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ABSTRACT 

The paper describes a system for the solution of Dial a Ride Problem (DRP). Dial a Ride Problem (DRP) is to 

take over the passenger from a place of departure to a place of arrival. It is characterized by a set of transport 

demands and a number of vehicles available. The ultimate aim is to offer an alternative to displacement 

optimized individually and collectively. The DRP is classified as NP-hard problem that‟s why most research has 

been concentrated on the use of approximate methods to solve it. Indeed, it is a multi-criteria problem, the 

proposed solution of which aims to reduce both route duration, and cost in response to a certain quality of 

service provided. In this work, we offer our contribution to the study and solving the DRP in the application 

using the simulated annealing algorithm. Tests show competitive results on (Cordeau and Laporte, 2003)  

benchmark datasets while improving processing times. 
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1. Introduction: 

 
Starting with the indisputable observation regarding the increased travel demand of individuals, the available 

resources are no longer able to satisfy all users. For example, urban public transport is basically affected by their 

rigidity (ride scheduling would be the application that adapts to the offer). Individual vehicles help avoid the 

drawbacks of public transport but they are at the same time non-ecological, and costly. So Individuals seeking 

ways to a more flexible transport that can meet their needs. Indeed the DRP can meet this expectation.  It is 

considered as a collective-individualized transport activated on demand. A DRP consists in meeting the travel 

demands on a set of passengers scattered geographically. Each transport demand is modelled by a request 

containing the information on this last. This information is the number of passengers, points of departure and 

destination, and the intervals between points of time desired. 

 

In every day practice we find different versions of the Dial a Ride Problem; transportation of people in low 

density areas, transportation of the handicapped and elderly persons, and parcel pickup and delivery service in 

urban areas are some of the examples. Indeed the DRP have emerged as an area of intense investigations, due to 

recent advances in communication and information technologies that now allow information to be obtained and 

processed in real-time (Dror and Powell, 1993; Gendreau and Potvin, 1998; Powell et al., 1995).  In the static 

version of the DRP, it is customary to collect the requests for transportation the day before the beginning of the 

service. 

 

The DRP belongs to the generic class of vehicle routing and scheduling problems which have been extensively 

studied over the past 40 years (see, e.g., Toth and Vigo, 2002). It is subject to many constraints and must meet 

several needs. These needs and / or goals may be contradictory, such as reducing travel time, cost reduction 

generated, maximizing the quality of service. It is classified as NP-hard problem (Inge Li, 2006) .The exact 

methods are not able to solve such a problem in a reasonable time, especially as the problem size is important. In 

this case, we often use methods that find approximate solutions in reasonable time by applying heuristics and 

meta-heuristics, such as those based on genetic algorithms, simulated annealing, tabu search etc… (Cordeau and 

Laporte, 2006, Bervinsdottir, 2004, Cordeau and Laporte , 2003, Baugh et al, 1998). In addition, it is a multi-

criteria problem. So we need a multi-objective method to solve the DRP.  

In this paper, we present the modelization of the transportation problem in the multi-criteria application. 

Subsequently we apply the simulated annealing algorithm to solve it. The second part of this communication 

describes the DRP.  The third part is the mathematical formulation of the multi-criteria DRP.  A description of the 

algorithm of simulated annealing and the proposed approach for the resolution of this problem is given in part 



four. In the fifth section, we detail the numerical results obtained that prove the effectiveness of our approach. 

Finally we present the conclusion and perspectives of this work. 

 

2. The Dial a Ride Problem (DRP)  

 The DRP is characterized by a set of transport demands of size "n" and a number of vehicles "m" to serve 

them. Each transport demand is modelled by a request containing information on demand. To respond to this 

demand, we must recover a person from a starting point "i" and drop it in "n+i". The departure "i" must start in 

the time window [ai, bi]. Delivery must be made within the time window [ai + n, bi + n]. In fact, the DRP is an 

extension of the Vehicle Routing Problem (VRP) (Debong and Qijun, 2008) (Boudali and al, 2004). Indeed in 

the DRP, we have an additional constraint which is the consistency of the order of vehicle passage to serve a 

request. For example, we obviously cannot pass across a point of arrival of a transport demand before carrying 

the person making the request. So the aim is to design a set of least cost vehicle routes capable of 

accommodating all requests, under a set of constraints. The most common constraints relate to vehicle capacity, 

route duration and maximum ride time, i.e., the time spent by a user in the vehicle. In our case, to execute the 

service, there is a homogeneous vehicles set with the same load capacity that cannot be exceeded. The 

passengers are picked and delivered by the same vehicle. 

