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An Evaluation of Camera Pose Methods for an
Augmented Reality System: Application to
Teaching Industrial Robots

Abstract: In automotive industry, industrial robots are widely used

in production lines for many tasks such as welding, painting or

assembly. Their use requires, from users, both a good manipulation

and robot control. Recently, new tools have been developed to realize

fast and accurate trajectories in many production sectors by using

the real prototype of vehicle or a generalized design within a virtual

simulation platform. However, many issues could be considered in

these cases: the delay between the design of the vehicle and its

production is often important, moreover, the virtual modeling presents

a non realistic aspect of the real robot and vehicle, so this factor

could introduce localization inacurracies in performing trajectories.

Our work is registered as a part of TRI project (Teleteaching Industrial

Robots) which aims to realize a demonstrator showing the interaction

of industrial robots with virtual components and allowing to train

users to realize successfully their tasks on a virtual representation of a

production entity.

In this project we make use of Augmented Reality (AR) techniques

to overlay virtual objects onto the real world in order to enhance the

user’s perception and interaction while performing a specific industrial

task. The pose accuracy is prerequisite of our application since it

allows a reliable teaching of the real trajectory. Therefore, we survey

some vision-based pose computation algorithms and present a method

that offers increased robustness and accuracy in the context of real-

time AR tracking. Our aim is to determine the performance of these

pose estimation methods in term of errors and distance evaluation.

The evaluation of the pose estimation methods was obtained using a

series of tests and an experimental protocol. The analysis of results

shows the performance of algorithms in term of accuracy, stability and

convergence.

Keywords: Augmented Reality; pose estimation; industrial robot;

computer vision; real time tracking.
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1 Introduction

In recent years, robotics industry has seen considerable advances in technologies
development, significant progress has been made to realize high performance
systems. Industrial robotic systems are increasingly being used in factories, and
a growing need of robot services is becoming undeniable in these environments.
These trends droved pressing requirements of identifying new ways of programming
robots safely, quickly and more intuitively. These methods should focus on robot
service and address Human-Robot Interaction issues in industrial robotics.

Several methods exist for programming robots involving teaching them a
sequence of points to define a trajectory. The programming process is dependent
on time, errors and often requires several trials before the required accuracy is
getting acceptable.

By introducing AR technologies in this programming process, the operator
gets instant real-time visual feedback of a simulated process in relation to the
real object performed in reduced programming time and increased quality of the
resulting robot program. The strengths of AR over conventional methods include
flexibility in providing visual guidance to the user during the programming process
in various environments without the need to model the environment entities, and
offers at the same time increased intuition and efficiency in the robot programming
process.

In literature many works focused on the use of AR technologies in industrial
context. The major application of AR systems in industry includes teaching,
assistance and maintenance in order to provide an effective tool for operators to
perform complex tasks in short time, increase their level of intuitiveness in the
process and obtain the necessary flexibility needed today.

In [20], Pettersen et al. presented a demonstrator of a standalone AR pilot
system allowing an operator to program robot waypoints and process specific
events related to paint applications. The system presents visual feedback of the
paint result for the operator, allowing him to inspect the process result before the
robot has performed the actual task. The main purpose of this system is to develop
a robot programming system that is easy to use, speeds up the programming
process, utilizes the intuitive process knowledge of the operator, and increases
the quality of the finished program without the need of a CAD model. This
programming method using AR to visualize the paint result has proved to be faster
than traditional robot programming methods. Additionally, the operators report
that they find the process of programming robots much easier and intuitive.

Chong et al. [6] explored the potential of teaching a robot to perform an arc
welding task in an AR environment. The authors introduced a method to define
as robot teaching in AR, a virtual robot model is rendered onto a tracked marker
and the teaching is performed using a physical probe with an attached marker.
The system demonstrated the potential of AR for teaching robots in general.
The main feature of the system is that the user is able to plan a task for the
robot in an unstructured and unmodeled environment, in a relatively short time
with assistance from visual feedback provided in the AR environment. However,
the developed system requires comfortable and easy interaction methods and the
accuracy of the performed task have to be considered and studied.
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In [3], Biegelbauer et al. presented the FlexPaint project which aims to
automate robot programming applications. A new approach is reported to
automatically generate the painting motion of industrial robots. The approach
uses a sensing and painting cell where the part geometry is acquired, relevant
features are extracted and the corresponding paint routines are grouped to obtain
optimal painting trajectories. First implementations at industrial users show that
the approach is feasible. However, the developed system needs improvements,
automatic painting assumes a nonmoving part and the avoidance of robot
singularities while performing the painting task.

