
∗
1i, δ

∗
2i)1≤i≤n a corresponding i.i.d. sample. As F1 and F2

are monotonic, δ∗j = δj. Joint distribution function of (T ∗1 , T
∗
2 ) is to be estimated by F∗n,

which is the estimator calculated by the same way as (2.1), but using the pseudo-sample
(Y ∗1i, Y

∗
2i, δ

∗
1i, δ

∗
2i)1≤i≤n.

Assumption 2 The weights attributed by the estimator (2.1) are invariant under the
probability integral transform, i.e.

W ∗
in = Win, i = 1, . . . , n.

In all the examples that we consider, for each i, the weight Win depends only on the
indicators (δ1i, δ2i), and on the ranks Rji, for j = 1, 2, of the observations Yji in samples
(Yj1, ..., Yjn). Denote R∗ji the rank of Y ∗ji in the transformed sample (Y ∗j1, ..., Y

∗
jn), then the

monotonicity of F1 and F2 ensures that R∗ji = Rji. Therefore, Assumption 2 is naturally
satisfied in the examples that we consider.

From Assumptions 1 and 2, the process n1/2(F∗n(u, v)−C(u, v)) converges in l∞([0, 1]2)

to the gaussian process Z∗C(u, v) = GF (F−1
1 (u), F−1

2 (v)). Defining the empirical process
corresponding to the introduced copula estimator by

Zn(u, v) =
√
n(Cn(u, v)− C(u, v)), 0 ≤ u, v ≤ 1, (3.5)

we now state the main result of this section.

Theorem 3.2 Suppose that F has continuous marginal distribution functions and partial
derivatives of its copula function exist and are continuous. Then the censored empiri-
cal copula process {Zn(u, v), 0 ≤ u, v ≤ 1} converges weakly in l∞([0, 1]2) to the tight
Gaussian process,

ZC(u, v) = Z∗C(u, v)− ∂1C(u, v)Z∗C(u, 1)− ∂2C(u, v)Z∗C(1, v).

Theorem 3.2 is an extension of Theorem 3 in Fermanian et al. (2004), which establishes,
in absence of censoring, the weak convergence of the empirical copula process in l∞([0, 1]2).

The arguments that we develop are similar to those used in the uncensored case and are
based mainly on functional Delta-Method.

Proof. The first step of the proof consists of reducing the problem to the case where
the marginals T1 and T2 are uniformly distributed. This is done through the following
Lemma (proved in the Appendix section), which is a consequence of Assumption 2.
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Lemma 3.3 Assume that F1 and F2 are continuous distribution functions and let Cn(u, v)

and C∗n(u, v) be the estimators of C based respectively on the observations
(Y1i, Y2i, δ1i, δ2i)1≤i≤n and (Y ∗1i, Y

∗
2i, δ

∗
1i, δ

∗
2i)1≤i≤n. The equation Cn(u, v) = C∗n(u, v) holds.

Lemma 3.3 shows that Zn(u, v) = Z∗n(u, v) =
√
n(C∗n(u, v) − C(u, v)) where C∗n(u, v) =

F∗n(F∗−1
1n (u),F∗−1

2n (v)), where F∗1n,F∗2n are the marginals of F∗n. Then Lemma 2 of Ferma-
nian et al. (2004) can be applied with H∗(u, v) = C(u, v). The limiting process is then
obtained by applying the Delta-Method and Theorem 3.9.28 in van der Vaart and Wellner
(1996).

Examples 1 to 3 (continued). As we have already mentioned, Assumption 2 is quite
natural and satisfied for all examples that we consider. Let us discuss now Assumption
1. In each example that we give, the difference between the distribution function and its
estimator of the form (2.1) can be represented as

F(j)
n (t1, t2)− F (j)(t1, t2) =

1

n

n∑
i=1

ηi(t1, t2) +Rj
n(t1, t2),

with supt1,t2 |R
j
n(t1, t2)| = oP (n−1/2), where n−1/2

∑n
i=1 ηi(t1, t2) is a sum of i.i.d. terms,

which converges to a Gaussian process from the empirical process theory, and j = 1, ..., 3.
For Example 1, such a representation has been derived by Stute (1996) for a fixed point
(t1, t2). The uniform convergence of the remainder term can be seen as a particular case
of the results obtained by Lopez and Saint-Pierre (2012), which also cover Example 2.
Gribkova et al. (2013) provide the representation for Example 3. In each case, the uniform
convergence of the remainder term is obtained by adding some assumptions on the tail of
the distributions of two lifetimes, compared to the tail of the distributions of the censoring
variables.

4 Smoothed copula estimators

The procedure described in section 2 introduces a discrete nonparametric estimator of
the copula function. However, if the underlying copula is continuous or even smooth, it
may be reasonable to estimate it by a smooth function. In section 4.1, we introduce two
nonparametric smooth copula estimators, which are valid in presence of censored observa-
tions. By taking their derivatives, we deduce two copula density estimators. Section 4.2
establishes the weak convergence of the empirical processes associated with the smooth
copula estimators. Section 4.3 deals with the uniform convergence of the resulting copula
density estimators.
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4.1 Smooth estimators of the copula and its density

Let k : R2 7→ R denote a bivariate kernel function (that is a smooth function with integral
over R2 equal to one), and K its cumulative integral, that is

K(x, y) =

∫ x

−∞

∫ y

−∞
k(u, v)dudv.

Introducing a smoothing parameter h > 0, a kernel estimator of the distribution function
can be deduced through a convolution of the measure defined by the estimator (2.1) with
the measure with density kh(u, v) = h−2k(u/h, v/h).

A natural extension of this classical Parzen-Rosenblatt estimator in the case of cen-
sored data leads to an estimator of F of the form

F̂1
n(t1, t2) =

1

n

n∑
i=1

WinK

(
t1 − Y1i

h
,
t2 − Y2i

h

)
. (4.1)

Although we use, for notation convenience, the same h for both components, different
bandwidths may be used. Like all smoothing techniques, this estimator is sensitive to the
choice of the bandwidth parameter(s). This question will be discussed in section 5. Let
us introduce now a first smooth copula estimator given by

Ĉ1
n(u, v) = F̂1

n((F̂1
1n)−1(u), (F̂1

2n)−1(v)). (4.2)

In the uncensored case, this estimator reduces to the kernel estimator studied by Ferma-
nian et al. (2004), who established a functional central limit theorem for the associated
empirical process.

In order to ensure the weak convergence of the estimator Ĉ1
n, one must control its bias

through an assumption on the boundedness of the second order partial derivatives of the
underlying joint distribution function F . Let us notice that these regularity conditions do
not impose the uniform boundedness of the second order derivatives of the corresponding
copula function itself, which would have excluded from consideration several important
families of copulas. An important drawback of estimator (4.2) is that its performance
depends on marginal distribution functions of the variables T1 an T2 (this issue was ex-
tensively discussed in Omelka et al. (2009)). To get rid of this inconvenient, Omelka et al.
(2009) introduced some transformation of the initial variables. It leads to construction of
a kernel estimator of the distribution function F of (T1, T2) based on pseudo-observations,
whose marginal distributions are asymptotically equal to some distribution function Φ,
designed to avoid corner bias problems.
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This method can be extended to our framework, leading to a second smooth esti-
mator C2

n of the copula function. Indeed, for some distribution function Φ, let us con-
sider a couple of variables (T̃1, T̃2) = (Φ−1[F1(T1)],Φ−1[F2(T2)]) and pseudo-observations
(Φ−1[F1n(Y1i)],Φ

−1[F2n(Y2i)])1≤i≤n. Since the copula function is invariant under monotone
transformations, the variables (T̃1, T̃2) are coupled by the same copula as (T1, T2). Next,
we define an estimator of the joint distribution function of (T̃1, T̃2) by

F̂2
n(t1, t2) =

1

n

n∑
i=1

WinK

(
t1 − Φ−1[F1n(Y1i)]

h
,
t2 − Φ−1[F2n(Y2i)]

h

)
,

where F1n (resp. F2n) denotes the Kaplan-Meier estimator of the distribution of T1 (resp.
T2). Then, the corresponding copula estimator is defined as,

Ĉ2
n(u, v) = F̂2

n(Φ−1(u),Φ−1(v)). (4.3)

Since these copula estimators are smooth, two estimators of the copula density c(u, v) can
be deduced by considering

ĉi(t1, t2) =
∂2

∂t1∂t2
Ĉin(t1, t2), (4.4)

for i = 1, 2.