In figure 1, we present a simple example of a DRP composed of five transport demands and a fleet of two 

vehicles. The circles represent the pickups points and the squares represent the deliveries points. Rectangles 

represent vehicles and arrows represent a vehicle itinerary. The time windows of pickups and deliveries points 

are represented by the values in brackets. Figure 1 represents at the same time a solution for DRP. 

                                          

Fig. 1. Schematic representation of a DRP (5 transport requests, 2 vehicles) 

 

2.1 State of the art on the DRP 

A DRP is an extension of the PDP (Pickup & Delivery Problem) where the transport of goods is replaced by the 

transport of persons (Krumke et al, 2006). Several versions of the DRP have been studied over the past 30 years. 

In the paper (Cordeau and Laporte, 2006), we find a more detailed presentation of the state of the art of this 

problem. The DRP has been widely studied in literature.  In this section, we give a brief literature review on this 

issue.  

There are several variants of the DRP. Indeed, there are DRP with or without time windows and DRP dynamic 

and static. In the case of dynamic DRP, the problem is usually treated as a succession of static problems (Naba et 

al, 2004). The majority of research has been focusing on the static DRP but Wilson et al, 1971 have solved the 

dynamic one.  

When the problem size is small, we tend to use exact methods to solve it. In this context we cite the work of 

Psaraftis who used an exact algorithm of dynamic programming to solve the problem with one vehicle (Psaraftis, 
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1980). User inconvenience is controlled through a „„maximum position shift‟‟ constraint limiting the difference 

between the position of a user in the list of requests and its position in the vehicle route. Only very small 

instances (n 10) can be handled through this algorithm. He studied the case where there are time windows 

imposed at pickups and delivery points for each request. Still with the exact methods, we find the work of Stefan 

who solved the DRP using the Branch and Bound method (Stefan and David , 2006). Desrosiers et al, 1991 

further improve upon this methodology by performing the insertions in parallel, while Ioachim et al,1995 use a 

mathematical programming technique to form the clusters. Tests were carried out on instances involving almost 

3000 users. Dumas et al,1991 have extended their single-vehicle exact algorithm to the multiple-vehicle case and 

applied it to instances with n 55. 

With the increase in travel demands in a DRP, researchers have decided to solve the problem using heuristics 

and meta-heuristics. These methods enable to reach an acceptable solution to the problem in a reasonable 

time. In this context, we mention major works such as those of Mauri et al, where the authors have resolved a 

multi-objective DRP (Mauri et al, 2006). They applied their approach on data derived from the benchmark 

presented in (Cordeau and Laporte, 2003). Indeed, they have developed a simulated annealing algorithm based 

on three methods of local search. Cordeau and laporte have applied the tabu search algorithm for solving the 

problem (Cordeau et al, 2003). Recently Claudio et al, have developed a genetic algorithm for the DRP (Claudio 

et al, 2009).  

For transport problems in the real demand, Garaix et al have developed a method of inserting a transport problem 

in the application located in a rural area with less density " Pays du Doubs Central, Franche-Comté " (Garaix et 

al, 2005) . Naba et al, have solved a dynamic DRP using a distributed scheduling algorithm (Naba et al, 

2004). This algorithm is applied to a succession of static problems representing the basic problem. 

 

 

3. Mathematical  Formulation Of DRP  

 

The DRP has been modelled mathematically in several research works. It is generally modelled by a multi-

objective mathematical program. In this section, we present the mathematical modelling of our DRP. This model 

is characterized by two main objectives. The first one is economic, and the second is the quality of service 

rendered to travellers. In this work, we solve a multi-objective DRP using the Simulated Annealing (SA) 

algorithm in the static context. In the follows part, we present our mathematical formalization of the problem 

 Variables of DRP 

n: Number of transport requests.             

 P= {1, . . . , n}: Pickup locations.            

  D = {n + 1, . . . , 2n}: Delivery locations                         

 M: set of vehicles depots                             

N= D  P M: The set of all nodes in the graph.           