Ong et al. [19] presented the potential of using an AR environment to
facilitate immersive robot programming in unknown environments. The benefits
of an AR environment over conventional robot programming approaches are
discussed, followed by a description of the robot programming using AR system
and new methodologies for programming robotic tasks. The immersive robot
programming system allows the user to move directly a virtual robot in an
unknown environment. The major system issue that needs to be investigated, is the
level of accuracy achievable using AR system. The authors expected that the use
of more sophisticated and accurate tracking systems would significantly improve
user acceptance of these methodologies.

In [22], a registration evaluation Mixed Reality (MR) system using an
industrial robot is described. In this evaluation system, the tip of the robot arm
plays the role of the user’s head, where a head mounted display is mounted. By
using an industrial robot, the camera pose with a high level of accuracy and
robustness is obtained. Additionally, the system gives the the ability to play back
the same specified operations repeatedly under identical conditions. The authors
implemented the system and proposed evaluation methods for motion robustness,
distance robustness, jitter, etc. and verified the validity of their system through
some experiments. The system could be improved by evaluating the application in
larger space and also record natural human motions and have a robot replay the
motions. On the other hand there are some evaluation criteria were not introduced
in this work like robustness to occlusion, lighting environment, video noise, and
other complex ambient factors which should also be considered as evaluation
criteria.

Bischoff et al. [4] showed the interest of AR in industrial application, the
advantage and the potential of AR techniques are presented and demonstrated
how they improve human robot interaction. The authors realized a first prototype
of KUKA AR Viewer which includes various visualization and simulation options
and allows instantaneous and real-time visual feedback. The developed system
confirmed that AR is especially useful for robot training by adding synthetic
graphics to enhance visualization of coordinate systems, robot motions and path
information within the real robot cell. In addition, such a system allows robot
motions simulation before its actual execution and gain an understanding for using
the different virtual graphics to enhance users perception.

Shimizu et al. [23] presented a robotic user interface combined with MR
technology to enable the presentation of enhanced visual information of a robot
existing in the real world. The authors proposed the virtual kinematics to enhance
robot motion, A MR system with virtual kinematics presented a selection of visual
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information by controlling the robot through physical simulation and by changing
the parameter dynamically.

From the related work described before, we notice that the reliability of
the developed technologies depends mostly on the accuracy of the used AR
system. Indeed, these systems based AR techniques enhance visual information
by superimposing virtual graphics on image sequences. The robustness and the
accuracy of such a visual system is closely related to the determination of the
transformation describing the relationship between coordinate frames (pose) of the
camera and the object template used as target in the tracking process.

The camera pose estimation is an important step for tracking in AR
applications. It allows the projection of synthetic models at the right location
on real images. AR environments in which synthetic objects are inserted into a
real scene, is a prime candidate since a potentially restricted workspace demands
robust and fast pose estimation from few feature points. Several approaches are
formulated to solve the camera pose parameters. The problem is considered as
a nonlinear minimization and it is solved by least squares methods or nonlinear
optimization algorithms, typically, the Gauss-Newton [2] [14] or Levenberg-
Marquardt method [18]. Most solutions are iterative and depend on nonlinear
optimization of some geometric constraints, either on the world coordinates or on
the projections to the image plane. For real-time applications, linear or closed-form
free from initialization are the most used solutions [17].

Dhome et al. [8] developed an analytical pose estimation method based on
the interpretation of a triplet of any image lines and on the search of the model
attitude. Ansar and Daniilidis [1] estimated the camera pose from an image of
n points or lines with known correspondences. The authors presented a general
framework which allows the pose estimation for both n points and n lines. Lu et
al. [15] developed a fast and globally convergent pose estimation algorithm, called,
Orthogonal Iteration (OI). The pose estimation problem is formulated as problem
of error minimization based on object collinearity in image space. In [16], Maidi
et al. used an Extended Kalman Filter (EKF) to estimate the transformation
between the object and the camera coordinate frames. Based on the knowledge of
the feature point position in the camera frame, the perspective projection matrix
of the camera is computed and solved using the two steps of the EKF. Maidi
et al. [17] developed a new pose estimation algorithm based on a combination of
an analytical and an iterative method. An EKF is used to perform a nonlinear
optimization of pose parameters which were initialized by an analytical algorithm.

Several methods based photogrammetry and using closed-form solutions for
3 points were developed in the literature [9] [10] [11] [12]. Quan and Lan [21]
proposed a family of linear methods that yield a unique solution to 4 and 5 point
pose determination for generic reference points. The authors showed that their
methods do not degenerate for coplanar configurations and even outperform the
special linear algorithm for coplanar configurations in practice.