4.2 Functional CLT for the smooth copula estimators

The proof of the weak convergence of the copula processes associated with the defined
smooth estimators relies on asymptotic properties of the weightsWin and of the estimators
of type (2.1). We first state some key assumptions that will allow, in our proofs, the
replacement of the weightsWin by their limit quantitiesWi (up to some additional terms).

Assumption 3 Let us recall that Win = δ1iδ2iĝ(Y1i, Y2i), where ĝ(y1, y2) is a random
function converging to its deterministic counterpart g(y1, y2) satisfying (2.2). For j = 1, 2,

denote τj = inf{t : Fj(t) = 1}. Assume that, on every set Y = [−∞, t1] × [−∞, t2] with
t1 < τ1 and t2 < τ2, g is bounded and is twice continuously differentiable with respect to its
arguments with uniformly bounded partial derivatives up to order two. Moreover, assume
that:

1. supt≤t1,u≤t2 |ĝ(t1, t2)− g(t1, t2)| = OP (n−1/2), and that the restrictions of ĝ and g to
the set {(t, u) : t ≤ t1, u ≤ t2} both belong to Donsker classes of functions;
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2. for all ψ ∈ F , where F denotes a Donsker class of bounded functions such that
ψ(y1, y2) = 0 for y1 > t1 or y2 > t2, we have the following representation,

n∑
i=1

[Win −Wi]ψ(Y1i, Y2i) =
1

n

n∑
i=1

ηψ(Y1,i, Y2,i, δ1i, δ2i) +Rn(ψ), (4.5)

with supψ∈F |Rn(ψ)| = oP (n−1/2), and E[ηψ(Y1,i, Y2,i, δ1i, δ2i)] = 0 for all ψ;

3. {(t1, t2, d1, d2)→ ηψh,y1,y2 (t1, t2, d1, d2) : h ∈ [0, 1/4], (y1, y2) ∈ Y} is a Donsker class
of functions, with sup(y1,y2)∈Y E[(ηψh,y1,y2 (Y1,i, Y2,i, δ1i, δ2i))

2]→h→0 0, defining

φh,y1,y2(t1, t2) = Kh (y1 − t1)Kh (y2 − t2) ,

ψh,y1,y2(t1, t2) = φh,y1,y2(t1, t2)− 1t1≤y1,t2≤y2 .

I.i.d. representations of the type (4.5) are classical tools when it comes to studying
the asymptotic properties of the estimators (2.1). Moreover, the previous assumptions are
valid for all the practical examples that we consider. Indeed, the desired representations
were obtained in Theorem 3.3 of Lopez and Saint-Pierre (2012) for Examples 1 and 2 and
in Theorem 3.1 of Gribkova et al. (2013) for Example 3. The uniform convergence of ĝ is,
in all the examples, a consequence of the uniform consistency of the Kaplan-Meier type
estimators on compact sets. In each case, the restrictions of ĝ and g to compact sets can
easily seen to be in Donsker class of functions from Theorem 2.7.5 in van der Vaart and
Wellner (1996). Point 3 is more technical, but is reasonable, having in mind the particular
shape of function ηψ coming from the Examples. We refer to section 6.5 to see how this
Assumption can be checked in the Examples.

Assumption 3 would be sufficient if we restrain ourselves to proving the convergence
of Ĉin on [0, a]× [0, b] for a and b strictly less than 1. Indeed, in this case, the convergence
is not affected by the observations with Y1i close to τ1 or Y2i close to τ2, which give no
contribution to the value of Ĉin(u, v) for u < a and v < b. These large observations (close
to the tail of at least one of the marginal distributions) give rise to particular difficulties,
which are similar to those encountered in the univariate case. For Kaplan-Meier estimator,
i.i.d. representations of the same type as in Assumption 3 can be obtained under standard
conditions if one avoids investigating the right tail of the distribution (see e.g. Gijbels
and Veraverbeke (1991)). To obtain representations valid on the whole real line, some
assumptions on the distribution of the lifetime and of the censoring are required, as in
Stute (1995). This is the purpose of our Assumption 4 below.

15



Assumption 4 Assume that E[δ1δ2g(T1, T2)2] < ∞, and assume that there exist i.i.d.
random variables (Zi) such that

sup
i
|Win −Wi| ≤ AnZi,

where An = OP (n−1/2) and E[Zi] <∞.

Examples 1 to 3 (continued). Such decomposition of the weights can be deduced
from Theorem 2.1 in Gill (1983), which implies that, for Ĝj denoting a Kaplan-Meier
estimator of the cdf Gj of a censoring variable Cj, and denoting by Y[j,n] the largest
observation for the variable j,

sup
t≤Y[j,n]

∣∣∣∣∣h(t){Ĝj(t)−Gj(t)}
1− Ĝj(t)

∣∣∣∣∣ = OP (n−1/2),

provided that
∫
h(t)2dLFj ,Gj(t) <∞, where LFj ,Gj(t) =

∫ t
0
[(1−Fj(u))(1−Gj(u))2]−1dGj(u),

with Fj denoting the cdf of the corresponding lifetime Tj (here, the roles of Tj and Cj are
reversed compared to Theorem 2.1 in Gill (1983)). Therefore, in Example 1, Assumption
4 is valid for

A1
n = sup

t≤Y[j,n]

{
|Ĝ(t)−G(t)|

L
1/2+ε
F1,G

(t)[1− Ĝ(t)]

}
,

where ε > 0, and Z1
i = δ1i[1 − G(Y1i)]

−1. Similarly, for Example 2, assuming that
CG(u, v) ≥ uα1vα2 and that its first order partial derivative are bounded, take

A2
n = sup

t≤Y[j,n]

{
2∑
j=1

|Ĝj(t)−Gj(t)|
L

1/2+ε
Fj ,Gj

(t)[1− Ĝj(t)]

}
,

and

Z2
i =

δ1iδ2i

CG(1−G1(t1), 1−G2(t2))

{
(1−G1(t1))1−α1L

1/2+ε
F1,G1

(t)

(1−G2(t2))α2

}

+
(1−G2(t2))1−α2L

1/2+ε
F2,G2

(t)

(1−G1(t1))α1

}
.

For Example 3, one can take A3
n similar to A1

n, but replacing F1 by F ∗ = P(A ≤ t) in
the definition of LF ∗,G. In each case, the condition E[Zi] <∞ is a condition on the tails
of the distributions: indeed, considering Example 1 which is the simplest, LF1,G(t) ≤
[1−F1(t)]−1[1−G(t)]−1, which shows that E[Zi] is finite provided that the density of the
censored lifetime T1i decreases fast enough, compared to [1− F1(t)][1−G(t)].
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The main tool to obtain the weak convergence of the empirical process associated with
C1
n is Theorem 4.1, establishing the asymptotic equivalence of the smoothed estimator
F̂1
n(t1, t2) to the estimator Fn(t1, t2), up to some negligible remainder term. The proof of

Theorem 4.1 is given in the Appendix section.

Theorem 4.1 Consider a symmetric kernel function k with compact support such that
k ≥ 0 and

∫
u2k(u)du < ∞. Let F (t1, t2) be twice differentiable distribution function

with the second order derivatives uniformly bounded on R2 and let h2
√
n → 0. Under

Assumptions 3 and 4, we have,

√
n sup
t1,t2∈R

|F̂1
n(t1, t2)− Fn(t1, t2)| −→

P
0. (4.6)

Corollary 4.2 Theorem 4.1 implies the weak convergence of the process
√
n(F̂1

n(t1, t2)−
F (t1, t2)) to the tight gaussian limit process GF (t1, t2) from the Assumption 1.

Corollary 4.3 If the condition h2
√
n → 0 is not satisfied, it can be seen from the proof

of Theorem 4.1 (see Appendix section), that

sup
t1,t2∈R

|F̂1
n(t1, t2)− Fn(t1, t2)| = OP (h2).

Proving the convergence of C2
n follows a different path, and requires some assumptions

on the function Φ involved in the transformation of the observations, and on the behavior
of the partial derivatives of the copula function near the boundaries of [0, 1]2. These
requirements (mainly same as those of Omelka et al. (2009)) are listed in Assumption 5.
The restrictions on the copula function are quite reasonable, since most of classical copula
families follow this property, see Appendix D in Omelka et al. (2009).