Request i consist of pickup i and delivery n + i.                        

 iV : set of nodes visited by a transport demand i.                 

V: Set of vehicles                            

 Qv: Capacity of a vehicle v            

 [ai bi] : Time window of pickup point of demand          

[ai+n bi+n] : time window of delivery point of demand              

 qi : number loaded onto vehicle at node i. qi = qn+i.       

jviT : Travel time from i to j with the vehicle v        

vaiT : Arrival time for the request i with the vehicle v                  

sivT : Start time of service for the request i with the vehicle   v  



iNSV = The number of stations visited by a transport demand i.                                                                                  

ivL : The load of vehicle v after visiting node i   

vijijv CCC : Cost of travel from i to j with the vehicle such that Cv is the cost of using vehicle v 

ijvX : Decision variable of the problem,  

ijvX  = 1 if the vehicle v takes a direct path from i to j, else 
ijvX  = 0 

 The Multi-objective  function 

The Multi-objective function: Economic criterion + Service quality criterion 

Economic criterion                                           

  ECO= 

Ni Nj Vv

ijvijvCX                                                                                                                                    (1) 

Service quality criterion:  

The Service Quality (SQ) criterion is composed by two major‟s criteria, the first one is the Ride Time (RT) 

criterion and the second one is the Number of Stations Visited (NSV) criterion. 

. 

SQ = RT + NSV                                                                                                                                                     (2) 

RT: Ride Time                                                               

 NSV: Number of Stations visited  

With 

NSV=

Di

iNSV                                                                                                                                                      (3) 

RT=  

Vv

sivaiv

Di

TT )(                                                                                                                                     (4) 

We can rewrite RT (3) using the decision variable ijvX  

                        RT=

Di

iRT                                                                                                                                    (5)                                            

As         



iRT  = 

i iVi Vj Vv

ijvijvTX                                                                                                                                     (6)                                     

 

Mathematical Model 

Minimize F ( ijvX )                                                                                                                                                (7) 

Subject to 

Vv Nj

ijvX 1

Di                                                                                (8) 
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ADj ADj

vinjijv XX

   DiVv ,                     (9) 
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jiv
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ijv XX

      VvDAj ,                  (10) 

0)( sjvijvsivijv TTTX
    NjiVv ),(,                 (11) 

isivi bTa                                 VvNi ,                    (12) 

niaivni bTa                         VvNi ,                                  (13) 

0)( jvvjivijv LqLX
           NjiVv ),(,             (14) 

viviv QLq                               VvDi ,                      (15) 

0mvL                                       VvMm ,                       (16) 

ijvX {0;1}                                                                                 (17)                                                                                                                                               

F ( ijvX ) = α1×ECO ( ijvX ) +α2×RT ( ijvX ) +α3×NSV ( ijvX )                                                                      (18) 

 

The objective function is divided in three parts or objectives (ECO, RT, and NSV). The first part seeks to 

minimize the economic objective of the problem, while the second one (RT) seeks to minimize the ride time for 

passenger and the third part seeks to minimize the number of station visited. 

 

In order to handle this multi-criteria objective function each part of the objective function is multiplied by a 

weight. These weights are denoted α1, α2, α3. The values of the weights are then used to decide the relative 

weight of each criteria in the overall problem. 

 

To solve the multi-criteria function of the DRP, we apply an aggregative method using a vector of weights           

α= [α1, α2, α3]. The parameters of this vector are associated to each part of the general objective function.  

 

We used the aggregative method for solving the multi-objective problem, because we model the problem in the 

general context. Indeed the company will use our algorithm for solving the DR can provide values for the 

weights associated to the objectives of the problem. 

 

Because the criteria‟s of the problem are not commensurable, we should normalize it by using a rescaling 

method. This method consist to divide each criteria of the problem by the optimal value of this last. So the 

objective function is transformed to this following function: 

 

F ( ijvX ) = k1×α1×ECO ( ijvX ) + k2α2×RT ( ijvX ) + k3α3×NSV ( ijvX )                                                      (18.1) 

 

With  k1 =1/ ECO (
*

ijvX  ), k2 =1/ RT (
*

ijvX  ), k3 =1/ NSV(
*

ijvX  ). 

 

 

Description of constraints 

(7): The objective function of the DRP taking into account the quality of service rendered to passengers.                      

