Polynomial Systems Solving by Fast Linear Algebra
Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, Guénaël Renault

To cite this version:
Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, Guénaël Renault. Polynomial Systems Solving by Fast Linear Algebra. 2013. hal-00816724v2

HAL Id: hal-00816724
https://hal.archives-ouvertes.fr/hal-00816724v2
Submitted on 12 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Polynomial Systems Solving by Fast Linear Algebra.

Jean-Charles Faugère† Pierrick Gaudry† Louise Huot† Guénaël Renault†

Abstract

Polynomial system solving is a classical problem in mathematics with a wide range of applications. This makes its complexity a fundamental problem in computer science. Depending on the context, solving has different meanings. In order to stick to the most general case, we consider a representation of the solutions from which one can easily recover the exact solutions or a certified approximation of them. Under generic assumption, such a representation is given by the lexicographical Gröbner basis of the system and consists of a set of univariate polynomials. The best known algorithm for computing the lexicographical Gröbner basis is in \(\tilde{O}(d^{3n})\) arithmetic operations where \(n\) is the number of variables and \(d\) is the maximal degree of the equations in the input system. The notation \(\tilde{O}\) means that we neglect polynomial factors in \(n\). We show that this complexity can be decreased to \(\tilde{O}(d^{\omega n})\) where \(2 \leq \omega \leq 2.3727\) is the exponent in the complexity of multiplying two dense matrices. Consequently, when the input polynomial system is either generic or reaches the Bézout bound, the complexity of solving a polynomial system is decreased from \(\tilde{O}(D^3)\) to \(\tilde{O}(D^\omega)\) where \(D\) is the number of solutions of the system. To achieve this result we propose new algorithms which rely on fast linear algebra. When the degree of the equations are bounded uniformly by a constant we propose a deterministic algorithm. In the unbounded case we present a Las Vegas algorithm.

1 Introduction

Context. Polynomial systems solving is a classical problem in mathematics. It is not only an important problem on its own, but it also has a wide spectrum of applications. It spans several research disciplines such as coding theory [15, 35], cryptography [10, 29], computational game theory [14, 43], optimization [27], etc. The ubiquitous nature of the problem positions the study of its complexity at the center of theoretical computer science. Exempli gratia, in the context of computational geometry, a step of the algorithm by Safey el Din and Schost [2], the first algorithm with better complexity than the one by Canny [12] for solving the road map problem, depends on solving efficiently polynomial systems. In cryptography, the recent breakthrough algorithm due to Joux [29] for solving the discrete logarithm problem in finite fields of small characteristic heavily relies on the same capacity. However, depending on the context, solving a polynomial system has different meanings. If we are working over a finite field, then solving generally means that we enumerate all the possible solutions lying in this field. On the other hand, if the field is of characteristic zero, then solving might mean that we approximate the real (complex) solutions up to a specified precision. Therefore, an algorithm for solving polynomial systems should provide an output that is valid in all contexts. In this paper we present an efficient algorithm to tackle the PoSSo (Polynomial Systems Solving) problem, the output of which is a representation of the roots suitable in all the cases. The precise definition of the problem is as follows:

†UMPC, Université Paris 06; INRIA, Paris Rocquencourt Center; PolSys Project, LIP6/CNRS; UMR 7606, France; Email addresses: Jean-Charles.Faugere@inria.fr, {Louise.Huot,Guenael.Renault}@lip6.fr
‡Université de Lorraine; LORIA, Lorraine; CARAMEL Project, LORIA/CNRS; UMR 7503, France; Email address: Pierrick.Gaudry@loria.fr
Problem 1 (PoSSo). Let \mathbb{K} be the rational field \mathbb{Q} or a finite field \mathbb{F}_q. Given a set of polynomial equations with a finite number of solutions which are all simple

$$S : \{ f_1 = \cdots = f_s = 0 \}$$

with $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$, find a univariate polynomial representation of the solutions of S i.e. $h_1, \ldots, h_n \in \mathbb{K}[x_n]$ such that the system $\{ x_1 - h_1 = \cdots = x_{n-1} - h_{n-1} = h_n = 0 \}$ have the same solutions as S.

It is worth noting that enumerating the solutions in a finite field or approximating the solutions in the characteristic zero case can be easily done once the underlying PoSSo problem is solved. Actually, from a given univariate polynomial representation $\{ x_1 - h_1 = \cdots = x_{n-1} - h_{n-1} = h_n = 0 \}$ one just have to find the (approximated) roots of the univariate polynomial h_n. The algorithms to compute such roots have their complexities in function of D, the degree of h_n, well handled and in general they are negligible in comparison to the cost of solving the PoSSo problem. Note that D is also the total number of solutions of the polynomial system. For instance, if $\mathbb{K} = \mathbb{F}_q$ is a finite field, the enumeration of the roots lying in \mathbb{F}_q of h_n can be done in $\tilde{O}(D)$ arithmetic operations where the notation \tilde{O} means that we neglect logarithmic factors in q and D, see [45]. In the characteristic zero case, finding an approximation of all the real roots of h_n can also be done in $O(D)$ where, in this case, we neglect logarithmic factors in D, see [40].

A key contribution to the PoSSo problem is the multivariate resultant introduced by Macaulay in the beginning of the 20th century [36]. The next major achievement on PoSSo appeared in the 1960s when Buchberger introduced, in his PhD thesis, the concept of Gröbner bases and the first algorithm to compute them. Since then, Gröbner bases have been extensively studied (see for instance [4, 13, 33, 43]) and have become a powerful and a widely used tool to solve polynomial systems. A major complexity result related to the PoSSo problem has been shown by Lakshman and Lazard in [33] and states that this problem can be solved in a simply exponential time in the maximal degree d of the equations i.e. in $O(d^{O(n)})$ arithmetic operations where n is the number of variables. As the number of solutions can be bounded by an exponential in this degree thanks to the Bézout bound, this result yields the first step toward a polynomial complexity in the number of solutions for the PoSSo problem. In our context, the Bézout bound can be stated as follows.

Bézout’s bound: Let $f_1, \ldots, f_s \subset \mathbb{K}[x_1, \ldots, x_n]$ and let d_1, \ldots, d_s be their respective degree. The PoSSo problem has at most $\prod_{i=1}^s d_i$ solutions in an algebraic closure of \mathbb{K} and counted with multiplicities.