Assumption 5 Assume that C is twice continuously differentiable on ]0, 1[2, and that

∂2C(u, v)

∂u2
= O

(
1

u(1− u)

)
,

∂2C(u, v)

∂v2
= O

(
1

v(1− v)

)
,

∂2C(u, v)

∂u∂v
= O

(
1√

uv(1− u)(1− v)

)
.

Moreover, assume that Φ′ and Φ
′2/Φ are bounded.
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We also add an invariance properties of the weights Win after transformation of the
variables by Φ. Like Assumption 2, this assumption automatically holds if the weights only
depend on the ranks of the lifetimes (since, for j = 1, 2, the transformation Φ−1(Fj(·)) is
increasing).

Assumption 6 Let WΦ
in denote the weights computed from the method (2.1) based on the

sample
(Φ−1(F1(Y1i)),Φ

−1(F1(Y2i)), δ1i, δ2i)1≤i≤n.

Assume that WΦ
in = Win.

We now state the main result of this section.

Theorem 4.4 Under the conditions of Theorem 4.1 for the case i = 1, and under As-
sumption 5 and 6 for the case i = 2, the smoothed empirical copula processes

Ẑin(u, v) =
√
n(Ĉin(u, v)− C(u, v)), 0 ≤ u, v ≤ 1, (4.7)

converge weakly to a tight Gaussian process {ZC(u, v), 0 ≤ u, v ≤ 1} in l∞([0, 1]2) for
i = 1, 2.

Proof. The result for the case i = 1 follows directly from our Theorem 4.1 and technics
used by Fermanian et al. (2004) in the uncensored case. Indeed, the result obtained by
Fermanian et al. (2004) is a consequence of their Lemma 7, the stochastic equicontinuity
of the process (4.7) and its finite-dimensional convergence. Arguments, used in Lemma 7
can not be applied in the presence of censoring. Thus establishing that the supremum of
the difference between the discrete estimator of the distribution function and its smoothed
version is of the order of oP (n−1/2) constitutes the main difficulty, resolved by Theorem
4.1. The rest of the arguments are applicable directly to our case. The proof for the case
i = 2 is postponed to the Appendix section.

The results of Theorem 4.4 and Theorem 3.2 can be applied to construct a nonpara-
metric goodness-of-fit test of the hypothesis H0 : C ∈ CΘ against H1 : C /∈ CΘ, where
CΘ = {Cθ, θ ∈ Θ} is some parametric class of copulas. The test procedure, which will be
explained in details in section 5.2.1, is analogous to the test, based on Deheuvels copula
in the uncensored case and uses the limit distribution of the empirical process associated
with the copula estimator. Other approach, which we will not develop here, is a goodness-
of-fit test based on copula densities. In the incensored case, it was studied by Fermanian
(2005). This method can also be adapted to our framework, using density estimators
(4.4).
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4.3 Uniform consistency of copula density estimators

In this section, we derive the uniform consistency of the copula density estimators (4.4)
on a compact subset of [0, 1]2, which we denote by C = [θ1, θ2] × [θ′1, θ

′
2], where θ1 > 0,

θ′1 > 0, and θ2 < 1, θ′2 < 1. The maximum size of the compact C is restricted by the
following assumption.

Assumption 7 Assume that, for all Y = [−∞, t1]× [−∞, t2] where t1 < τ1 and t2 < τ2,

sup
i:(Y1i,Y2i)∈Y

|Win −Wi|=oP (ηn), ηn = h2 +
[log n]1/2

h
√
n

.

Examples 1 to 3 (continued). This assumption holds for all examples due to the
uniform convergence of the Kaplan-Meier estimators (of the censoring variables) involved
in the definition ofWin, on sets that do not contain the tail of the distribution. A regularity
assumption on CG (first derivatives uniformly bounded) must be added in Example 2. In
this case, it is easy to check that supi:(Y1i,Y2i)∈Y |Win −Wi|=OP (n−1/2).

The next assumption serve for controlling the denominator, appearing in the deriva-
tives of kernel copula estimator Ĉ1

n.

Assumption 8 Assume that there exist a constant c such that

inf
x∈C

fi(F
−1
i (x)) > c, i = 1, 2.

Moreover, assume that the density f of (T1, T2) is twice continuously differentiable with
partial derivatives up to order two uniformly bounded.

We now state the main result of this section, which is proved in the Appendix section.

Theorem 4.5 Recall that
ηn = h2 +

[log n]1/2

h
√
n

.

• Under Assumptions 7 and 8, for a kernel function k satisfying the assumptions of
Theorem 4.1, and for h is such that hnα → 0 for some α > 0, and nh2[log n]−1 →∞,
then

sup
(u,v)∈C

|ĉ1(u, v)− c(u, v)| = OP (ηn). (4.8)

• If nh10/3 →∞, assume that

19



1. the kernel function k is four times continuously differentiable,

2. the function (x, y)→ c(Φ(x),Φ(y))Φ′(x)Φ′(y) is C2 on every compact set,

and assume that Assumption 5 holds. Then,

sup
(u,v)∈C

|ĉ2(u, v)− c(u, v)| = OP (ηn). (4.9)

5 Simulation study and real data analysis

This section is divided into two main parts. In the first of them (section 5.1) we present the
results of a simulation study of the estimators introduced in the paper. Their performance
is evaluated on censored datasets, simulated using several parametric copula models. The
second part (section 5.2) is devoted to real data applications. A goodness-of-fit test based
on our estimators is defined in section 5.2.1. In section 5.2.2, we study a dataset where only
one variable is censored. In section 5.2.3, our nonparametric copula estimation techniques
are applied to a joint survival dataset from a Canadian insurer.

5.1 Simulation study

To investigate the finite sample behavior of our estimators we carried out simulation
studies in different settings. We consider Model 1, illustrating our Example 1 (where only
one variable is censored) and Model 2, corresponding to Example 2 with two censored
variables and an assumption on the joint distribution of the censoring. We do not present
results from Example 3 (censoring variables are linked through an additional variable),
since they are quite similar to those of Example 1 and 2.

5.1.1 Simulation scheme

In each setting, we simulate 1000 bivariate samples of size n = 200 according to the
simulation schemes described below.

Distribution of lifetimes.

• The marginal distribution of T1 and T2 are simulated according to Weibull dis-
tributions with the shape parameters k1 = 2, k2 = 2.2 and the scale parameters
λ1 = 3.1, λ2 = 4.1.
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• To model the dependence structure, we consider three Archimedean copula fami-
lies: Clayton, Frank and Gumbel (see Table 1 for the expressions of corresponding
copulas). For each family, we consider two values of the dependence parameter,

Model Cθ(u, v)

Clayton max(u−θ + v−θ − 1, 0)−1/θ

Frank −θ−1 log
(

1 + (exp(−θu)−1)(exp(−θv)−1)
(exp(−θ)−1)

)
Nelsen 4.2.20 [log

(
exp(u−θ) + exp(v−θ)− e

)
]−1/θ

Joe 1− [(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ]1/θ

Gumbel exp[−{(− log u)θ + (− log v)θ}1/θ]

Table 1: Archimedean copulas

corresponding to Kendall’s τ coefficients equal to τ1 = 0.25 and τ2 = 0.75. These
values are summarized in Table 2.

Copula τ = 0.25 τ = 0.75

Clayton 0.66 6.00

Frank 2.30 14.00

Gumbel 1.33 4.00

Table 2: Values of copula parameters.

Distribution of censoring variables.

• Censoring variables are modelized by Pareto distributions, that is, their survival
function is equal to

P(C > t) =

 1
(t+1)λ

if t ≥ 0

1 if t < 0.

The values of the Pareto distribution parameters are chosen in order to achieve
approximatively 25% of censored observations (for each censored marginal) in a
first case, and 50% of censored observations in a second case.

• In case of Model 1, only one lifetime is censored. In Model 2, two lifetimes are
censored by two independent censoring variables.
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For each of the obtained censored datasets, we perform nonparametric copula esti-
mation, using the three estimators introduced in the paper. To reduce the computa-
tional time, a fixed bandwidth is used to assess the performance of the smooth estimators
(h = 0.2). A data-driven choice of bandwidth is discussed in the real data applications.