(8): Each customer will be assisted once, for just a vehicle.                                                                                     

(9): A delivery place will always be in the same route that its respective pickup place.                                                                                                                                                                    

(10): The flow contention (everything that enters is the same to everything that leaves).                                        

(11): Ensures that the arrival time at location j must be later than the sum of departure time from location i and 

travelling time, ti,j between the locations if that leg is to be part of the route.  For example,  if vehicle v  traverses 

arc (i, j ), where j is a pickup node after service, then its departure time from node j is equal to the departure time 

from the previous node i plus travel time ti,j.                                                                                     

(12): A vehicle v must satisfy the time window of pickup point i.                                                                  



(13): A vehicle v must satisfy the time window of Delivery location i + n.           

(14): Ensures that the number of passengers passed on a path (i, j) by a vehicle v is conserved.                                    

(15): The number of passengers in the vehicle v after visiting i is higher than that collected in i and less than the 

maximum capacity of vehicle.                                                                                     

(16): Ensures that the actual loads of the vehicles are set to zero at the depots.          

(17): guarantees that decision variables 
ijvX  will be binary                                                                                

(18): the multi-criteria function of the DRP  

(18.1): the multi-criteria function of the DRP with the rescaling constants                                                  

 

The proposed formulation of the DRP is used only to modelise the problem in concern. So this last is not subject 

to an exact resolution using a plate-form to resolve a mathematical model. We don‟t adopt this method because 

the problem is classified from in the NP-hard problem and we cannot solve it with an exact method in a 

reasonable time . 

 

4. Developed Approach 

 

The hardness of the problem depends on the number of constraints “N". When N is small, traditional 

mathematical programming approaches can be used to obtain the real optimal solution of DRP; however, when 

N is large, it is not possible to do that. Therefore, researchers have developed various algorithms that can finish 

performing within polynomial time to find the problem's initial feasible solution and then apply the meta-

heuristic approach to obtain (near) global optimum solution.  

 

To solve a NP-hard problem like the DRP, we do not have polynomial algorithms for their resolutions 

optimally. Using an approximate method is almost mandatory. In this paper, we applied the simulated annealing 

algorithm for solving the DRP. The Simulated Annealing (SA) algorithm is a method following the process used 

in metallurgy. SA algorithm was originated by Kirkpatrick et al,1983 . SA was developed from the so-called 

"statistical mechanics" idea. Annealing is the process through which slow cooling of metal produces good, low 

energy state crystallization, whereas fast cooling produces poor crystallization. The optimization procedure of 

simulated annealing reaching a (near) global minimum mimics the crystallization cooling procedure. SA is 

classified among the research methods operating locally; it can make changes to the current solution to exit a 

local optimum. Generally, suddenly reducing high temperature to very low (quenching) cannot obtain this 

crystalline state. In contrast, the material must be slowly cooled from high temperature (annealing) to obtain 

crystalline state. During the annealing process, every temperature must be kept long enough time to allow the 

crystal to have sufficient time to find its minimum energy state. The local search continuously seeks the solution 

better than the current one during the searching process. 

 

To solve the DRP with the simulated annealing algorithm, a method for generation of an initial solution S, a 

method for generation of neighbouring solutions S’ (neighbourhood structure), and an objective function f(S) to 

be optimized should be defined. When applying the developed approach to solve the DRP, we need to decide the 

solution representation of vehicle routes. In our approach, we adopted a matrix presentation of the solution. So, 

Lines show the vehicles and the columns are the pickup and delivery points. . If “i” is the index of rows and “j” 

is the index of columns, “sol [i] [j]” represents the passage order of the vehicle “i” by the point “j”. The DRP is 

an extension of the Vehicle Routing Problem (VRP). To solve this problem we adopted the approach of solving 

routing problems "two-stage” in detail (Benjaafar et al, 2006). The general principle of this approach is to divide 

the problem into two sub-problems. The first is a problem of assigning vehicles to transportation requests. The 

second is a problem of routing vehicles. In Figure 2 we present the phase of assigning vehicles to the demands 

for a DRP formed by 5 demands of transport and 2 vehicles. In Figure 3 we present the routing phase as a 

solution to the problem.  Reminding for a transport demand "i", we associate the point of departure number "i" 

and the arrival point number "i+n". 