In this work, our primary interest is to contribute to the improvement of pose
accuracy for an AR system used as a waypoints teaching tool for industrial robots.
We will make a performance comparative study between different pose estimators.
The retained method must be accurate, stable, and respect real-time constraints
using 4 coplanar matching 2D/3D points. In this work, we assume that the motion
of the camera or the target object are unpredictable.
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The remainder of the paper is organized as follows. In section 2, we present the
context of work and the main problematic of our study. Then in section 3, we give
an overview of the proposed solution. Section 4 describes the different modules
constituting our system. We detail in section 5 the implemented solution. Section
6 presents the experimental setup and shows the obtained results. A discussion is
presented in section 7 and we finish by section 8 where we present conclusion and
future work.

2 Context and problematic of work

In the automotive industry a considerable waist of time exists between the moment
of vehicle design and when it is setting into serial lines production in factories.
This production is generally performed by automated robotic systems and a delay
is required for the development and the automation of tools intended to program
robot tasks for new vehicle model.

Currently there are only two ways to make a trajectory teaching on a robot:
using a CAD or using manual teaching by an operator. In CAD techniques the
programing is performed entirely in a virtual environment and this generates
significant shifts comparing to reality. The virtual robot is a perfect design and
presents no shortcomings, consequently, large gaps are created when trajectory
points are transfered to the real robot. These differences are due to the fact
that the virtual robot is not a faithful representation of the real robot (backlash
and mechanical wear which could not be simulated in the virtual world). The
other major drawback of this method is that the fittings movements on board the
robot (cables, pipes, covers, etc.) can not be simulated in CAD, that may cause
interference and collisions with the real part for trajectory transfer on the real
robot (despite possible alterations). In addition, the robot cycle time calculated by
CAD is approximate because it is related to the computer CPU sampling frequency
which differs from the robot CPU frequency.

Concerning the manual learning, the manual programming has the
disadvantage of being an approximate programming performed visually which
requires continual alterations during the workpiece life. Moreover, this technique
requires the presence of the actual workpiece to be able to perform teaching.
Finally, operations must be made near the robot which may causes collision risk
between the robot and the operator.

The problematic of our work is how to mix so closely geometric modeling,
kinematics and dynamics of a real robotic platform with a virtual representation
respecting two important constraints which are the accuracy and the safety. The
trajectories design is performed on a virtual platform and our work will eventually
provide all necessary implementation and exploitation tools of trajectories without
any real loss of performance.

The realized system should bring to the automotive industry a tool allowing
the manipulation of real robot via a GUI and assuring a perfect portability
with instant data from the virtual scene to the robotics workshop. Moreover,
this tool contains a new mode of human-robot interaction relating operators and
industrial robotic environments. Finally, this interface guarantee an assistance to
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teach industrial robots using mobile and flexible modules that can be declined in
several types or forms to ensure greater portability.

3 Our approach

To take advantage of the two teaching approaches presented previously and
overcome drawbacks of each method, we propose a new technique mixing the
two techniques, namely: the manual teaching and the CAD. The originality is
to perform the robot trajectory teaching using an assistance tool based on an
AR system. The idea is to avoid, initially, the use of the real workpiece. Indeed,
trajectory teaching will be carried out on a virtual workpiece using the real robot.
To assist the operator, a virtual waypoints tool will be used to force the robot to
go on the desired impact point. The virtual guides will allow to guide the operator
by reaching different impact points to improve accuracy and quality of work.

This system allows to create the trajectory on the workpiece being developed
without using the real prototype. The robot control is carried out remotely
via network communications to ensure the operator safety. The environmental
constraints of the robot such as congestion and fittings movement are addressed
directly with camera feedback. The solution we propose enables avoidance of
approximate teaching, a virtual registered 3D trajectory is superimposed on the
real path that the robot should cover. On the other hand, we improve human
safety by avoiding collision risks since the operator is carrying out his task using
a real-time video feedback. Moreover, an important prerequisite of our system is
the positioning accuracy. Since we use an AR tracking system, the accuracy of the
application depends on pose estimation process. Therefore, a comparison study of
several methods is a prerequisite of our application to drive and implement the
most reliable one to locate the virtual workpiece in the real environment respecting
the accuracy margin of robotic tasks in automotive industry (figure 1).