5.1.2 Results.

In order to evaluate the performance of the estimators, we compute two distances be-
tween the estimated copula function and the true underlying copula. We first consider a
Kolmogorov-Smirnov distance (KS in the following), that is

dKS(Ĉ,C) = sup
u,v
|Ĉ(u, v)− C(u, v)|,

and a square-root of a quadratic integrated distance (RMSE in the following),

dRMSE(Ĉ,C) =

[∫
(Ĉ(u, v)− C(u, v))2dudv

]1/2

,

where Ĉ denotes one of the nonparametric copula estimators defined in the paper.
These distances calculated for 1000 replications are presented through boxplots on

Figures 1 to 3. As the results are quite similar in several situations, we present here only
the selected cases. Figure 1 for Frank copula permits to compare the errors of the esti-
mation for different levels of censoring and values of Kendall’s τ coefficient. As expected,
estimation becomes less precise if we increase the percentage of censoring (compare (d)
and (f) of Figure 1). The second observation is that, at fixed level of censoring, error
decreases when the correlation between variables becomes stronger (compare (a),(b) of
Figure 1 with (e),(f)). Figure 2 presents some results for Gumbel and Clayton copulas.
Figure 3 illustrates Example 3, where two variables are censored. Here the situation is
quite similar to the previous case.

Most of the presented figures show that the performance of two kernel estimators is
superior to that of the discrete estimator. These results are in accord with the results of
Omelka et al. (2009) in the uncensored case, and are natural due to the fact that the data
was simulated using copulas which are smooth on ]0, 1[2. While the performances of two
kernel estimators (4.2) and (4.3) are quite close, the interest of considering the estimator
(4.3) is that the transformation of initial variables makes it less sensitive to the marginal
distributions of variables, than the estimator (4.2).
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Discrete est. Kernel est. Kernel est. with transf.

0
.0

1
0
.0

2
0
.0

3
0
.0

4

RMSE

(b) Frank copula, 50% of censoring, τ = 0.25
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(c) Frank copula, 50% of censoring, τ = 0.75
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(d) Frank copula, 50% of censoring, τ = 0.75
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(e) Frank copula, 25% of censoring, τ = 0.75
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(f) Frank copula, 25% of censoring, τ = 0.75

Figure 1: Model 1 (only one variable is censored): Frank copula
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(a) Clayton copula, 25% of censoring, τ = 0.75
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(b) Clayton copula, 50% of censoring, τ = 0.75
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(c) Gumbel copula, 25% of censoring, τ = 0.75
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(d) Gumbel copula, 50% of censoring, τ = 0.75

Figure 2: Model 1 (only one variables is censored): Clayton and Gumbel copulas
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(a) Frank copula, 25% of censoring, τ = 0.75
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(b) Frank copula, 50% of censoring, τ = 0.75
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(c) Gumbel copula, 25% of censoring, τ = 0.75
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(d) Gumbel copula, 50% of censoring, τ = 0.75
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(e) Clayton copula, 25% of censoring, τ = 0.75
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(f) Clayton copula, 50% of censoring, τ = 0.75

Figure 3: Model 2: two variables are censored
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5.2 Real data applications

In this section we consider some applications of our results to two real data sets. We first
present in section 5.2.1 a general method of goodness-of-fit testing of a parametric model,
based on the nonparametric estimators defined in the previous sections, and a bootstrap
procedure permitting to compute the p−values. Section 5.2.2 is devoted to a bivariate
non life insurance data set, where one variable represents the indemnity to be paid for
a claim and the other variable is the associated allocated loss adjustment expense. The
second example is a life insurance data representing joint lifetimes of couples subscribed
an insurance contract, which is studied in section 5.2.3.

5.2.1 Goodness-of-fit procedure based on the nonparametric copula estima-

tors

Let Cn be one of three nonparametric copula estimators defined previously, and Cθ̂ its
parametric estimator under H0. Here θ̂ is a

√
n-consistent estimator of θ (obtained, for

example, by the maximum likelihood method (see, Shih and Louis (1995)) or by using a
relationship between Kendall’s τ coefficient and θ (see Luciano et al. (2008))). Consider
a Cramér-Von-Mises type of distance between the estimators Cn and Cθ̂, defined by

dn = n

∫ 1

0

(Cn(u, v)− Cθ̂(u, v))2 dCn(u, v). (5.1)

Other kind of distances between Cn and Cθ̂ may be used instead. It follows from Theorem
3.2 that dn admits a weak limit under H0, while, under H1, dn tends to infinity with
probability tending to one. Thus the critical region of the test is of the formR = {dn > d}.
The limit law of dn can be computed using the exact form of ZC and of a limit distribution
for θ̂.

Alternatively, one can compute critical values and p−values via bootstrap. This is the
path that we used in our examples, relying on the bootstrap procedure described below.
To this aim, suppose that Gn is some estimator of the joint distribution function of the
censoring variables, defining a true distribution function. In all the examples presented in
this paper, such an estimator is available (up to some normalization of the Kaplan-Meier
estimator of the censoring distribution, or to some affectation of the residual mass to
infinity).

Bootstrap procedure.

For b = 1, ..., B, where B denotes the number of bootstrap replications,
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1. simulate (T b1i, T
b
2i)1≤i≤n according to the distribution defined by Cθ̂ and the marginal

distributions F1n and F2n;

2. simulate (Cb
1i, C

b
2i)1≤i≤n according to Gn;

3. compute the b−th bootstrap sample (Y b
1i, Y

b
2i, δ

b
1i, δ

b
2i)1≤i≤n based on the simulated

variables;

4. using the b−th bootstrap sample, compute estimators θ̂b and Cbn and the correspond-
ing distance dbn;

Then, use the vector (dbn)1≤b≤n to estimate the p−value.

5.2.2 Loss-ALAE data.

This bivariate dataset was provided by the US Insurance Services Office and studied
previously by Denuit and Van Keilegom (2006) and Frees and Valdez (1998). It contains
1500 observations, composed of losses (indemnities to be paid by insurance company) and
of allocated loss adjustment expenses (ALAE’s), associated with each loss. ALAE’s are
additional costs which are be related to lawyer’s fees or claim investigation expenses. Each
contract has a specific policy limit L (a maximal claim amount). If amount of the i-th
claim exceeds the corresponding limit Li, only Li is registered by the insurance company
and the loss variable is censored. As the expensive claims are usually associated with
greater settlement costs, large values of the loss variable are expected to be associated
with large values of ALAE’s. In the reinsurance practice it is important to model correctly
this association. We refer to Denuit and Van Keilegom (2006) for more details. As it was
mentioned in the last paper, although the data contains only 34 censored observations,
they have a much higher mean than the complete data (217.941$ versus 37.110$), so that
the estimation can be biased if censored observations are not taken into account.

In order to identify which parametric copula family is more adapted to modeling the
dependance structure of the data, we performed a goodness-of-fit test (using the estimator
(3.2)) for four families of archimedean copulas: Frank, Gumbel, Clayton, Joe (see Table
1 for the corresponding copula expressions). The results are given in Table 3. According
to this test procedure Gumbel’s copula outperforms the three other models. Denuit and
Van Keilegom (2006) and Frees and Valdez (1998) also noticed that Gumbel’s copula
furnishes the best fit. Nevertheless our procedure clearly rejects Frank’s and Clayton’s
models.
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Model θ̂ Test statistic 95% quantile 97.5 % quantile 99 % quantile p-value

Frank 3.30 9, 64× 10−5 1.10× 10−5 1.43× 10−5 1.88× 10−5 < 0.001

Gumbel 1.50 2.13× 10−5 4.99× 10−5 5.61× 10−5 6.11× 10−5 0.851

Clayton 1.00 37.8× 10−5 1.97× 10−5 2.20× 10−5 2.58× 10−5 < 0.001

Joe 1.90 6.71× 10−5 5.92× 10−5 6.49×10−5 7.35 ×10−5 0.019

Table 3: Loss-ALAE data:. goodness-of-fit for the considered copula models.

5.2.3 Canadian insurer’s data.

This dataset belongs to a large Canadian insurer and contains joint lifetimes of members
of the couples who subscribed an insurance contract1. 11,947 couples were observed
between December, 29, 1988, and December 31, 1993. In our study, we eliminated the
same-sex contracts and we kept only one contract for couples with more than one policy.
The remaining sample concerns 11,454 observations. As most couples were still alive at
the end of the observation period, the dataset contains a huge proportion of censored
observations (98,2% with at least one censored lifetime). In the present approach, we
neglected the left-truncation phenomenon as in Gribkova et al. (2013). For more details
on this dataset we refer to Carriere (2000), Frees et al. (1996), Luciano et al. (2008) and
Youn and Shemyakin (2001).