The Bézout bound is generically reached i.e. $D = \prod_{i=1}^s d_i$. We mean by generically that the system is generic that is to say, given by a sequence of dense polynomials whose coefficients are unknowns or any random instantiations of these coefficients.

Whereas for the particular case of approximating or computing a rational parametrization of all the solutions of a polynomial system with coefficients in a field of characteristic zero there exist algorithms with sub-cubic complexity in D (if the number of real roots is logarithmic in D then $\tilde{O}(12^n D^2)$ for the approximation, see [39], and if the multiplicative structure of the quotient ring is known $O \left(n 2^n D^2 \right)$ for the rational parametrization, see [7]). To the best of our knowledge, there is no better bound than $O(nD^3)$ for the complexity of computing a univariate polynomial representation of the solutions. According to the Bézout bound the optimal complexity to solve the PoSSo problem is then polynomial in the number of solutions. One might ask whether the existence of an algorithm with (quasi) linear complexity is possible. Consider the simplest case of systems of two equations $\{ f_1 = f_2 = 0 \}$ in two variables. Solving such a system can be done by computing the resultant of the two polynomials with respect to one of the variables. From [45], the complexity of computing such a resultant is polynomial in the Bézout bound with exponent strictly greater than one. In the general case i.e. more than two variables, the PoSSo problem is much more complicated. Consequently, nothing currently suggests that a (quasi) linear complexity is possible.
The main goal of this paper is to provide the first algorithm with sub-cubic complexity in D to solve the PoSSo problem, which is already a noteworthy progress. More precisely, we show that when the Bézout bound is reached, the complexity to solve the PoSSo problem is polynomial in the number of solutions with exponent $2 \leq \omega < 3$, where ω is the exponent in the complexity of multiplying two dense matrices. Since the 1970s, a fundamental issue of theoretical computer science is to obtain an upper bound for ω as close as possible to two. In particular, Vassilevska Williams showed in 2011 [44] that ω is upper bounded by $2.3727 \leq \omega < 2.3727$. By consequence, our work tends to show that a quadratic complexity in the number of solutions for the PoSSo problem can be expected. A direct consequence of such a result is the improvement of the complexity of many algorithms requiring to solve the PoSSo problem, for instance in asymmetric [20, 25] or symmetric [9, 10] cryptography.

Related works. In order to reach this goal we develop new algorithms in Gröbner basis theory. Let S be a polynomial system in $\mathbb{K}[x_1, \ldots, x_n]$ verifying the hypothesis of Problem 1, i.e. with a finite number of solutions in an algebraic closure of \mathbb{K} which are all simple. A Gröbner basis is to S what row echelon form is to a linear system. For a fixed monomial ordering, given a system of polynomial equations, its associated Gröbner basis is unique after normalization. From an algorithmic point of view, monomial orderings may differ: some are attractive for the efficiency whereas some others give rise to a more structured output. Hence, the fastest monomial ordering is usually the degree reverse lexicographical ordering, denoted DRL. However, in general, a DRL Gröbner basis does not allow to list the solutions of S. An important ordering which provides useful outputs is the lexicographical monomial ordering, denoted LEX in the sequel. Actually, for a characteristic 0 field or with a sufficiently large one, up to a linear change of the coordinates, a Gröbner basis for the LEX ordering of the polynomial system S gives a univariate polynomial representation of its solutions [26, 32]. That is to say, computing this Gröbner basis is equivalent to solving the PoSSo problem 1. It is usual to define the following: the ideal generated by S is said to be in *Shape Position* when its LEX Gröbner basis is of the form

$$\{x_1 - h_1(x_n), \ldots, x_{n-1} - h_{n-1}(x_n), h_n(x_n)\}$$

where h_1, \ldots, h_{n-1} are univariate polynomials of degree less than D and h_n is a univariate polynomial of degree D (i.e. one does not need to apply any linear change of coordinates to get the univariate polynomial representation). In the first part of this paper, we will avoid the consideration of the probabilistic choice of the linear change of coordinates in order to be in Shape Position, thus we assume the following hypothesis.

Hypothesis 1. Let $S \subset \mathbb{K}[x_1, \ldots, x_n]$ be a polynomial system with a finite number of solutions which are all simple. Its associated LEX Gröbner basis is in Shape Position.

From a DRL Gröbner basis, one can compute the corresponding LEX Gröbner basis by using a change of ordering algorithm. Consequently, when the associated LEX Gröbner basis of the system S is in Shape Position i.e. S satisfies Hypothesis 1, the usual and most efficient algorithm is first to compute a DRL Gröbner basis. Then, the LEX Gröbner basis is computed by using a change of ordering algorithm. This is summarized in Algorithm 1.

Algorithm 1: Solving polynomial systems

Input: A polynomial system $S \subset \mathbb{K}[x_1, \ldots, x_n]$ which satisfies Hypothesis 1

Output: The LEX Gröbner basis of S i.e. the univariate polynomial representation of the solutions of S.

1. Computing the DRL Gröbner basis of $\langle S \rangle$;
2. From the DRL Gröbner basis, computing the LEX Gröbner basis of $\langle S \rangle$;
3. return The LEX Gröbner basis of S;

The first step of Algorithm 1 can be done by using F_4 [17] or F_5 [18] algorithms. The complexity of these algorithms for regular systems is well handled. For the homogeneous case, the regular property
for a polynomial system \(\{f_1, \ldots, f_s\} \subset \mathbb{K}[x_1, \ldots, x_n] \) is a generic property which implies that for all \(i \in \{2, \ldots, s\} \), the polynomial \(f_i \) does not divide zero in the quotient ring \(\mathbb{K}[x_1, \ldots, x_n]/\langle f_1, \ldots, f_{i-1} \rangle \). There is an analogous definition for the affine case, see Definition \([4]\). For the particular case of the DRL ordering, computing a DRL Gröbner basis of a regular system in \(\mathbb{K}[x_1, \ldots, x_n] \) with equations of same degree, \(d \), can be done in \(\widetilde{O}(d^m) \) arithmetic operations (see \([134]\)). Moreover, the number of solutions \(D \) of the system can be bounded by \(d^m \). For instance, Bunch and Hopcroft showed in \([11]\) that the inverse or the triangular decomposition can be done by using fast matrix multiplication and consequently bound their complexities by that of multiplying two dense matrices \(i.e. \). \(O(nD^3) \). Once all the multiplication matrices are computed, the second Gröbner basis w.r.t. the new monomial order \(>_2 \) is recovered by testing linear dependency of \(O(nD) \) vectors of size \(D \times 1 \). This can be done in \(O(nD^3) \) arithmetic operations. This algorithm is summarized in Algorithm \([2]\). Therefore, in the context of the existing knowledge, solving regular zero-dimensional systems can be done in \(O(nD^3) \) arithmetic operations and change of ordering appears as the bottleneck of PoSSo.