Figure 1 System overview.
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4 System description

The main goal of our system is to create trajectories on virtual workpieces using
a real robot and computer generated models. The designed system is an assistant
tool for robot trajectories teaching on virtual elements. It consists in a virtual
platform interacting with a robot. This platform is able to reproduce all main
features necessary to program robot routine tasks.

These features are available to the user via a computer and a robot control
interface, the communication between the virtual platform and the robotics
workshop is realized via Ethernet.

The operator controls the robot via a network communication and has a real-
time feedback of its position. Four cameras are used: 3 cameras to visualize the
robot and the workpiece under different viewing angles and the fourth camera
serves to supervise the whole system.

The material used in this project consists of a robot and a vision system. The
robot is the LRMate 200iB (figure 2), an industrial 6 DOF robot from Fanuc
Robotics having the following specifications:

• Axes: 6

• Payload: 5kg

• H-Reach: 700mm

• Repeatability: ±0.04mm

• Robot Mass: 45kg

• Structure: Articulated

Figure 2 LR Mate 200iB Robot.

The vision system is composed of 4 PixeLINK PL-B762F cameras to visualize
the robot and the workpiece from different views (figure 3). These are industrial
cameras for machine vision applications containing CCD sensors coupled with
Firewire digital bus technologies. We used 4.5mm focal length objectives for a wide
vision range. The effect of this short focal length is to allow a broader frame of
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close objects and have a global view of the system since the robot needs a large
workspace for operating. The camera specifications are:

• Resolution: 752 × 480

• Sensor type: CMOS

• FPS at full resolution: 60

• Interface: Firewire

Figure 3 PixeLINK cameras.

The camera set is positioned around the robot to have 3 points of view and
visualize the virtual workpiece from 3 sides.Tripods are used to hold cameras,
ensure a rigid fastening and allow easy and accurate rotations. The robot could be
oriented following several articulations around its 6 axes using the Teach Pendant
which controls positions, orientations, speed and displacement step (figure 4).

Figure 4 The global system.
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5 Implementation

We developed a Graphic User Interface (GUI) to interact with materials and to
control the robot. The GUI contains 3 parts: the first one allows the interface
control, this phase involves the creation of application controls, the association
of functionalities to the components and the management of the client-server
connection between the GUI and the robot. The second part is to integrate
the vision module to display real-time video stream from cameras. This module
includes the AR application allowing the visualization and localization of virtual
objects. The third part of the GUI is the implementation and the integration of the
Reverse Tool Control Point (RTCP) mode which uses the robot data positioning
to compute the camera pose.

The conceived GUI allows the network management, the robot control and the
cameras views display.

5.1 Robot control

The robot can operate according to the Cartesian mode in which it moves along
(X, Y, Z,Roll, P itch, Y aw) or Joint mode where it moves following its 6 rotations
axes (J1, J2, J3, J4, J5, J6).

The GUI and the robot communicate via data frames: controls and positions
frames.

In Cartesian mode, 3 steps are defined:

• δ: translation step in millimeters.

• θ: angle step in degrees.

• σ: percentage of the maximum motion speed of the robot.

To ensure safety, we have decided to limit the maximum translation and
rotation step of the robot to 100mm and 45◦ respectively. Concerning the robot
speed, we limited it to 20% (2000mm/s). The data frame has the following syntax:
[δX, δY, δZ, θRoll, θP itch, θY aw, 0G, σS]

In Cartesian mode, the control frame always begins with ′[′ and finishes with
′]′. X, Y , Z represent translations and Roll, Pitch, Yaw are the rotation angles.
G denotes the opening control of the robot’s gripper. This data is not used in our
case, therefore, G = 0. S denotes the robot speed.

The joint mode transcribe the frame control as following:
(θA, θB, θC, θD, θE, θF, 0G, σS). The control frame of the Joint mode always
begins with ′{′ and finishes with ′}′. A,B, C, D, E, F denotes respectively the
rotation axes of the robot around J1, J2, J3, J4, J5, J6.

5.2 The vision system

Four cameras have been used for the application, 3 cameras are positioned face
to the robot and oriented 90◦ from each other to get different virtual workpiece
view while the fourth camera supervises the whole system and provides a scene
overview (figure 5).
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Figure 5 Video feedback from cameras.

The tracking process in AR is composed of two steps: object recognition and
pose estimation. For the identification part, we designed specific targets using the
most popular algorithm in AR applications, the ARToolKit [13]. However, for pose
estimation, we compared 3 algorithms to study their performance and derive the
one which satisfies the application accuracy requirement. ARToolKit is a marker
system used in AR systems. Thanks to its robustness performance, it is used in
a lot of AR and vision applications. ARToolKit includes several models of two-
dimensional fiducial markers. It allows to find markers, to recognize and identify
them. However, its performance in markers detection should be improved. In fact,
often, it happens that markers are confused with each other or they are detected
by error in foreground. ARToolKit marker is black border square surrounding a
model which is compared to other pre-recorded models in ARToolKit matching
template database (figure 6).