We recall that, if two variables T1 and T2 are coupled by C(u, v), their joint survival
function S(t1, t2) = P (T1 > t1, T2 > t2) can be written as S(t1, t2) = C̃(S1(t1), S2(t2)),

where S1, S2 are marginal survival functions and C̃ is a copula function with

C̃(u, v) = C(1− u, 1− v) + u+ v − 1.

For easier comparison with former studies of this dataset, we present the results of the
estimation of C̃ rather than C itself.

1. Copula density estimation. Denote by c̃ the copula density associated with C̃.
We use ĉ1(1−u, 1− v) and ĉ2(1−u, 1− v) according to the definition (4.4) to estimate c̃.
To select the bandwidth, we propose the following heuristic criterion based on a reference
copula Cref . We select a bandwidth in a set H such that

ĥj = arg min
h∈H

∫
(Cjn(u, v)− Cref (u, v))2dudv, j = 1, 2.

1The authors wish to thank the Society of Actuaries, through the courtesy of Edward J. Frees and
Emiliano Valdez, for allowing use of the data in this paper
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As a reference copula, we considered Frank’s copula with parameter value specified in
Table 4, due to the shape of the estimated density (which had similarities with Frank’s
copula). The two estimations of the survival copula density c̃ that we obtained are repre-
sented by Figure 4 (a) and (b). The difference between these two estimators is represented
in Figure 4 (c). This difference is pronounced in the corners of the unit square. This is
not surprising due to the fact that the estimator Ĉ2

n is designed to improve estimation on
the border of [0, 1]2.
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(a) Estimator ĉ1(1− u, 1− v), h = 0.14
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Figure 4: Nonparametric copula density estimation. Data from a Canadian insurer.

2. Goodness-of-fit for semiparametric copula models. We now apply the
methodology proposed at the end of the section 4.2 to perform a goodness-of-fit test.
Three Archimedean copula families are consdered: Clayton, Frank and Nelsen 4.2.20 (see
Table 1 for the coresponding expressions). The test statistics is given by (5.1), where we
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used the discrete estimator (3.2) for Cn. The estimated copula parameters and p-values
of the test are presented in Table 4. They were calculated via the procedures described
in Gribkova et al. (2013).

Model θ̂ Test statistic 95% quantile 97.5 % quantile 99 % quantile p-value

Clayton 4.89 0.00076 0.00208 0.00251 0.00310 0.391

Frank 11.41 0.00036 0.00092 0.00115 0.00143 0.416

Nelsen 4.2.20 1.33 0.00116 0.00137 0.00160 0.00230 0.103

Table 4: Canadian data set: goodness-of-fit for the considered survival copula models.

6 Appendix

6.1 Proof of Lemma 3.3

Let m be the total number of couples composed of doubly uncensored observations and let
(Y[j,1], . . . , Y[j,m]) for j = 1, 2 be the order statistics, corresponding to these observations.
Denote as W[j,i] the weight associated with Y[j,i]. We recall that the weights attributed
to the censored observations are equal to 0. Under Assumption 2, both Cn and C∗n are
defined on the same set of greed points, i.e.

(ui, vj) =

(
1

n

m∑
k=1

W[1,k]1k≤i,
1

n

m∑
l=1

W[2,l]1l≤j

)
, 1 ≤ i, j ≤ m.

Then, similarily to Fermanian et al. (2004), with probability one,

Cn(ui, vj) = Fn(Y[1,i], Y[2,j])

= Fn(F−1
1 F1(Y[1,i])), F

−1
2 F2(Y[2,j]))

= F∗n(F1(Y[1,i]), F2(Y[2,j]))

= F∗n((F∗1n)−1F∗1n(F1(Y[1,i])), (F
∗
2n)−1F∗2n(F2(Y[2,j])))

= C∗n(F∗1n(F1(Y[1,i])),F
∗
2n(F2(Y[2,j])))

= C∗n(ui, vj).
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6.2 Proof of Theorem 4.1

The proof is decomposed in two parts. First, we consider t1 < τ1 and t2 < τ2 and study
the convergence for (y1, y2) ∈ Y = [−∞, t1] × [−∞, t2]. In this case, since the kernel
function k has compact support, one can consider that Win is bounded by some finite
function (for n large enough, the observations with values of Y1i ≥ t1 + ε or Y2i ≥ t2 + ε

for any ε > 0 give a contribution zero to the sum). Next, we rely on a tightness argument
to make t1 → τ1 and t2 → τ2.

1. Convergence for (y1, y2) ∈ Y .
As stated before, since k has compact support, for n large enough, only terms with

(Y1i, Y2i) ∈ Cε contribute to F̂1
n(y1, y2) for y1 < t1 and y2 < t2. Therefore, we will assume,

in this first part of the proof, that (Y1i, Y2i) ∈ Yε = [−∞, t1 + ε]× [−∞, t2 + ε] for all i.
Defining Kh(y) =

∫ yh−1

−∞ k(u)du, observe that the class of functions

F1 = {(y1, y2)→ φh,y1,y2(t1, t2) = Kh (y1 − t1)Kh (y2 − t2) , h ∈ [0, 1/4]} ,

is Donsker from Lemma A.1 in Omelka et al. (2009). Therefore, it follows from (4.5) in
Assumption 3 that

F̂1
n(y1, y2)− Fn(y1, y2) =

1

n

n∑
i=1

Wi [φh,y1,y2(Yi1, Yi2)− 1Yi1≤y1,Yi2≤y2 ]

+
1

n

n∑
i=1

ηψh,y1,y2 (Y1i, Y2i, δ1i, δ2i) +Rn(y1, y2),

where supy1,y2 |Rn(y1, y2)| = oP (n−1/2), and where we recall that

ψh,y1,y2(t1, t2) = φh,y1,y2(t1, t2)− 1t1≤y1,t2≤y2 .

From the Donsker assumption on the functions ηψh,y1,y2 (see Assumption 3), we get, from
the asymptotic equicontinuity of Donsker classes and the fact that the L2−norms of
η
ψh,y1,y2
i uniformly tend to zero,

sup
h,(y1,y2)∈Y

∣∣∣∣∣ 1n
n∑
i=1

ηψh,y1,y2 (Y1i, Y2i, δ1i, δ2i)

∣∣∣∣∣ = oP (n−1/2),

since, for all h and all (y1, y2), E[ηψh,y1,y2 (Y1i, Y2i, δ1i, δ2i)] = 0.

Next, let W be a random variable having the same distribution as the variables
(Wi)1≤i≤n. Observe that, again, since y1 < t1 and y2 < t2, W can be considered as
almost surely bounded, and W ×F1 is a Donsker classes of functions, from a permanence
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properties of Donsker classes, see van der Vaart and Wellner (1996) Example 2.10.10.
Therefore,

1

n

n∑
i=1

Wi [φh,y1,y2(Yi1, Yi2)− 1Yi1≤y1,Yi2≤y2 ] =

∫ ∫
[φh,y1,y2(t1, t2)− 1t1≤y1,t2≤y2 ]dF (t1, t2)

+oP (n−1/2),

where the oP−rate holds uniformly in (y1, y2), and where we used that, for any function
φ with finite first moment, E[Wφ(Y1i, Y2i)] = E[φ(T1i, T2i)]. Using, again, a second order
Taylor expansions and the differentiability assumptions on F , we get
supy1<t1,y2<t2 |F̂

1
n(y1, y2)− Fn(y1, y2)| = oP (n−1/2).

2. Convergence in the right tail of the distribution.

We apply Lemma 7.1 in Lopez and Saint-Pierre (2012) to the process

Rn(t1, t2) = n1/2
{
F̂1
n(τ1, τ2)− Fn(τ1, τ2)− F̂1

n(t1, t2) + Fn(t1, t2)
}
.

This can be done by checking that |Rn(t1, t2)| ≤MnΓn(t1, t2), with

Mn = n1/2An,

Γn(t1, t2) =
1

n

n∑
i=1

ZiIY1i>t1,Y2i>t2 .

Assumption 4 ensures thatMn and Γn satisfy the conditions 2 to 5 of Lemma 7.1 in Lopez
and Saint-Pierre (2012).