Algorithm 2: FGLM

Input: The Gröbner basis w.r.t. \(>_1 \) of an ideal \(I \).

Output: The Gröbner basis w.r.t. \(>_2 \) of \(I \).

1. Computing the multiplication matrices \(T_1, \ldots, T_n \); \hspace{1cm} // \text{\(O(nD) \) matrix-vector products}
2. From \(T_1, \ldots, T_n \) computing the Gröbner basis of \(I \) w.r.t. \(>_2 \); \hspace{1cm} // \text{\(O(nD) \) linear dependency tests}

Fast Linear Algebra. Since the second half of the 20th century, an elementary issue in theoretical computer science was to decide if most of linear algebra problems can be solved by using fast matrix multiplication and consequently bound their complexities by that of multiplying two dense matrices \(i.e. \) \(O(m^\omega) \) arithmetic operations where \(m \times m \) is the size of the matrix and \(2 \leq \omega < 2.3727 \). For instance, Bunch and Hopcroft showed in \([11]\) that the inverse or the triangular decomposition can be done by using fast matrix multiplication. Baur and Strassen investigated the determinant in \([3]\). The case of the characteristic polynomial was treated by Keller-Gehrig in \([30]\). Although that the link between linear algebra and the change of ordering has been highlighted for several years, relating the complexity of the change of ordering with fast matrix multiplication complexity is still an open issue.

Main results. The aim of this paper is then to give an initial answer to this question in the context of polynomial systems solving \(i.e. \) for the special case of the DRL and LEX orderings. More precisely, our main results are summarized in the following theorems. First we present a deterministic algorithm computing the univariate polynomial representation of a polynomial system verifying Hypothesis \([1]\) and whose equations have bounded degree.

Theorem 1.1. Let \(S = \{f_1, \ldots, f_n\} \subset \mathbb{K}[x_1, \ldots, x_n] \) be a polynomial system verifying Hypothesis \([1]\) and let \(\mathbb{K} \) be the rational field \(\mathbb{Q} \) or a finite field \(\mathbb{F}_q \). If the sequence \(\{f_1, \ldots, f_n\} \) is a regular sequence and if
the degree of each polynomial \(f_i \) \((i = 1, \ldots, n) \) is uniformly bounded by a fixed integer \(d \) then there exists a deterministic algorithm solving Problem\[7\] in \(\tilde{O}(d^{en} + D^\omega) \) arithmetic operations where the notation \(\tilde{O} \) means that we neglect logarithmic factors in \(D \) and polynomial factors in \(n \) and \(d \).

Then we present a Las Vegas algorithm extending the result of Theorem\[1.1\] to polynomial systems not necessarily verifying Hypothesis\[1\] and whose equations have non fixed degree.

Theorem 1.2. Let \(S = \{ f_1, \ldots, f_n \} \subset \mathbb{K}[x_1, \ldots, x_n] \) be a polynomial system and let \(\mathbb{K} \) be the rational field \(\mathbb{Q} \) or a finite field \(\mathbb{F}_q \). If the sequence \(\{ f_1, \ldots, f_n \} \) is a regular sequence where the degree of each polynomial is uniformly bounded by a non fixed parameter \(d \) then there exists a Las Vegas algorithm solving Problem\[7\] in \(\tilde{O}(d^{en} + D^\omega) \) arithmetic operations; where the notations \(\tilde{O} \) means that we neglect logarithmic factors in \(D \) and polynomial factors in \(n \).

If \(\mathbb{K} = \mathbb{Q} \) the probability of failure of the algorithm mentioned in Theorem\[1.2\] is zero while in the case of a finite field \(\mathbb{F}_q \) of characteristic \(p \), it depends on the size of \(p \) and \(q \), see Section\[7.2\].

As previously mentioned, the Bézout bound allows to bound \(D \) by \(d^n \) and generically this bound is reached i.e. \(D = d^n \). By consequence, Theorem\[1.1\] (respectively Theorem\[1.2\]) means that if the equations have fixed (respectively non fixed) degree then there exists a deterministic (respectively a Las Vegas) algorithm computing the univariate polynomial representation of generic polynomial systems in \(\tilde{O}(D^\omega) \) arithmetic operations.

To the best of our knowledge, these complexities are the best ones for solving the PoSSo Problem\[1\]. For example, in the case of field of characteristic zero, under the same hypotheses as in Theorem\[1.1\] one can now compute a univariate polynomial representation of the solutions in \(\tilde{O}(D^\omega) \) without assuming that the multiplicative structure of \(\mathbb{K}[x_1, \ldots, x_n] \) is known. This can be compared to the method in \[7\] which, assuming the multiplicative structure of the quotient ring known, computes a parametrization of the solutions in \(\tilde{O}\left(n 2^n D^{\frac{3}{2}}\right) \). Noticing that under the hypotheses of Theorem\[1.1\] \(n \) is of the order of \(\log_2(D) \) and the algorithm in \[7\] has a complexity in \(\tilde{O}\left(D^{\frac{3}{2}}\right) \).

Importance of the hypotheses. The only two hypotheses which limits the applicability of the algorithms in a meaningful way is that (up to a linear change of variables) the ideal admits a LEX Gröbner basis in *Shape Position* and that the number of solutions in an algebraic closure of the coefficient field counted with multiplicity is finite. The other hypotheses are stated either to simplify the paper or to simplify the complexity analysis. More precisely, the hypothesis that the solutions are all simple is minor. Indeed, it is sufficient to get the required hypothesis about the shape of the LEX Gröbner basis but not necessary. The hypothesis stating the regularity of the system is required to get a complexity bound on the computation of the first (DRL) Gröbner basis. Indeed, without this hypothesis the computation of the first Gröbner basis is possible but there is no known complexity analysis of such a computation. It is a common assumption in algorithmic commutative algebra. The assumption on the degree of the equations in the input system is stated in order to obtain a simply form of the complexity of computing the first Gröbner basis i.e. \(\tilde{O}(d^{en}) \). Finally, the hypothesis of genericity (i.e. the Bézout bound is reached) is required to express the complexity of the computation of the first Gröbner basis in terms of the number of solutions i.e. \(\tilde{O}(d^{en}) = \tilde{O}(D^\omega) \). We would like to precise that all the complexities in the paper are given in the worst case for all inputs with the required assumptions.