BLM

TRI

BLMBLM

Figure 6 ARToolKit marker.

The identification process in ARToolKit library is composed of several steps,
the first is the image binarization using an appropriate threshold. Then a search of
connected components is performed to determine connected regions in the image.
The edges and corners are then extracted from the image and finally, the 2D/3D
points are matched and used afterwards for pose estimation process.
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5.3 Pose estimation

The ICP algorithm

ARToolKit uses the Iterative Closest Point (ICP) algorithm to estimate position
and orientation of the target. The ICP algorithm is usually used to register
two given point sets in a common coordinate system. The algorithm calculates
iteratively the registration. In each iteration step, the algorithm selects the closest
points as correspondences and calculates the rotation and the translation (R, T )
by minimizing the equation:

E (R, T ) =

Nm
∑

i=1

Nd
∑

j=1

wi,j ‖mi − (Rdj + T )‖

2

(1)

Where Nm and Nd, are the number of points in the model set m, and the data
set d, and wij are the weights for a point match.

The ICP algorithm is widely used for the registration of geometric data. One
of its main drawback is its time complexity O(N2), which implies long processing
time, especially when using high resolution data.

The other practical difficulty of the ICP algorithm is the accuracy of the search
for correspondence points which highly affects the estimation of the transformation
parameters, the output of the first step has a major impact over the following
stages and strongly affects the overall performance of the algorithm. This step
strongly depends upon both the selection of the points of the two surfaces, and
the method used for finding the correspondence of the selected points. Since,
the algorithm is iterative, the convergence of the algorithm depends on the error
criterion and number of iterations. This has an impact on both accuracy and
execution time.

For these reasons, we implemented two other pose estimation algorithms
to make a comparative study and retain the most accurate method for
implementation. Indeed, the accuracy is the most relevant criterion for our system
since it consists in performing trajectories on virtual workpieces that should be
reproduced on real manufactured pieces later.

The Zhang analytical pose estimator

The second algorithm that we implemented is the analytical pose estimator based
on Zhang technique [24].

The technique requires 2D/3D matching points to solve the transformation
allowing the determination of pose parameters.

The relationship between a 3D point P and its image projection p is given by:

sp̃ = A
[

R T
]

P̃ (2)

where p̃ = (u, v, 1)
t

denotes a 2D point and P̃ = (X, Y, Z, 1)
t

a 3D point. A is
the camera intrinsic matrix, R is the rotation matrix, T represents the translation
vector, and finally, s is an arbitrary scale factor.
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The technique assumes that the model is plane on Z = 0 of the world
coordinate system. Let’s denote the ith column of the rotation matrix R by ri.
From equation 2, we have:

s





u
v
1



 = A
(

r1 r2 r3 T
)









X
Y
0
1









= A
(

r1 r2 T
)





X
Y
1



 (3)

Given an image of the model plane, an homography can be estimated. We
denote it by H = (h1 h2 h3 ) which is identified to H = A(r1 r2 T ). Once A is
known, the pose parameters for each image is readily computed as follows:

r1 = λA−1h1

r2 = λA−1h2

r3 = r1 × r3

T = λA−1h3

(4)

The Orthogonal Iteration algorithm

In this method, the pose estimation is formulated as error metric minimization
based on collinearity in object space. Using object space collinearity error (figure
7), an iterative algorithm is derived to compute orthogonal rotation matrices [15].

Figure 7 Object-space and image-space collinearity errors.

The mapping from 3D reference points to 2D image coordinates is formalized
as follows: given a set of noncollinear 3D coordinates of reference points Pi =
(xi, yi, zi)

t, where: i = 1...n, n ≥ 3, expressed in an object-centered reference frame,
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the corresponding camera-space coordinates qi = (xi
′, yi

′, zi
′)t, are related by a

rigid transformation as: qi = RPi + T , where R and T are respectively the rotation
matrix and the translation vector. The reference points Pi are projected to the
image plane. Let the image point pi = (ui, vi)

t, be the projection of Pi on the
normalized image plane. Under the idealized pinhole imaging model, pi, qi, and the
center of projection are collinear. This fact is expressed by the following equation:

ui =
rt
1Pi + tx

rt
3Pi + tz

(5)

vi =
rt
2Pi + ty

rt
3Pi + tz

(6)

and

pi =
1

rt
3Pi + tz

(RPi + T ) (7)