 

 

 

 

 



     1 2 3 4 5 6 7 8 9 10 

1 1 1 1 0 1 1 1 1 0 1 

2 0 0 0 1 0 0 0 0 1 0 

 

Fig.  2.  Assignment of vehicles to transport requests 

 

 

 1 2 3 4 5 6 7 8 9 10 

1 2 1 3 0 6 4 5 8 0 7 

2 0 0 0 1 0 0 0 0 2 0 

Fig.  3 An example of solution to the DRP 

 

Each vehicle must start from the depot, and then visit the pickups and delivery‟s points sequentially according to 

the number in solution representation. According to the constraint of time window, each vehicle arrives at each 

point in the solution must within point‟s time window. A vehicle can arrive before the starting of the time 

window but still needs to wait until the allowable time of pickup or delivery; otherwise, it will violate the time 

window constraint. 

The approach based Simulated Annealing (SA) algorithm developed in this research is composed by 2 major‟s 

phases. The first phase is the assignment of transport demands to vehicles. The second phase is the route 

planning for each vehicle. In the assignment phase we use a classification method based on the approximation of 

time windows of transportation requests.  This phase is used to get an initial solution of problem. The initial 

solution of the SA algorithm is generated by a distribution heuristic.  In the second phase (route planning) we use 

the local search structure of the SA algorithm to generate the best itinerary for each vehicle. After the generation 

of a solution for the problem, we apply a programming heuristic (Cordeau and Laporte, 2003) to determinate the 

starting time of vehicle from the current position. In figure 4, we present the architecture of our developed 

approach.   

                                                   

Fig. 4. Developed approach architecture  

SA  algorithm 

 

 

Transportation requests  

Solution : S 

Initial solution: Distribution heuristic 

 

Neiberhood structure  

 

Programming heuristic  

 



 

A pseudo-code of implemented SA is presented in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 5. Simulated Annealing Algorithm 

 

 

 

 

 

 

 

Where x [0 1]: randomly value used to calculate the probability to move to a neighborhood solution S‟, 0< α 

<1 is a cooling rate, Iter-MAX: the number of iteration for each temperature, T0: the initial temperature, TC: the 

final temperature. 

 
4.1 Initial solution 

 

This study used distribution heuristic to set out the initial solution of SA. Our heuristic based on the method 

found in the work of Mauri et al, 2006 .  That is responsible for routing the vehicles, for forming clusters of 

places in the routes and determine their attending sequence of these. This heuristic allows the assignment of m 

vehicles to a set of n transportation requests. This method of finding initial solution based on the principle of 

random assignment of vehicles to transport requests. After assigning vehicles to requests, they will be ordered 

randomly in the tour of each vehicle. In this distribution heuristic, m empty routes are created, assigning to each 

one of them a specific vehicle. Later, all the customers‟ transportation requests (pick-up points and its respective 

delivery ones) are randomly distributed in a not uniform mode to these routes, and the n transportation requests 

are randomly divided among the m vehicles. This heuristic is presented in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. GIVEN (α, SAmax, T0 , TC) DO 

2. CREATE (a solution S through to distribution heuristic); 

3. APPLY (the programming heuristic in all the routes from S); 

4. S* ← S; {Best solution} 

5. IterT ← 0; {Iterations number at temperature T} 

6. T ← T0; {Current temperature } 

7. WHILE (T > TC) DO 

8.  WHILE (IterT < SAmax) DO 

9.  IterT ← IterT + 1; 

10.  CREATE (any neighbor S‟ through to one of change moves); 

11.  APPLY (the programming heuristic in all the routes from S‟); 

12.  Δ ← f(S‟) – f(S); 

13.  IF (Δ < 0) S ← S‟; 

14.   IF (f(S‟) < f(S*)) S* ← S‟; END-IF 

15.  ELSE 

16.   TAKE (x ∈ [0,1]); 

17.   IF (x < e-Δ/T) S ← S‟; END-IF 

18.  END-IF 

19.  END-WHILE 

20.  T ← α * T; IterT ← 0; 

21. END-WHILE 

22. S ← S*; 

23. RETURN (S); 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 6.  Distribution Heuristic. 

 

In figure 7, we present an example of composition of initial solution. We designate by “i” the pickup point of 

transportation demand “i,” and “i + n” design the delivery point. Our distribution heuristic may violate same 

constraints as the vehicle capacity and the respect of time windows on pickups and delivery‟s points. Indeed, in 

our approach we start from an initial solution that does not necessarily satisfy the constraints of the 

problem. These constraints will be satisfied by the process of finding solutions adjacent to the initial solution 

using the neighbourhood structure.  