Outline of the algorithms. In 2011, Faugère and Mou proposed in \[23\] another kind of change of ordering algorithm to take advantage of the sparsity of the multiplication matrices. Nevertheless, when the multiplication matrices are not sparse, the complexity is still in \(O(D^3) \) arithmetic operations. Moreover, these complexities are given assuming that the multiplication matrices have already been computed and
the authors of [23] do not investigate their computation whose complexity is still in $O(nD^3)$ arithmetic operations. In FGLM, the matrix-vectors products (respectively linear dependency tests) are intrinsically sequential. This dependency implies a sequential order for the computation of the matrix-vectors products (respectively linear dependency tests) on which the correctness of this algorithm strongly relies. Thus, in order to decrease the complexity to $\tilde{O}(D^\omega)$ we need to propose new algorithms.

To achieve result in Theorem 1.1 we propose two algorithms in $\tilde{O}(D^\omega)$, each of them corresponding to a step of the Algorithm 2.

We first present an algorithm to compute multiplication matrices assuming that we have already computed a Gröbner basis G. The bottleneck of the existing algorithm [21] came from the fact that nD normal forms have to be computed in a sequential order. The key idea is to show that we can compute simultaneously the normal form of all monomials of the same degree by computing the row echelon form of a well chosen matrix. Hence, we replace the nD normal form computations by $\log_2(D)$ (we iterate degree by degree) row echelon forms on matrices of size $(nD) \times (nD+D)$. To compute simultaneously these normal forms we observe that if r is the normal form of a monomial m of degree d then $m-r$ is a polynomial in the ideal of length at most $D+1$; then we generate the Macaulay matrix of all the products $x_i m - x_i r$ (for i from 1 to n) together with the polynomials g_i in the Gröbner basis G of degree exactly d. We recall that the Macaulay matrix of some polynomials [23,56] is a matrix whose rows consist of the coefficients of these polynomials and whose columns are indexed with respect to the monomial ordering. Computing a row echelon form of the concatenation of all the Macaulay matrices in degree less or equal to d enable us to obtain all the normal forms of all monomials of degree d. This yields an algorithm to compute the multiplication matrices of arithmetic complexity $O(\delta n\omega D^\omega)$ where δ is the maximal degree of the polynomials in G; note that this algorithm can be seen as a redundant version of F_1 or F_3.

In order to prove Theorem 1.2 we use the fact that, in a generic case, only the multiplication matrix by the smallest variable is needed. Surprisingly, we show (Theorem 7.1) that, in this generic case, no arithmetic operation is required to build the corresponding matrix. Moreover, for non generic polynomial systems, we prove (Corollary 3) that a generic linear change of variables bring us back to this case.

The second algorithm (step 2 of Algorithm 2) we describe is an adaptation of the algorithm given in [23] when the ideal is in Shape Position. Once again only the multiplication matrix by the smallest variable is needed in this case. When the multiplication matrix T of size $D \times D$ is dense, the $O(D^3)$ arithmetic complexity in [23] came from the $2D$ matrix-vector products T^iri for $i = 1, \ldots, 2D$ where r is a column vector of size D. To decrease the complexity we follow the Keller-Gehrig algorithm [30]: first, we compute $T^2, T^3, \ldots, T^{2\lceil \log_2 D \rceil}$ using binary powering; second, all the products T^iri are recovered by computing $\log_2 D$ matrix multiplications. Then, in the Shape Position case, the n univariate polynomials of the lexicographical Gröbner basis are computed by solving n structured linear systems (Hankel matrices) in $O(nD \log_2(D))$ operations. We thus obtain a change of ordering algorithm (DRL to LEX order) for Shape Position ideals whose complexity is in $O(\log_2(D) (D^\omega + n \log_2(D)D))$ arithmetic operations.

Organization of the paper. The paper is organized as follows. In Section 2 we first introduce some required notations and backgrounds. Then, an algorithm to compute the LEX Gröbner basis given the multiplication matrices is presented in Section 3. Next, we describe the algorithm to compute multiplication matrices in Section 4. Afterwards, their complexity analysis are studied in Section 5 where we obtain Theorem 1.1. Finally, in Section 7 we show how to deduce (i.e. without any costly arithmetic operation) the multiplication matrix by the smallest variable. According to this construction we propose another algorithm for polynomial systems solving which allows to obtain the result in Theorem 1.2. In Appendix A we discuss about the impact of our algorithm on the practical solving of the PoSSo problem.

The authors would like to mention that a preliminary version of this work was published as a poster in the ISSAC 2012 conference [19].
2 Notations and preliminaries

Throughout this paper, we will use the following notations. Let \(\mathbb{K} \) denote a field (for instance the rational numbers \(\mathbb{Q} \) or a finite field \(\mathbb{F}_q \) of characteristic \(p \)), and \(\mathbb{A} = \mathbb{K}[x_1, \ldots, x_n] \) be the polynomial ring in \(n \) variables with \(x_1 > \cdots > x_n \). A monomial of \(\mathbb{K}[x_1, \ldots, x_n] \) is a product of powers of variables and a term is a product of a monomial and a coefficient in \(\mathbb{K} \). We denote by \(\text{LT}_<(f) \) the leading term of \(f \) w.r.t. the monomial ordering <.

Let \(\mathcal{I} \) be an ideal of \(\mathbb{A} \); once a monomial ordering < is fixed, a reduced Gröbner basis \(\mathbb{G}_< \) of \(\mathcal{I} \) w.r.t. < can be computed.