The OI algorithm allows to dynamically determine the external camera parameters
using 2D-3D matchings established by the 2D fiducials tracking algorithm from the
current video image. The OI algorithm computes first the object-space collinearity
error vector [15]:

ei =
(

I − V̂i

)

(RPi + T ) (8)

where V̂i is the observed line of sight projection matrix defined by:

V̂i =
p̂ip̂

t
i

p̂t
ip̂i

(9)

then, a minimization of squared error is performed:

E (R, T ) =
n

∑

i=0

‖ei‖
2

=
n

∑

i=0

∥

∥

∥

(

I − V̂i

)

(RPi + T )
∥

∥

∥

2

(10)

The OI algorithm converges to an optimum for any set of observed points and any
starting point.

6 Experimental results

We present now, experimental results and a detailed evaluation of different
localization methods that we presented before. A comparison between these
methods is performed in order to determine the most accurate one. We compared
3 pose estimation algorithms which are the analytical algorithm of Zhang, the
ICP algorithm and the OI algorithm. The comparison between these algorithms is
carried out according to the following criteria:

• Execution time
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• Reconstruction error: measures the pixellic difference between feature points
of the detected target in the image and the 3D target model projection using
the computed pose parameters.

• Generalization error: consists on projecting the target which was not used
for pose computation on the image plan and measure the variation in pixels
between the projected points of the 3D models and the corresponding target
feature points detected in the image.

• Real intra-targets distance estimation: it is the difference between the
estimated distance computed by the pose algorithms and the real distance
measured between two targets.

The experimental study was realized using a PC with the following material
configuration:

• Intel Core 2 Quad @ 2.4GHz.

• 3GB RAM.

The camera is calibrated and the intrinsic parameters are given in table 1.

Table 1 Intrinsic parameters of the PixeLINK camera used in experiments.

Image size (px) 752 × 480

Projection parameters Distortion parameters
Scale factors Radial distortion coefficients

αu(px) 928.48 k1 -0.2279
αv(px) 926.47 k2 0.1479

Optical center projection Tangential distortion coefficients
u0(px) 339 p1 -0.0007985
v0(px) 215 p2 0.0006245

The first experiment is a qualitative test that consists in performing an
arbitrary motion of the target around the camera. The 3 pose estimation
algorithms compute the rotation and the translation of the target reference frame
according to the camera reference frame. From figure 8, we notice that the
translation of the 3 algorithms has roughly the same aspect except in Z direction
where we observe a quite shift between graphics. This is due to the fact that the
camera is a monocular sensor and we could not obtain a real depth estimation
with this kind of device.

On the other hand rotation parameters present some shifts between the 3
algorithms (figure 9). The rotation is expressed with quaternions because of their
compactness and avoidance of discontinuous jumps. We can notice that qx which is
the angle estimation, is quite different from each pose estimator and several peaks
appear on other rotation components, especially the analytical algorithm which is
not appropriate to estimate such parameters. Indeed, this algorithm computes a
direct transformation without any minimization of error criteria.
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Figure 8 Estimation of translation with the 3 algorithms.
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Figure 9 Estimation of rotation with the 3 algorithms.

6.1 Execution time

We were interested after to execution time of different algorithms. We estimated
3247 pose for the 3 pose estimators. The results showed that the analytical
algorithm is the fastest method with 0.0986ms for one pose estimation, the ICP
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algorithm makes 0.6453ms to estimate the same pose, and finally, 1.6255ms are
necessary for the OI to determine pose parameters. So, in term of computation
time, we can say that the analytical algorithm is faster in regard to other
algorithms which are also real time efficient and this could not compromise the
visual rendering.

6.2 Reconstruction error

In this experimentation, the camera is moved around the target object, the 3
algorithms estimate the pose parameters and we evaluate the reconstruction error
in the image. The 3 algorithms computed 3270 poses, the error is estimated by
re-projecting the object model on the image. For each pose computation, we re-
project the target model on the image and we measure the deviation between
real target corners and the projected corners. In table 2, we notice that the
analytical algorithm is the most stable and accurate method comparing to the
other algorithms. From figure 10, we can see that the analytical and the OI
methods present the lowest reconstruction error, the two algorithms are accurate
and stable. The reconstruction error is important for the ICP, the algorithm
doesn’t converge to the optimal solution.

Table 2 Results on different experiments performed for reconstruction error.