 

 

                                             
Fig. 7. An example of composition of initial solution 

 

4.2 Neighborhood Structure 

To improve the solution of the DRP, we must make changes to the current solution. These changes are made by 

a neighbourhood structure. In the simulated annealing algorithm can accept change even if they degrade the 

quality of the solution to escape the local optimum. Our neighbourhood structure is based on the method found 

in the work (Cordeau and Laporte, 2003). This method is described as follows:      

r1:  

r2: 
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1+n 

   2 

   1   4 4+n 

3+n    3 2+n

n 

 
Application of 

distribution heuristic  

 

r1:  

r2: 

2 

Empty route  

1+n 2+n 

 
   2    1 

4 4+n 

 
3+n    3 

Empty route  

1. CREATE (m empty routes for m vehicles) 

2. Create a list L on the set of n queries transport  

3. FOR (each queries transport k, k = 1,2,...,n) DO 

4.          Select a random route r  from m routes 

5.          Pos1 ← any position of route r; 

6.          Pos2 ← any position of route k, but after to                               

                Pos1; 

7.        INSERT (the pick-up point in Pos1); 

8.        INSERT (the delivery point in Pos2); 

9.        INSERT (the origin depot of vehicle m in   

      beginning of route r); 

 

10.        INSERT (the destiny depot of vehicle k at 

         the end of route k); 

11. END-FOR; 

 

 

 



(Let ri and rj two roads that serve the requests i and j) 
1. Select two requests i and j; 

2. Eject + (remove) the request j from the route rj; 

3. Insert the pickup point of the request j in the best position (minimum cost) of the route ri; 

4. Insert the delivery point of request j  d after the pickup of that in the best position (minimum cost) of the 
route ri; 

5. Eject + (remove) the request i from the route ri; 

6. Insert the pickup point of the request i in the best position (minimum cost) of the route rj; 

7. Insert the delivery point of request i  after the pickup of that in the best position (minimum cost) of the 
route rj; 

In Figure 8, we present an example of changing the solution by the neighbourhood structure used in our 

approach. Each pickup point for a request "i" is modelled by the number "i" and the delivery point by the number 

"n + i". 

                                           

Fig. 8. Neighbourhood Structure 

4.3 Programming heuristic  

 

The distribution heuristic and the neighborhood structure are used to program the routes of vehicles, but the 

programming of these route vehicles should still be made to determine the arrival times in places, the departure 

times, and so on. Indeed, another heuristic, denominated programming heuristic is used. The programming 

heuristic is adapted of the one presented in (Cordeau  and  Laporte 2003), and performs the programming trying 

to reduce the violations in time windows, in routes duration and in ride times. Considering a route 

k=(v0….,vi,….vq) performed by the vehicle k (∀ k ∈ K)  where v0 and vq both represent the depot. We denote by 

Ai the arrival time of a vehicle at vertex vi, by Bi ≥ max{ai; Ai} g the beginning of service at vertex vi, and by Di  

the departure time from vertex vi. We assume here that waiting at any vertex vi is allowed before service starts 

but is not allowed after service has finished. The waiting time of the request i is  Wi=  Bi-Ai. The ride time 

associated with request i is computed as Li= Bi+n- Di. With i+n is the delivery point of the request i. So  the  

setting D0=a0 and Bi=max{ai,Ai} for i=1, . . . , q is optimal in terms of minimizing time window violations 

because the vehicle leaves the depot as early as possible and the service at each vertex also begins as early as 

possible.  For any route Vk, the dela  y is computed as presented in equations (19), (20).  
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The delay programming heuristic for the delay  is the following: 

 

1) Set D0 :=  B0; 

2) Compute Ai, Wi , Bi and Di and for each vertex vi in the route; 

3) Compute  F0; 

4) Set D0 := a0+ 0

0

,min FW
qp

p  ; 

5)  Update Ai, Wi , Bi and Di for each vertex vi in the route; 

6)  Compute Li for each request assigned to the route; 

7) For every vertex vj that corresponds to the origin of a request j 

a) Compute Fj;  

b) Set Bj := Bj+ j

qpj

p FW ,min  ; Dj : Bj +dj; 

c) Update Ai, Wi , Bi and Di, for each vertex vi that comes after vj in the route; 

d) Update the ride time Li for each request i whose destination vertex is after vertex vj                 

8) Compute changes in violations of vehicle load, route duration, time window and ride time 

 

The steps (1) and (2) of this heuristic minimizes the time window constraints violations. In addition, this 

heuristic minimizes route duration without increasing time window constraints violations in steps (3) and (6). 