Definition 1 (Gröbner basis). Given a monomial ordering < and an ideal \(\mathcal{I} \) of \(\mathbb{A} \), a finite subset \(\mathbb{G}_< = \{g_1, \ldots, g_s\} \) of \(\mathcal{I} \) is a Gröbner basis of \(\mathcal{I} \) w.r.t. the monomial ordering < if the ideal \(\{\text{LT}_<(f) \mid f \in \mathcal{I}\} \) is generated by \(\{\text{LT}_<(g_1), \ldots, \text{LT}_<(g_s)\} \). The Gröbner basis \(\mathbb{G}_< \) is the unique reduced Gröbner basis of \(\mathcal{I} \) w.r.t. the monomial ordering < if \(g_1, \ldots, g_s \) are monic polynomials and for any \(g_i \in \mathbb{G}_< \) all the terms in \(g_i \) are not divisible by a leading term of \(g_j \) for all \(g_j \in \mathbb{G}_< \) such that \(j \neq i \).

We always consider reduced Gröbner basis so henceforth, we omit the adjective “reduced”. For instance, \(\mathbb{G}_{\text{drl}} \) (resp. \(\mathbb{G}_{\text{lex}} \)) denotes the Gröbner basis of \(\mathcal{I} \) w.r.t. the DRL order (resp. the LEX order). In particular, a Gröbner basis \(\mathbb{G}_< = \{g_1, \ldots, g_s\} \) of an ideal \(\mathcal{I} = \langle f_1, \ldots, f_m \rangle \) is a basis of \(\mathcal{I} \). Hence, solving the system \(\{g_1, \ldots, g_s\} \) is equivalent to solve the system \(\{f_1, \ldots, f_m\} \).

Definition 2 (Zero-dimensional ideal). Let \(\mathcal{I} \) be an ideal of \(\mathbb{A} \). If \(\mathcal{I} \) has a finite number of solutions, counted with multiplicities in an algebraic closure of \(\mathbb{K} \), then \(\mathcal{I} \) is said to be zero-dimensional. This number, denoted by \(D \), is also the degree of the ideal \(\mathcal{I} \). If \(\mathcal{I} \) is zero-dimensional, then the residue class ring \(V_\mathcal{I} = \mathbb{A}/\mathcal{I} \) is a \(\mathbb{K} \)-vector space of dimension \(D \).

From \(\mathbb{G}_< \) one can deduced a vector basis of \(V_\mathcal{I} \). Indeed, the canonical vector basis of \(V_\mathcal{I} \) is \(B = \{1 = \epsilon_1 < \cdots < \epsilon_D\} \) where \(\epsilon_i \) are irreducible monomials (that is to say for all \(i \in \{1, \ldots, D\} \), there is no \(g \in \mathbb{G}_< \) such that \(\text{LT}_<(g) \) divides \(\epsilon_i \)).

Definition 3 (Normal Form). Let \(f \) be a polynomial in \(\mathbb{A} \). The normal form of \(f \) is defined w.r.t. a monomial ordering < and denoted \(\text{NF}_<(f) : \text{NF}_<(f) \) is the unique polynomial in \(\mathbb{A} \) such that no term of \(\text{NF}_<(f) \) is divisible by a leading term of a polynomial in \(\mathbb{G}_< \) and there exists \(g \in \mathcal{I} \) such that \(f = g + \text{NF}_<(f) \). That is to say, \(\text{NF}_< \) is a (linear) projection of \(\mathbb{A} \) on \(V_\mathcal{I} \). We recall that for any polynomials \(f, g, h \) we have \(\text{NF}_<(fg) = \text{NF}_<(\text{NF}_<(f)g) = \text{NF}_<(\text{NF}_<(f)\text{NF}_<(g)) \).

Let \(\psi \) be the representation of \(V_\mathcal{I} \) as a subspace of \(\mathbb{K}^D \) associated to the canonical basis \(B \):

\[
\psi : \left(\sum_{i=1}^{D} \alpha_i \epsilon_i \right) \mapsto [\alpha_1, \ldots, \alpha_D]^t.
\]

We call multiplication matrices, denoted \(T_1, \ldots, T_n \), the matrix representation of the multiplication by \(x_1, \ldots, x_n \) in \(V_\mathcal{I} \). That is to say, the \(i \)-th column of the matrix \(T_j \) is given by \(\psi(\text{NF}_<(\epsilon_i x_j)) = [c_{i,1}^{(j)}, \ldots, c_{i,D}^{(j)}]^t \) hence, \(T_k = \left(c_{i,j}^{(k)} \right)_{i,j=1,\ldots,D} \).

The LEX Gröbner basis of an ideal \(\mathcal{I} \) has a triangular form. In particular, when \(\mathcal{I} \) is zero-dimensional, its LEX Gröbner basis always contains a univariate polynomial. In general, the expected form of a LEX Gröbner basis is the Shape Position. When the field \(\mathbb{K} \) is \(\mathbb{Q} \) or when its characteristic \(p \) is sufficiently large, almost all zero-dimensional ideals have, up to a linear change of coordinates, a LEX Gröbner basis in Shape Position \([31]\). A characterization of the zero-dimensional ideals that can be placed in shape position has been given in \([6]\). A less general result \([26][52]\) usually called the Shape Lemma is the following: an ideal \(\mathcal{I} \)
is said to be radical if for any polynomial in \mathbb{A}, $f^k \in \mathcal{I}$ implies $f \in \mathcal{I}$. Up to a linear change of coordinates, any radical ideal has a LEX Gröbner basis in *Shape Position*. From now on, all the ideals considered in this paper will be zero-dimensional and will have a LEX Gröbner basis in *Shape Position*. Moreover, we fix the DRL order for the basis of $V_\mathbb{A}$ that is to say that $B = \{\epsilon_1, \ldots, \epsilon_D\}$ will always denote the canonical vector basis of $V_\mathbb{A}$ w.r.t. the DRL order. Since for *Shape Position* ideals the LEX Gröbner basis is described by n univariate polynomials we will call it the “univariate polynomial representation” of the ideal or, up to multiplicities, of its variety of solutions.

In the following section, we present an algorithm to compute the LEX Gröbner basis of a *Shape Position* ideal. This algorithm assumes the DRL Gröbner basis and a multiplication matrix to be known. The computation of the multiplication matrices is treated in Section 4.

3 Univariate polynomial representation using structured linear algebra

In this section, we present an algorithm to compute univariate polynomial representation. This algorithm follows the one described in [23]. The main difference is that this new algorithm and its complexity study do not take into account any structure of the multiplication matrices (in particular any sparsity assumption).