6.3 Proof of Theorem 4.4 (case i = 2)

Let L1i = Φ−1(F1(T1i)) and L2i = Φ−1(F2(T2i)). These random variables have marginal
distribution Φ, and have joint distribution function FΦ(l1, l2) = P(L1 ≤ l1, L2 ≤ l2) =

C(Φ(l1),Φ(l2)). Since the transformation Φ−1(F1(·)) is increasing, we can observe that
the censoring model is equivalent (up to this transformation), to the model based on, for
j = 1, 2,

Mji = Φ−1(Fj(Yji)),

δΦ
ji = 1Lji≤Dji = δji,

where Dji are the transformed censoring variables, that is Dji = Φ−1(Fj(Cji)). We will
denote by FΦ

n the estimator of the joint distribution of (L1, L2) similar to Fn but based on
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the transformed variables. From Assumption 6, the weights WΦ
in = δ1iδ2iĝ

Φ(M1i,M2i)

based on the transformed model are the same as the weights Win. Moreover, define
gΦ(l1, l2) = g(Φ−1(F1(l1)),Φ−1(F1(l2))).

Next, define M̂ji = Φ−1(Fjn(Yji)). Let fnj(m) = Φ−1(Fjn(F−1
j (Φ(m)))). We have

M̂ji = fnj(Mji). We can decompose

Ĉ2
n(Φ(l1),Φ(l1)) =

1

n

∑
i=1

Win

[
Kh(l1 − M̂1i)Kh(l2 − M̂2i)−Kh(l1 −M1i)Kh(l2 −M2i)

]
+F̂1,Φ

n (l1, l2), (6.1)

where F̂1,Φ
n denotes the estimator F̂1

n based on the transformed variables. From Theorem
4.1, we see that this second term in (6.1) satisfies

F̂1,Φ
n (l1, l2) = FΦ

n (l1, l2) +RΦ
n (l1, l2),

with supl1,l2 |R
Φ
n (l1, l2)| = oP (n−1/2). Indeed, the limit FΦ of F̂1,Φ

n is assumed to satisfy the
assumptions of Theorem 4.1 as a consequence of Assumption 5. Moreover, FΦ

n (l1, l2) =

F∗n(Φ(l1),Φ(l2)).

Hence the proof consists of showing the negligibility of the first term in (6.1). The
path of the proof is similar to the one of Theorem 4.1: we first consider l1 < tΦ1 and l2 < tΦ2

(with obvious extension of the notation (t1, t2)) which allows to consider bounded weights
Wi. Next, we use a tightness argument to obtain convergence on the whole plane. This
last part is exactly the same as in the proof of Theorem 4.1, we therefore only focus on
the case l1 < tΦ1 and l2 < tΦ2 .

Since Φ−1(Fjn) are increasing, we can see that the functions in the bracket of the first
term of (6.1) belong to a Donsker class of functions, from Lemma A.1 in Omelka et al.
(2009). Therefore, this first term can be rewritten as∫ ∫

[Kh (l1 − f1n(l))−Kh (l1 − l)]Kh (l2 − l′)
ĝΦ(l, l′)dFΦ(l, l′)

gΦ(l, l′)

+

∫ ∫
[Kh (l2 − f2n(l′))−Kh (l2 − l′)]Kh (l1 − l)

ĝΦ(l, l′)dFΦ(l, l′)

gΦ(l, l′)

+

∫ ∫
[Kh (l1 − f1n(l))−Kh (l1 − l)] [Kh (l2 − f2n(l′))−Kh (l2 − l′)]

ĝΦ(l, l′)dFΦ(l, l′)

gΦ(l, l′)

= T1 + T2 + T3,

up to some remainder terms that are oP (n−1/2) uniformly in (l1, l2), and where we used
the fact that E[δi1δi2g(Y1i, Y2i)φ(Yi1, Yi2)] = E[φ(Ti1, Ti2)]. The last term T3 is a second
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order term. A Taylor expansion and the uniform convergence of Fjn for j = 1, 2 show that
this term is OP (n−1) uniformly in (l1, l2). The first two terms T1 and T2 can be studied in
a similar way due to their symmetric definition, hence we only focus on T1.

To study T1, we first replace ĝ by g, observing that, from a first order Taylor expansion,∣∣∣∣∫ ∫ [Kh (l1 − f1n(l))−Kh (l1 − l)]Kh (l2 − l′)
{ĝΦ(l, l′)− gΦ(l, l′)}dFΦ(l, l′)

gΦ(l, l′)

∣∣∣∣
≤ C0 sup

i:(y1,y2)∈Cε
|ĝ(y1, y2)− g(y1, y2)| sup

t
|F1n(t)− F1(t)|h−1,

for some absolute constant C0. Indeed, since dFΦ(l, l′) = c(Φ(l),Φ(l′))Φ′(l)Φ′(l′)dldl′, we
get |f1n(l)− l|dFΦ(l, l′) ≤ C ′0 supt |F1n(t)−F1(t)|. Since nh2 →∞ and using Assumption
3, one obtains that

T1 =

∫
[Kh (l1 − f1n(l))−Kh (l1 − l)]

∫
Kh (l2 − l′) dFΦ(l, l′)dw1 + oP (n−1/2),

where the oP−rate does not depend on (l1, l2). Moreover,∫
Kh (l2 − l′) dFΦ(l, l′) =

∫
k(w2)∂1F

Φ(l, l2 + w2h)dw2.

From a second order Taylor expansion of ∂1F
Φ(l, l2 + w2h) and the boundedness of its

derivatives (due to the presence of Φ), we get
∫
Kh (l2 − l′) dFΦ(l, l′) = ∂1F

Φ(l, l2)dl +

O(h2), where O(h2)−rate does not depend on l. A Taylor expansion of Kh leads to

T1 =
1

h

∫
k

(
l1 − l
h

)[
F1(F−1

1 (Φ(l)))− F1n(F−1
1 (Φ(l)))

]
∂1C(Φ(l),Φ(l2))dl

+ oP (n−1/2).

Performing a change of variables with v = [l1 − l]h−1, one gets,

T1 =

∫
k(v)

[
F1n(F−1

1 (Φ(l1 + vh)))− F1(F−1
1 (Φ(l1 + vh)))

]
∂1C(Φ(l1 + vh),Φ(l2))dv

+ oP (n−1/2). (6.2)

Using the differentiability of Φ, one can replace F1(F−1
1 (Φ(l1 + vh))) by F1(F−1

1 (Φ(l1))) +

vhΦ′(l1) +O(h2), uniformly in l1.
Next, define ĝ∗ as the function such that ĝ∗(M1i,M2i) = ĝ(M1i,M2i), with an obvious

extension of the definition of its limit g∗. The uniform convergence rate of ĝ∗ towards g∗
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is a direct consequence of the uniform convergence rate of ĝ towards g. We have

F1n(F−1
1 (Φ(l1 + vh)))− F1n(F−1

1 (Φ(l1))) =
1

n

n∑
i=1

δi1δi2ĝ
∗(Mi1,Mi2) [1M1i≤l1+vh

−1M1i≤l1 ]

=
1

n

n∑
i=1

fn(δi1, δi2,Mi1,Mi2),

where fn belongs to a Donsker class F ′ (since the class of indicators function is Donsker,
and that multiplication by a bounded Donsker class does not modify the Donsker property,
see van der Vaart and Wellner (1996)), with ‖fn‖2 → 0. We then can write

1

n

n∑
i=1

fn(δi1, δi2,Mi1,Mi2) =

∫
ĝ∗(u1, u2)

[
1u1≤φ(l1+vh) − 1u1≤φ(l1)

] dC(u1, u2)

g∗(u1, u2)

+oP (n−1/2),

with the oP−rate holding uniformly in l1. In this equation, we can replace ĝ∗ by g∗ up to
some residual term which is OP (n−1/2h) = oP (n−1/2). Indeed,∫

{ĝ∗(u1, u2)− g∗(u1, u2)}
[
1u1≤φ(l1+vh) − 1u1≤φ(l1)

] dC(u1, u2)

g∗(u1, u2)

=

∫
u2

∫ u1=l1+vh

u1=l1

[ĝ∗(u1, u2)− g∗(u1, u2)]
dC(u1, u2)

g∗(u1, u2)

≤ C0h sup
u1,u2

|ĝ∗(u1, u2)− g∗(u1, u2)|.