Algorithm Anal. algo. ICP OI

Reconst. error (px) 0.0048 1.8293 0.2232

Variance (px2) 4.65 10−6 0.1780 0.0143
Standard deviation (px) 0.0022 0.4220 0.1196
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Figure 10 Reconstruction error.
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6.3 Generalization error

To determine the generalization error, we carried out a series of 5245 pose to
compute this error. We used a paper in which we printed two square targets with
5cm side. The first target is used to compute pose parameters and the second
target is used to compute the generalization error. This generalization error is
computed by re-projecting the object model which didn’t serve to estimate the
pose. The obtained results on generalization error are represented in figure 11,
from the curves we notice that the overall error behavior of the OI algorithm is
stable and don’t present jitter in images comparing to the other algorithms. Table
3 shows that the OI presents the best performance in term of generalization error,
the numerical results proved the effectiveness of this algorithm to extend overlaying
on other scene elements using a single target pose computation.
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Figure 11 Generalization error.

Table 3 Results on different experiments performed for generalization error.

Algorithm Anal. algo. ICP OI

Gener. error (px) 1.5935 2.3127 1.0652
Variance (px2) 1.2123 1.6322 0.1953
Standard deviation (px) 1.1010 1.2776 0.4419

6.4 Real distance estimation

In order to evaluate a real distance between two targets and compute distance
estimation errors with the different algorithms, we attached the targets to the
robot tool and we performed several displacements. The robot generates motions
and the algorithms compute position and we recorded these poses to compare
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them with the real distance measured between targets. We sample the robot
displacement space in order to compute the corresponding pose with the different
pose estimators. We have 2754 robot positions for which each algorithm estimates
the pose parameters and computes the distance between the optical center of the
camera and the two targets, once we have the position of the two targets according
to the camera, we deduce the distance between these two targets with geometrical
calculation.

The results are illustrated in figure 12, the graphics represent the real measured
distance between targets and the position estimated by the pose algorithms.
Moreover, we computed the mean error, variance and standard deviation of the
pose estimation methods. From table 4, we notice that the ICP method presents
a considerable mean error compared to other methods, its variance and standard
deviation are also important. The OI presents the best performances, unlike
the analytical algorithm which presents a quite large variance around its mean
error. Finally, this evaluation determines the most important performance criterion
which is the localization accuracy representing the fundamental requirement for
building a reliable waypoints tracking on virtual worpieces.
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Figure 12 Real distance estimation.
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Table 4 Results on different experiments performed on distance estimation.

Algorithm Anal. algo. ICP OI

Mean error (mm) Tx 1.8172 2.4004 1.4530
Ty 1.9546 1.0969 0.4857
Tz 7.9597 14.7197 4.1308

Variance (mm2) Tx 7.8781 3.6291 2.1409
Ty 7.2434 2.3495 0.5441
Tz 107.2061 135.8691 21.2878

Standard deviation (mm) Tx 2.8068 1.9050 1.4632
Ty 2.6913 1.5328 0.7376
Tz 10.3540 11.6563 4.6139

6.5 Comparison between camera pose and robot pose

This experiment consists in computing the position and the orientation of the
target reference frame according to the camera reference frame using a pose
estimator algorithm and the positioning data returned by robot.

The objective of this experiment is to check the accuracy of the ICP and OI
algorithms comparing to the robot pose. In this experiment, the target is attached
to the robot tool, the pose estimator computes translation and orientation and
the robot returns also these parameters. Indeed, the robot gives the tool pose
according to the robot basis, a calibration step is required to determine the
transformation between the camera reference frame and the robot basis.

We carried out the experiment with 2785 robot positions and we computed
at the same time the transformation relating the robot tool to the camera using
the ICP and the OI algorithms. Figure 13 shows the translation results, the robot
serves as reference and the pose estimators compute the same transformation. We
notice that in X and Y directions the translation is well estimated with both ICP
and OI, however, in Z direction, the OI is more accurate than the ICP. In table 5
we have the numerical results of pose estimation, we see clearly that the OI brings
more accuracy and robustness to pose estimation. The orientation is quite stable
with the OI algorithm and presents some wavering with the ICP. Nevertheless, the
general aspect of rotation curves is stable and approximates the reference rotations
(figure 14 ).

Table 5 Camera translation results compared to robot position.