Let $\mathcal{G}_{\text{lex}} = \{h_n(x_n), x_n-1 - h_{n-1}(x_n), \ldots, x_1 - h_1(x_n)\}$ be the LEX Gröbner basis of \mathcal{I}. Given the multiplication matrices T_1, \ldots, T_n, an algorithm to compute the univariate polynomial representation has to find the n univariate polynomials h_1, \ldots, h_n. For this purpose, we can proceed in two steps. First, we will compute h_n. Then, by using linear algebra techniques, we will compute the other univariate polynomials h_1, \ldots, h_{n-1}.

Remark 1. In this section, for simplicity, we present a probabilistic algorithm to compute the univariate polynomial representation. However, to obtain a deterministic algorithm it is sufficient to adapt the deterministic algorithm for radical ideals admitting a LEX Gröbner basis in *Shape Position* given in [22] in exactly the same way we adapt the probabilistic version.

3.1 Computation of h_n

To compute h_n we have to compute the minimal polynomial of T_n. To this end, we use the first part of the Wiedemann probabilistic algorithm which succeeds with good probability if the field \mathbb{K} is sufficiently large, see [46].

Let r be a random column vector in \mathbb{K}^D and $1 = \psi(1)^t = [1, 0, \ldots, 0]^t$. If $a = [a_1, \ldots, a_D]$ and $b = [b_1, \ldots, b_D]$ are two vectors of \mathbb{K}^D, we denote by (a, b) the dot product of a and b defined by $(a, b) = \sum_{i=1}^D a_i b_i$. If r_1, \ldots, r_k are column vectors then we denote by $(r_1 \ldots | r_k)$ the matrix with D rows and k columns obtained by joining the vectors r_i vertically.

Let $S = [(r, T_n^j 1) \mid j = 0, \ldots, 2D - 1]$ be a linearly recurrent sequence of size $2D$. By using for instance the Berlekamp-Massey algorithm [37], we can compute the minimal polynomial of S denoted μ. If $\deg(\mu(x_n)) = D$ then we deduce that $\mu(x_n) = h_n(x_n) \in \mathcal{G}_{\text{lex}}$ since μ is a divisor of f_n.

In order to compute efficiently S, we first notice that $(r, T_n^3 1) = (T^3 r, 1)$ where $T = T_n^t$ is the transpose matrix of T_n. Then, we compute $T^2, T^4, \ldots, T_2^{[\log_2 D]}$ using binary powering with $[\log_2 D]$ matrix multiplications. Similarly to [30], the vectors $T^j r$ for $j = 0, \ldots, (2D - 1)$ are computed by induction in $\log_2 D$ steps:

$$
T^2(T^j r \mid r) = (T^3 r \mid T^2 r) \\
T^4(T^3 r \mid T^2 r \mid T^1 r \mid r) = (T^7 r \mid T^6 r \mid T^5 r \mid T^4 r) \\
\vdots \\
T_2^{[\log_2(D)]}(T_2^{[\log_2(D)]} - 1 r \mid \cdots \mid r) = (T^{2D-1} r \mid T^{2D-2} r \mid \cdots \mid T^{2[\log_2(D)]} r).
$$

3.2 Recovering h_1, \ldots, h_{n-1}

We write $h_i = \sum_{k=0}^{D-1} \alpha_{i,k} x_n^k$ for $i = 1, \ldots, n-1$ where $\alpha_i \in \mathbb{K}$ are unknown. We have for $i = 1, \ldots, n-1$:

$$x_i - h_i \in G_{\text{lex}} \text{ is equivalent to } 0 = NF_{drl} \left(x_i - \sum_{k=0}^{D-1} \alpha_{i,k} x_n^k \right) = T_i 1 - \sum_{k=0}^{D-1} \alpha_{i,k} T_n^k 1. $$

Multiplying the last equation by T_i^j for any $j = 0, \ldots, (D-1)$ and taking the scalar product we deduce that:

$$0 = (r, T_i^j (T_i 1)) - \sum_{k=0}^{D-1} \alpha_{i,k} (r, T_n^{k+j} 1) = (T^j r, T_i 1) - \sum_{k=0}^{D-1} \alpha_{i,k} (T^{k+j} r, 1) \quad (3b)$$

Hence, we can recover h_i, for $i = 1, \ldots, n-1$ by solving $n-1$ structured linear systems:

$$
\begin{pmatrix}
(T^0 r, T_i 1) \\
(T^1 r, T_i 1) \\
\vdots \\
(T^{D-1} r, T_i 1)
\end{pmatrix}
=
\begin{pmatrix}
(T^0 r, 1) & (T^1 r, 1) & \cdots & (T^{D-1} r, 1) \\
(T^1 r, 1) & (T^2 r, 1) & \cdots & (T^D r, 1) \\
\vdots & \vdots & \ddots & \vdots \\
(T^{D-1} r, 1) & (T^D r, 1) & \cdots & (T^{2D-2} r, 1)
\end{pmatrix}
\begin{pmatrix}
c_{i,0} \\
c_{i,1} \\
\vdots \\
c_{i,D-1}
\end{pmatrix}
\quad (3c)
$$

Note that the linear system (3c) has a unique solution since from (23) the rank of \mathcal{H} is given by the degree of the minimal polynomial of S which is exactly D in our case. The following lemma tell us that we can compute $T_i 1$ without knowing T_i.

Lemma 1. The vectors $T_i 1$ for $i = 1, \ldots, n-1$ can be read from G_{drl}.

Proof. We have to consider the two cases $NF_{drl} (x_i) \neq x_i$ or $NF_{drl} (x_i) = x_i$.

First, if $NF_{drl} (x_i) \neq x_i$ then there exists $g \in G_{drl}$ such that $LT_{drl} (g)$ divides x_i. This implies that g is a linear equation:

$$x_i + \sum_{j>i}^n \alpha_{i,j} x_j + \alpha_{i,0} \text{ with } \alpha_{i,j} \in \mathbb{K}. \quad (3d)$$

Hence, we have $NF_{drl} (x_i) = -\sum_{j>i}^n \alpha_{i,j} x_j - \alpha_{i,0}$ and $T_i 1 = [-\alpha_{i,0}, 0, \ldots, 0, \alpha_{i,i+1}, \ldots, \alpha_{i,n}, 0, \ldots]$. Otherwise, $NF_{drl} (x_i) = x_i$ so that $T_i 1 = [0, \ldots, 0, 1, 0, \ldots, 0]$. □

Hence, once the vectors $T^j r$ have been computed for $j = 0, \ldots, (2D - 1)$, we can deduce directly the Hankel matrix \mathcal{H} with no computation but scalar products would seem to be needed to obtain the vectors b_i. However, by removing the linear equations from G_{drl} we can deduce the b_i without arithmetic operations.