Next, it follows from a Taylor expansion that

F1n(F−1
1 (φ(l1 + vh)))− F1n(F−1

1 (φ(l1))) = vhφ′(l1)C(φ(l1), 1) + oP (n−1/2).

This, combined with (6.2), the differentiability of ∂1C, and the fact that
∫
vk(v)dv = 0,

shows that

T1 = −[F1n(F−1
1 (φ(l1)))− F1(F−1

1 (φ(l1)))]∂1C(φ(l1), φ(l2)) + oP (n−1/2)

Since F1n(F−1
1 (φ(l1))) = F∗n(φ(l1),∞), we finally get

Ĉ2
n(u1, u2) = F∗n(u1, u2)− F∗n(u1,∞)∂1C(u1, u2)− F∗n(∞, u2)∂2C(u1, u2) + oP (n−1/2),

and the convergence of F∗n(u1, u2) leads to the appropriate asymptotic distribution.
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6.4 Proof of Theorem 4.5

A. Convergence of ĉ1.

Let f1n, f2n denote the derivatives of F̂1n, F̂2n. Decompose

ĉ1(u, v) =
1

nh2

n∑
i=1

Wik
(

F̂−1
1n (u)−Y1i

h

)
k
(

F̂−1
2n (v)−Y2i

h

)
f1n(F̂−1

1n (u))f2n(F̂−1
2n (v))

+
1

nh2

n∑
i=1

(Win −Wi)
k
(

F̂−1
1n (u)−Y1i

h

)
k
(

F̂−1
2n (v)−Y2i

h

)
f1n(F̂−1

1n (u))f2n(F̂−1
2n (v))

:=
J1n(u, v)

f1n(F̂−1
1n (u))f2n(F̂−1

2n (v))
+

J2n(u, v)

f1n(F̂−1
1n (u))f2n(F̂−1

2n (v))
. (6.3)

Observe that, for (u, v) ∈ C, (F̂−1
1n (u), F̂−1

2n (v)) ∈ Y with probability tending to one,
where Y = [0, t1]× [0, t2] for some t1 < τ1 and t2 < τ2. Indeed, recall that F̂−1

1n (u) = inf{f :

F̂1n(t) ≥ u}. There exists some η > 0 such that t1 = F−1
1 (u) + η is strictly less than

τ1. Moreover F̂1n(t1) = F1(t1) + εn(t1) where εn(t1) tends to zero, and F1(t1) > u, which
shows that F̂−1

1n (u) ≤ t1 with probability tending to one. Moreover, since k has compact
support, with probability tending to one, only the points i such that (Y1i, Y2i) ∈ Yε give
a non-zero contribution to the sum, where the definition of Yε can be found in the proof
of Theorem 4.1.

The proof is then composed of several steps. We show first that the second term
in (6.3) negligible. Indeed, following Assumption 7 and using previous observation, we
require to bound the difference of the weights (Win−Wi) for the indexes i corresponding
to observations in Yε. Then, using Assumption 8, we get

sup
(u,v)∈C

|J2n(u, v)| ≤ OP (ηn)× sup
(y1,y2)∈Yε

∣∣∣∣∣ 1

nh2

n∑
i=1

k

(
y1 − Y1i

h

)
k

(
y2 − Y2i

h

)∣∣∣∣∣ ,
where the supremum on the right-hand side is OP (1), by Theorem 4 in Einmahl and
Mason (2005). Notice that the denominators in (6.3) are bounded away from zero. To
see that, it suffices to write, for j = 1, 2,

fjn(F̂−1
jn (u)) =

n∑
i=1

Wik

(
F̂−1
jn (u)− Y1i

h

)
+OP (ηn). (6.4)

Thus, there exists ε > 0, such that, with probability tending to one

inf
u∈C

fjn(F̂−1
jn (u)) = inf

u∈C
fj(F̂−1

jn (u)) +OP (ηn) ≥ inf
x∈tj+ε

fj(x) +OP (ηn) >
c

2
,
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and the second term in (6.3) is therefore negligible.
Let us study now the first term. It follows from Theorem 4 in Einmahl and Mason

(2005) that

sup
(y1,y2)∈Yε

∣∣∣∣∣n−1h−2

n∑
i=1

Wik

(
y1 − Y1i

h

)
k

(
y2 − Y2i

h

)

−h−2

∫
k

(
y1 − t1
h

)
k

(
y2 − t2
h

)
dP(T1,T2)(t1, t2)

∣∣∣∣ = OP

(
[log n]1/2

h
√
n

)
,

where we used (2.2). Hence,

J1n(u, v) = h−2

∫
k

(
F̂−1

1n (u)− t1
h

)
k

(
F̂−1

2n (v)− t2
h

)
dP(T1,T2)(t1, t2) +OP

(
[log n]1/2

h
√
n

)
.

Using a second order Taylor expansion, and the fact that the derivatives of the density f
up to order 2 are uniformly bounded (Assumption 8), we get

sup
u,v
|J1n(u, v)− f(F̂−1

1n (u), F̂−1
2n (v))| = OP (ηn).

Again by Einmahl and Mason (2005), there exists ε such as, for j = 1, 2, with probability
tending to one,

sup
u:(u,v)∈C

|fjn(F̂−1
jn (u))− fj(F̂−1

jn (u))| ≤ sup
x<tj+ε

|fjn(x)− fj(x)| = OP (ηn).

Therefore, we have

sup
(u,v)∈C

∣∣∣∣∣ĉ1(u, v)− f(F̂−1
1n (u), F̂−1

2n (v))

f1(F̂−1
1n (u))f2(F̂−1

2 (v))

∣∣∣∣∣ = OP (ηn).

To conclude it remains to prove that

Jn := sup
(u,v)∈C

∣∣∣∣∣ f(F̂−1
1n (u), F̂−1

2n (v))

f1(F̂−1
1n (u))f2(F̂−1

2 (v))
− f(F−1

1 (u), F−1
2 (v))

f1(F−1
1 (u))f2(F−1

2 (v))

∣∣∣∣∣ = OP (ηn).

By the assumption of Theorem, the density of (T1, T2) is twice continuously differentiable
with bounded second derivatives and the marginal densities are bounded away from zero,
so by using Taylor expansion, there exists a constant L, such as

Jn = sup
u,v∈C

∣∣∣c(F̂−1
1n (u), F̂−1

2n (v))− c(F−1
1 (u), F−1

2 (v)
∣∣∣

≤ L

(
sup
u
|F̂−1

1n (u)− F−1
1 (u)|+ sup

v
|F̂−1

2n (v)− F−1
2 (v)|

)
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We will show now that the bound from the previous inequality is of the order of OP (ηn).
For an arbitrary constant M for the first term (the second term is analogous) we have

P (sup
u
|F̂−1

1n (u)− F−1
1 (u)| > Mηn)

≤ P (∃u : u > F1n(F−1
1 (u) +Mηn)) + P (∃u : u < F1n(F−1

1 (u)−Mηn))

≤ P

{
sup
u
|F1n(F−1

1 (u) +Mηn)− F1(F−1
1 (u) +Mηn)| > inf

u
(F1(F−1

1 (u) +Mηn)− u)

}
+P

{
sup
u
|F1n(F−1

1 (u)−Mηn)− F1(F−1
1 (u)−Mηn)| > inf

u
(u− F1(F−1

1 (u)−Mηn))

}
.

By Corollary 4.3, supu |F1n(u)− F1(u)| = OP (h2), and, choosing M sufficiently large, we
obtain P (supu |F̂−1

1n (u)− F−1
1 (u)| > Mηn)→ 0.