Mean Error Orth. Iter./Robot pose (mm)
Tx Ty Tz

0.7598 0.8123 5.6531

Mean Error ICP/Robot pose (mm)
Tx Ty Tz

0.8925 0.8079 8.4469
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Figure 13 Comparison between the camera estimated translation and the robot
positions.
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Figure 14 Comparison between the camera estimated rotation and the robot
rotations.
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7 Discussion

In this work, we presented a system intended to teach robot trajectories in
automotive industry. The major issue of our application is ensuring positioning
accuracy of virtual workpieces. For this purpose, we studied the accuracy and
robustness of several pose estimators in order to compare performances of each
method and draw the most reliable and pertinent localization method.

We compared the performances of 3 pose estimation algorithms. We evaluated
these methods using an experimental protocol to compute several error sources and
estimate real distances. We used two iterative methods depending on nonlinear
optimization and an analytical method based on direct computation of parameters.

The main accomplishments of this work are:

• Realization of an original system dedicated to teach industrial robots.

• Experimentation of the system in overlaying and localization tasks using
robot positioning data.

• Comparison of different pose estimation methods in term of execution time,
errors and real distance estimation.

The main experimental test of our system concerns pose algorithms evaluation
since it is the most important factor to carry out accurate trajectories on virtual
workpieces. These trajectories represent a waypoints for displacement and should
be recorded on the robot program to be recurred thereafter on real vehicle
pieces. The comparison of several pose estimator was primary requirement of our
application to draw the effective method presenting the less error sensitivity.

Previous published papers on vision-based pose estimation used direct or
iterative methods and some authors were interested in comparison and evaluation
of these methods. DeMenthon and Davis [7] have compared several approximate
methods for the perspective 3 point problem to solve the pose estimation
parameters. A synthesis work was realized in [1], the authors developed a fast and
accurate analytical pose estimation algorithm for a limited numbers of points or
lines. Their method was tested and compared to linear algorithms and also some
iterative methods.

In table 6, we compare different pose estimation methods, where we precise the
year, the nature of the algorithm and the condition of application.

Table 6 Summarization of pose estimation methods.

Method Year Type Application condition

Dhome et al [8] 1989 Analytical 3 lines

Dementhon and Davis [7] 1992 Analytical 3 points

POSIT 1995 Iterative 4 non coplanar points

OI [15] 2000 Iterative 3 points

EKF [5] 2002 Iterative 3 points

Ansar and Daniilidis [1] 2003 Analytical 4 points

Hybrid EKF [17] 2007 Analytical and iterative 4 coplanar points
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We quantitatively analyzed the tracking and localization errors of 3 algorithms
to locate drawbacks of each method and enhance accuracy and robustness of our
system by implementing the most appropriated method. The distance estimation
was the major issue that our study addressed to contribute, particularly, to the
improvement of depth computation.

Indeed, the two kinds of algorithms have advantages and shortcomings.
Iterative methods are accurate but suffer from computation expense due to bad
initialization and local minima problems. On the other side, the analytical methods
are fast but their major disadvantage is the lack of accuracy. In our case and
since the accuracy is the major constraint that the system should respect, we
used an iterative method based on error minimization criterion. The OI proved its
effectiveness, particularly, in distance estimation, the results of the experimental
protocol performed during our study showed the real advantage of implementing
this method for the pose estimation process.

8 Conclusion

In this paper, we presented an AR system intended to trajectory teaching in
automotive industry. The application requires robust and accurate positioning of
virtual object, however, this accuracy depends on localization algorithms used
to compute the camera pose. For this purpose, we performed a comparative
study of 3 pose estimators, the target is identified using the correlation technique
of ARToolKit, then, we implemented 3 pose estimation methods: the analytical
pose estimators of Zhang, the ICP and the OI algorithm. The analytical method
computes rotation and translation parameters using a direct computation of
solution, the ICP is an iterative method used in ARToolKit library and OI is also
an iterative technique which formulates an error metric minimization based on
collinearity in object space.

We evaluated the performances of our localization system by comparing these
3 algorithms. This study related to the following performances criteria: execution
time, reconstruction error, generalization error and real distance estimation. The
experimentation tests to estimate errors were realized using the robot for motion
generation and as positioning reference system since it provides localization of
its tool according to a known world reference frame. The obtained results for
OI algorithm were efficient and robust and proved that this method provides
interesting solutions for camera localization using AR targets.

Obviously, for industrial application in which the localization error must be
in the order of millimeter, compensation techniques should be developed to
compensate the error rate perceived in Z direction. Another solution consists in
using the camera set data to proceed to depth rectification since the positions of
cameras are known. Indeed, the fusion of data pose of the whole camera system
could fit the depth estimation by exploiting geometrical relationships relating the
coordinate reference frames.
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