Linear equations in G_{drl}. Let denote by \mathbb{L} the set of polynomials in G_{drl} of total degree 1 (usually \mathbb{L} is empty). We define $\mathcal{L} = \{ j \in \{1, \ldots, n-1 \} \text{ such that } NF_{drl} (x_j) \neq x_j \}$ and $\mathcal{L}^c = \{1, \ldots, n-1\} \setminus \mathcal{L}$ so that $\{x_i \mid i \in \mathcal{L}\} = LT_{drl} (\mathbb{L})$. In other words there is no linear form in G_{drl} with leading term x_i when $i \in \mathcal{L}^c$.

We first solve the linear systems (3c) for $i \in \mathcal{L}^c$: we know from the proof of Lemma 1 that $T_i 1 = [0, \ldots, 0, 1, 0, \ldots, 0]^t$. Hence, the components $(T^j r, T_i 1)$ of the vector b_i can be extracted directly from the vector $T^j r$. By solving the corresponding linear system we can recover $h_i (x_n)$ for all $i \in \mathcal{L}^c$.

Now we can easily recover the other univariate polynomials $h_i(x_n)$ for all $i \in L$: by definition of L we have

$$l_i = x_i + \sum_{j \in L^c} \alpha_{i,j}x_j + \alpha_{i,n}x_n + \alpha_{i,0} \in \mathbb{L} \subset \mathbb{G}_{drl} \text{ with } \alpha_{i,j} \in \mathbb{K}.$$

Hence, the corresponding univariate polynomial $h_i(x_n)$ is simply computed by the formula:

$$h_i(x_n) = -\sum_{j \in L^c} \alpha_{i,j}h_j(x_n) - \alpha_{i,n}h_n(x_n) - \alpha_{i,0}.$$

Thus, we have reduced the number of linear systems \((\text{3c})\) to solve from $n - 1$ to $n - \#L - 1$.

We conclude this section by summarizing the algorithm to compute univariate polynomial representation in Algorithm 3. For a deterministic version of Algorithm 3 we refer the reader to Remark 1. In the next section, we discuss how to compute the multiplication matrices.

Algorithm 3: Univariate polynomial representation

Input: The multiplication matrix T_n and the DRL Gröbner basis \mathbb{G}_{drl} of an ideal I.

Output: Return the LEX Gröbner basis \mathbb{G}_{lex} of I or fail.

1. Compute T^2 for $i = 0, \ldots, \log_2 D$ and compute T^jr for $j = 0, \ldots, (2D - 1)$ using induction \((\text{3a})\).
2. Deduce the linearly recurrent sequence S and the Hankel matrix H.
3. If $\deg(h_n) = D$ then
 4. Let $L^c = \{j \in \{1, \ldots, n - 1\}$ such that $NF_{drl}(x_j) = x_j\}$ and $L = \{1, \ldots, n - 1\}\setminus L^c$;
 5. For $j \in L^c$ do
 6. Deduce T_j1 and b_j then solve the structured linear system $Hc_j = b_j$;
 7. $h_j(x_n) := \sum_{i=0}^{D-1} c_{j,i}x_n^i$ where $c_{j,i}$ is the ith component of the vector c_j;
 8. For $j \in L$ do
 9. $h_j(x_n) := -\sum_{i \in L^c} \alpha_{j,i}h_i(x_n) - \alpha_{j,n}h_n(x_n) - \alpha_{j,0}$ where $\alpha_{j,i}$ is the ith coefficient of the linear form whose leading term is x_j;
 10. return $[x_1 - h_1(x_n), \ldots, x_{n-1} - h_{n-1}(x_n), h_n(x_n)]$;
 11. else return fail;

4 Multiplication matrices

4.1 The original algorithm in $O(nD^3)$

To compute the multiplication matrices, we need to perform the computation of the normal forms of all monomials $\epsilon_i x_j$ where $1 \leq i \leq D$ and $1 \leq j \leq n$.

Proposition 1 (\cite{21}). Let $F = \{\epsilon_i x_j | 1 \leq i \leq D, 1 \leq j \leq n\} \setminus B$ be the frontier of the ideal. Let $t = \epsilon_i x_j \in F$ then

1. either $t = \text{LT}_{drl}(g)$ for some $g \in \mathbb{G}_{drl}$ hence, $NF_{drl}(t) = t - g$;
2. or $t = x_k t'$ with $t' \in F$ and $\deg(t') < \deg(t)$. Hence, if $NF_{drl}(t') = \sum_{l=1}^{s} \alpha_l \epsilon_l$ with $\epsilon_s <_{drl} t'$, $NF_{drl}(t) = NF_{drl}(x_k NF_{drl}(t')) = \sum_{l=1}^{s} \alpha_l NF_{drl}(\epsilon_l x_k)$.
From this proposition, it is not difficult to see that the normal form of all the monomials $\epsilon_i x_j$ can be easily computed if we consider them in increasing order. Indeed, let $t = \epsilon_i x_j$ for some $i \in \{1, \ldots, D\}$ and $j \in \{1, \ldots, n\}$. Assume that we have already computed the normal form of all monomials less than t and of the form $\epsilon_j x_j$. If t is in B or is a leading term of a polynomial in $G_{d_{\text{dr1}}}$ then its normal form is trivially known. If t is of type (I) of Proposition [1] then $t = x_k t'$ with $t' <_{d_{\text{dr1}}} t$ hence $NF_{d_{\text{dr1}}}(t') = \sum_{i=1}^{D} \alpha_i NF_{d_{\text{dr1}}}(x_k \epsilon_i t)$ with $x_k \epsilon_i t <_{d_{\text{dr1}}} x_k t' = t$ for all $l = 1, \ldots, s$. Thus the normal forms of $x_k \epsilon_i t$ are known for all $l = 1, \ldots, s$ and we can compute $NF_{d_{\text{dr1}}}(t)$ in D^2 arithmetic operations. This yields the algorithm proposed in [21]. However, since the cardinal of the frontier F can be bounded by nD the overall complexity is $O(nD^3)$ arithmetic operations.