The step (7) of this heuristic minimizes ride times by delaying the beginning of service at each origin node as 

much as possible without increasing route duration, time window or ride time constraints violations. 

5. Computational Results  

In this work, we chose to test our approach to data presented in (Cordeau and Laporte, 2003) (available in: 

<http://www.hec.ca/chairedistributique/data/darp />). We can compare our results against previously published 

work. Indeed, in this benchmark, we find 20 instances of DRP. These instances are diversified by the number of 

transport requests and the number of vehicles. The size of these instances of problems is ranging from 24 to 144 

requests. The number of vehicles used to serve the transport demands vary from 3 to 13 vehicles. This 

benchmark is composed of homogeneous vehicles. These instances represent problems with unique depot they 

don't adopt the concept of maximum waiting time. However, the model here proposed (Section 3) adapts easily 

to them.  The distance between any two locations “i” and “j” is set to be the Euclidean distance between the 

coordinates of locations “i” and “j”, i, j  N. The speed of the vehicles is set to 1, so the transportation time “ti,j” 

is equal to the Euclidean distance between “i” and “j”.  

In Table 1, we give the values of the parameters of the Simulated Annealing algorithm (SA). These values are 

chosen after several tests applied to problems.  

 

 

 

 

 

Table 1.  The parameters of SA algorithm  

 

The best obtained results (Table 2) are still compared to the obtained by (Claudio et al, 2009) and (Cordeau and 

Laporte, 2003). In the work (Claudio et al, 2009), the authors have applied the genetic algorithm to solve the 

DRP. In (Cordeau and Laporte, 2003), the tabu search algorithm is applied to solve the problem in concern.  

Parameter Value  

T0 3000 

Α 0.975 

TC 0.001 

NB-ITER-MAX 1000 



The weights associated with the multi-criteria function "F" already detailed in Section3 are: [0.7, 0.2, 0.1].  

These values are chosen for the fact they give good results when comparing it with the other obtained by 

(Claudio et al, 2009) and (Cordeau and Laporte, 2003).  

It is important to mention that in (Claudio et al, 2009), solutions considers a restriction not covered by our 

approach. These are the time windows as soft constraints.  

Table 2 shows the results obtained by our work while Tables 3 and 4 show the results obtained by the previously 

mentioned researches. Because the compared models do not have the same characteristics, the comparison was 

done on the basis of time units of two critical factors: On  the first hand, the total route duration that is associated 

with the transport system resources optimization, on the other hand, the total client travel time that is associated 

with the offered quality of service. 

In our tests, the time is in minutes and the travelled distance is in kilometer, rounded to the nearest integer. 

Instance Best 

Route 

Duration 

(min) 

Best 

Ride Time 

(min) 

CPU time 

(min) 

Pr01 982 590 0,98 

Pr02 1840 814 4,70 

Pr03 2678 3348 11,07 

Pr05 4106 2893 9,61 

Pr11 1013 603 0,88 

Pr12 1449 774 4,71 

Pr15 4062 3099 15,34 

Pr16 4632 2311 18,90 

Pr17 1439 905 2,32 

Pr019 3407 2871 12,03 

Table 2.  Summary of the results obtained by our approach: SA algorithm  

Instance Best 

Route 

Duration 

(min) 

Best 

Ride Time 

(min) 

CPU time 

(min) 

Pr01 955,25 524,59 1,36 

Pr02 1839.06 838,41 4,08 

Pr03 2787.18 1597.95 7,96 

Pr05 4068,05 2935,48 18,43 

Pr11 902,18 449,91 1,58 

Pr12 1503,34 744,93 4,49 

Pr15 4057,08 3152,67 22,09 

Pr16 4658,64 2348,48 17,48 

Pr17 1223,68 612,40 3,13 

Pr019 3427,06 2515,53 25,43 

Table 3.  Summary of the results obtained by Genetic Algorithm (Claudio et al, 2009):  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Instance Best 