B. Convergence of ĉ2.

We have

ĉ2(u, v) =

∑n
i=1Wink

(
Φ−1(u)−Φ−1[F1n(Y1i)]

h

)
k
(

Φ−1(v)−Φ−1[F2n(Y2i)]
h

)
nh2Φ′(Φ−1(u))Φ′(Φ−1(v))

,

Let us use a notation yn1i(u) := Φ−1(u)−Φ−1[F1n(Y1i)] and y1i(u) := Φ−1(u)−Φ−1[F1(Y1i)],

with a similar definition for yn2i and y2i. Using a 4-th order Taylor expansion, we get

ĉ2(u, v) =
1

nh2Φ′(Φ−1(u))Φ′(Φ−1(v))

n∑
i=1

Wink

(
yn1i(u)

h

)
k

(
yn2i(v)

h

)

=
1

Φ′(Φ−1(u))Φ′(Φ−1(v))

{
1

nh2

n∑
i=1

Wink

(
y1i(u)

h

)
k

(
y2i(v)

h

)
+ In(u, v)

}
,

where

In(u, v) =
1

nh2

n∑
i=1

Wink

(
yn1i(u)

h

)
k

(
yn2i(v)

h

)
− 1

nh2

n∑
i=1

Wink

(
y1i(u)

h

)
k

(
y2i(v)

h

)

=
3∑

m=1

m∑
l=0

n∑
i=1

Win

nh2
k(l)

(
y1i(u)

h

)
k(m−l)

(
y2i(v)

h

)
(yn1i(u)− y1i(u))l(yn2i(v)− y2i(v))m−l

m!hm

+
1

nh2

4∑
l=0

n∑
i=1

Wink
(l)

(
ỹ1i(u)

h

)
k(4−l)

(
ỹ2i(v)

h

)
(yn1i(u)− y1i(u))l(yn2i(v)− y2i(v))4−l

4!h4

:=
3∑

m=1

m∑
l=0

Inml(u, v) +
4∑
l=0

In4l(u, v),

using the notation k(l) for the l−th derivative of k, and ỹ1i(u) (resp. ỹ2i(v)) for some point
between y1i(u) and yn1i(u) (resp. y2i(v) and yn2i(v)).
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We get

sup
(u,v)∈C

|ĉ2(u, v)− c(u, v)| ≤ sup
x,y∈C

∣∣∣∣∣∣
∑n

i=1 Wink
(
y1i(u)
h

)
k
(
y2i(v)
h

)
nh2Φ′(Φ−1(u))Φ′(Φ−1(v))

− c(u, v)

∣∣∣∣∣∣
+ sup

(u,v)∈C
|In(u, v)|. (6.5)

The proof consists of showing separately the convergence rate of each term in this decom-
position.

1. Convergence of the first term in (6.5).

We will show that this term converges at the rate [log n]1/2n−1/2h−1 + h2. Let us
introduce the sets U = {u : ∃v s.t. (u, v) ∈ C}, and V = {v : ∃u s.t. (u, v) ∈ C}.

The first term in (6.5) can be written as

sup
(u,v)∈C

∣∣∣∣∣∣
{

1
nh2

∑n
i=1 Wink

(
y1i(u)
h

)
k
(
y2i(v)
h

)
− c(u, v)Φ′(Φ−1(u))Φ′(Φ−1(v))

}
Φ′(Φ−1(u))Φ′(Φ−1(v))

∣∣∣∣∣∣
≤ sup

x∈Φ−1(U),y∈Φ−1(V)

∣∣∣∣∣
{

1

nh2

n∑
i=1

Wink

(
x− Φ−1[F1(Y1i)]

h

)
k

(
y − Φ−1[F2(Y2i)]

h

)

− c(Φ(x),Φ(y))Φ′(x)Φ′(y)

}
[Φ′(x)Φ′(y)]−1

∣∣∣∣
Note that c(Φ(x),Φ(y))Φ′(x)Φ′(y) is the density of the distribution function of random
variables (Φ−1(F1(Y1)),Φ−1(F2(Y2))), evaluated at the point (x, y). As stated in the proof
of A.2, one can use the compactness of the support of k to deduce that only the points i
corresponding to observations in Yε contribute to the sum. Therefore, one can replace (up
to some negligible term)Win byWi using Assumption 7. It then follows from Einmahl and
Mason (2005) that the resulting quantity converges towards 0 at rate [log n]1/2n−1/2h−1 +

h2, the rate h2 coming from the convergence rate of the expectation (deduced from classical
arguments on kernel estimators, and the regularity of c(Φ(x),Φ(y))Φ′(x)Φ′(y)).

2. Convergence of In(u, v).

Let us now consider the second term of (6.5),

sup
(u,v)∈C

|In(u, v)| ≤
3∑

m=1

m∑
l=0

sup
(u,v)∈C

|Inml(u, v)|+
4∑
l=0

sup
(u,v)∈C

|In4l(u, v)|.

First observe that

sup
u∈U
|y1i(u)− yn1i(u)| ≤ sup

x<t1+ε
|Φ−1(F1(x))− Φ−1(F1n(x))|,
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for some t1 such that t1 + ε < τ1, since 1 /∈ U . Since Φ−1 has a continuous bounded
derivative on T1 from Assumption 5, supu∈U |y1i(u)−yn1i(u)| has the same convergence rate
as supt<tj+ε |Fj(t) − Fjn(t)| = OP (n−1/2). The same is true considering supv∈V |y2i(v) −
yn2i(v)|. Therefore, one gets

sup
(u,v)∈C

|In4l(u, v)| ≤ 1

h6
sup

(u,v)∈C
|(yn1i(u)− y1i(u))l(yn2i(v)− y2i(v))4−l| ×OP(1)

=
1

n2h6
×OP(1).

For the terms up to the third order in the Taylor expansion, one obtains, for m = 1, ..., 3,

sup
(u,v)∈C

|Inml(u, v)| ≤ 1

m!hm
sup

(u,v)∈C
|(yn1i(u)− y1i(u))l(yn2i(v)− y2i(v))m−l|

× sup
(u,v)∈C

[
1

nh2

n∑
i=1

Wink
(l)

(
y1i(u)

h

)
k(m−l)

(
y2i(v)

h

)]

=
1

nm/2hm
×OP(1).

The condition on h implies that sup(u,v)∈C |In(u, v)| = OP(h−1n−1/2).

6.5 Properties of the functions ηψ is the Examples

The aim of this section is to show that part 3 of Assumption 3 holds for the functions
ηψ corresponding to the three standard examples we consider. We focus on Example 1,
where ηψ has the simplest form, which can be found in Stute (1996). We then explain
how these arguments may be extended to Examples 2 and 3.

In the case of Example 1, we have

ηψ(Y1, Y2, δ1, δ2) =
(1− δ1)

∫ τ1
Y1

∫∞
−∞ ψ(y1, y2)dF (y1, y2)

1−H(Y1)

−
∫ 1Y1≥y1 [1− F (y1)]{

∫∞
y1

∫∞
−∞ ψ(t1, t2)dF (t1, t2)}dG(y1, y2)

[1−H(y1)]2[1−G(y1)]
,

where H(y1) = P(Y1 ≥ y1). From this expression, one can see that, in the case where ψ is
a nonnegative function, we can write

ηψ(Y1, Y2, δ1, δ2) =
(1− δ1)f1(Y1)

1−H(Y1)
+ f2(Y1),

where f1 and f2 are monotone functions. Moreover, if ψ satisfies the requirements of part
2 of Assumption 3, f1 and f2 are bounded, and f1(Y1) = 0 for Y1 > t1. Then, one can see
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that ηψ belongs to the class F2 = (1− δ1)[1−H(Y1)]−11Y1≤t1 ×F1 +F1, where F1 is the
class of positive functions bounded by some absolute constant (this class is Donsker from
Theorem 2.7.5 in van der Vaart and Wellner (1996)). Therefore, from Examples 2.10.7 and
2.10.10 in van der Vaart and Wellner (1996), F2 class is Donsker. The functions ψh,y1,y2
are not non-negative, but they are the sum of two non-negative functions. Moreover,
ψ → ηψ is linear, therefore the family of functions ηψh,y1,y2 is Donsker from Example
2.10.7 in van der Vaart and Wellner (1996). For Examples 2 and 3, the arguments are
similar, since ηψ can always be decomposed into a some of bounded monotonic terms.

To show that the expectation of (ηψh,y1,y2 )2 tends to zero, observe that, for j = 1, 2,

|fj(Y1)| ≤ C sup
(y,z)∈Y

∣∣∣∣∫ τ1

y

∫ ∞
−∞

ψ(t1, t2)dF (t1, t2)

∣∣∣∣ ,
for some constant C. Similar bounds can be found in Examples 2 and 3. Next, observe
that, from Fubini’s Theorem, ∫ τ1

y

∫ ∞
−∞

ψh,y1,y2(t1, t2)dF (t1, t2) =∫ ∞
−y

∫ ∞
−∞

[F (y1 − hw1, y2 − hw2)− F (y1, y2)]k(w1)k(w2)dw1dw2.

A Taylor expansion then shows that, for (y1, y2) ∈ Y , ‖ηψh,y1,y2‖∞ ≤ C̃h, which tends to
zero.
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