Route 

Duration 

(min) 

Best 

Ride Time 

(min) 

CPU time 

(min) 

Pr01 881 1095 1,9 

Pr02 1985 1977 8,06 

Pr03 2579 3587 17,18 

Pr05 3870 6154 46,24 

Pr11 965  1042 1,93 

Pr12 1565  2393 8,29 

Pr15 3596  6105 54,33 

Pr16 4072  7347 73,7 

Pr17 1097  1762 4,23 

Pr019 3249 5581 51,28 

Table 4.  Summary of the results obtained by Tabu Search of (Cordeau & Laporte ,2003) 

 

In figure 9 and figure 10, we present the comparison of our approach base on the SA algorithm with the other 

approach mentioned in this article respectively in terms of route duration and ride time.  

 

 
Fig. 9. Route duration comparison 

 
 

Fig. 10. Ride Time comparison 
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After presenting our results and results obtained in (Claudio et al, 2009) and (Cordeau and Laporte, 2003), we 

note that in the some instances, our approach is more efficient than the approach implemented in (Claudio et al, 

2009).  The values outlined in our summary of results, foresee cases where our approach is better than (Claudio 

et al, 2009). In fact when we based on the number of individual results for the Route Duration, our approach SA 

shows better results than GA   in (6/10) times and worse than TS in (8/10) times. For the Ride Time, our 

approach SA shows better results than TS in (10/10) and equal to GA. when we based on the total time for the 

Route Duration, our approach SA is worse than GA (201 mn) and worse than TS (1763 mn). For the Ride Time, 

our approach SA is worse than GA (2492 mn) and better than TS (18830 mn). 

As exposed in the results section, our SA implementation presents better results than obtained in (Claudio et al, 

2009) for the route duration time. This is mainly due to the use of time-windows as hard constraint. But our 

approach SA shows worse results than TS implementation (Cordeau and Laporte, 2003) for the route duration 

time. This can be understood by the factor of using an aggregative method with a big weight assigned to the 

route duration objective to solve the multi-criteria DRP in the TS implementation and the cost of having good 

average ride times for clients, as there is a trade-off relation among both variables. From other point of view, it 

can be seen as a search with memory, as in Tabu search. However, in this case the memory is used for making 

the algorithm to "remember" which portions of sequences are feasible in order to reduce effort instead of 

remembering the solutions found so far to avoid local optima. 

When focusing on the ride time our solution showed equal times (5/10 times) regarding the Genetic Algorithm 

(GA) of Claudio et al. This can be understood as the use of time-windows as soft constraints in the GA 

implementation while obtaining better results when compared to the TS solution (Cordeau and Laporte, 2003). 

This can be understood as the cost of having good average ride times for clients, as there is a trade-off relation 

among both variables. 

It is worth highlighting that the tests were performed in a laptop Dell B14DEE640C with Intel Intel Core 2 Duo 

of 2.0GHz processor and 2GB of RAM memory. The whole implementation was developed in JAVA language, 

while the Claudio et al,2009 tests were done with a 2.66 GHz Intel Pentium 4 CPU .The  Cordeau and  Laporte  

tests were done with a 2.0 GHz Intel Celeron CPU. Although the hardware configurations are dissimilar, they do 

not completely justify the time improvement. 

6. Conclusion and Perspectives  

 

In this paper, we proposed a mathematical model for the multi-objective DRP.  Indeed, we have proposed an 

approach based on simulated annealing algorithm for solving the DRP. After applying our approach on a 

benchmark presented in (Cordeau and Laporte, 2003), we have had good results in short computing times. The 

resulting method was compared to the results given by (Claudio et al, 2009) and (Cordeau and Laporte, 2003) . 

The comparison focused on the travelled distance and the route duration. 

 

However, improvements can be made about our approach: 

 
 The hybridization of simulated annealing algorithm with other methods of local search (the tabu search 

and genetic algorithm). 

 Resolution of the problem with heterogeneous vehicles to assign each customer to the appropriate vehicle. 

 The application of this approach to real problems 
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