4.2 Computing the multiplication matrices using fast linear algebra

Another way to compute the normal form of a term t is to find the unique polynomial in the ideal whose leading term is t and the other terms correspond to monomials in B. Hence, to compute the multiplication matrices, we look for the polynomial $t - NF_{d_{\text{dr1}}}(t)$ for any t in the frontier F (see Proposition [1]). Therefore, we proceed in two steps. First, we construct a polynomial in the ideal whose leading term is t. If t is the leading term of a polynomial g in $G_{d_{\text{dr1}}}$ then the desired polynomial is g itself. Otherwise, t is of type (II) of Proposition [1] and $t = x_k t'$ with $t' \in F$ and $\deg(t') < \deg(t)$. We will proceed degree by degree so that we can assume we know a polynomial f' in the ideal whose leading term is t'; then the desired polynomial is $f = x_k f'$. Next, once we have all the polynomials f with all possible leading terms t of some degree d, we can recover the canonical form $t - NF_{d_{\text{dr1}}}(t)$ by reducing f with respect to the other polynomials whose leading terms are less than t.

Following the idea presented above, we can now describe Algorithm 4 for computing all the multiplication matrices T_i. Assuming that F is sorted in increasing order w.r.t. $<_{d_{\text{dr1}}}$, we define the linear map ϕ:

$$
\phi : \left\{ \begin{array}{c}
\mathbb{K}^D \\
\sum_{i=1}^{D} \alpha_i \epsilon_i + \sum_{j=1}^{\#F} \beta_j t_j
\end{array} \rightarrow \left(\beta_{\#F}, \ldots, \beta_1, \alpha_1, \ldots, \alpha_D \right) \right\}
$$

Let M be a row indexed matrix by all the monomials in F. Let m be a monomial in F and i the position of m in F, $M[m]$ denotes the row of M of index m i.e. the $(\#F - i + 1)^{th}$ row of M containing a polynomial of leading term m. If T is a matrix, $T[* , i]$ denotes the i^{th} column of T.

Proposition 2. Algorithm 4 is correct.

Proof. The key point of the algorithm is to ensure that for each monomial in F its normal form is computed and stored in NF before we use it. We will prove the following loop invariant for all d in $\{d_{\text{min}}, \ldots, d_{\text{max}}\}$:

Loop invariant: at the end of step d, all the normal forms of the monomials of degree d in the frontier F are computed and are stored in NF. Moreover, the m^{th} row of the matrix M contains $\phi(m - NF_{d_{\text{dr1}}}(m))$ for any monomial $m \in F_d$.

First, we assume that $d = d_{\text{min}}$. Then, each monomial t of degree d in F is of type (I) of Proposition [1]. Indeed, if t was of type (II) then there exists t' in F of degree $d - 1$ which divides t. This is impossible because $t' \in F_{d_{\text{min}} - 1} = \emptyset$. Hence, the normal form of t for $t \in F_{d_{\text{min}}}$, is known and $M[t]$ contains $\phi(g)$ with g the unique element of $G_{d_{\text{dr1}}}$ such that $LT_{d_{\text{dr1}}}(g) = t$. Hence, $M[t] = \phi(g) = \phi(t - NF_{d_{\text{dr1}}}(t))$. Moreover, since $G_{d_{\text{dr1}}}$ is a reduced Gröbner basis, the matrix M is already in reduced row echelon form. Thus, the loop in Line 9 updates NFt for all $t \in F_d$.

Let $d > d_{\text{min}}$, we now assume that the loop invariant is true for any degree less than d. For all $t \in F_d$ the i^{th} row of M contains either $\phi(t - NF_{d_{\text{dr1}}}(t))$ if t is of type (I) or $\phi(t - x_k NF[t'])$ if t is of type (II).
The purpose of this section is to analyze the asymptotic complexity of Algorithm 3 and Algorithm 4 when polynomial equations with fixed degree: the tame case.

Since \(\lambda \deg(f M) \leq \deg(NF) \), we can establish the first main result of this paper.

Moreover, since each row of the matrix \(M \) contains polynomial in the ideal \(\langle G_{drl} \rangle \) after the computation of the row echelon form, the rows of the matrix \(M \) contain also polynomials in \(\langle G_{drl} \rangle \) being linear combination of the previous polynomials. Hence, after the computation of the row echelon form of \(M \), the row \(M[t] \) is equal to \(\phi(t - NF_{drl}(t)) \).

By induction, this finishes the proof of the loop invariant and then of the correctness of Algorithm 3. \(\square \)

5 Polynomial equations with fixed degree: the tame case

The purpose of this section is to analyze the asymptotic complexity of Algorithm 3 and Algorithm 4 when the degrees of the equations of the input system are uniformly bounded by a fixed integer \(d > 1 \) and to establish the first main result of this paper.
5.1 General Complexity analysis

We first analyse Algorithm 3 to compute the univariate polynomial representation given the last multiplication matrix.

Proposition 3. Given the multiplication matrix T_n and the DRL Gröbner basis G_{drl} of an ideal in Shape Position, its LEX Gröbner basis can be probabilistically computed in $O\left(\log_2(D)\left(D^{\omega} + n \log_2(D)D\right)\right)$ where D is the number of solutions. Expressed with the input parameters of the system to solve the complexity is $O(nd^{e^m})$ where $d > 1$ is a (fixed) bound on the degree of the input polynomials.

Proof. As usual $T = T_n^t$ is the transpose of T_n. Using the induction (3a), the vectors $T^j \mathbf{r}$ can be computed for all $j = 0, \ldots, (2D - 1)$ in $O(\log_2(D)D^\omega)$ field operations. Then the linear recurrent sequence S and the matrix \mathcal{H} can be deduced with no cost. The Berlekamp-Massey algorithm compute the minimal polynomial of S in $O(D \log_2^2(D))$ field operations [3][28].

As defined in Section 3.2.2 $\mathcal{L} = \{j \in \{1, \ldots, n - 1\} \text{ such that } \text{NF}_{drl}(x_j) \neq x_j\}$ and $\mathcal{L}^c = \{1, \ldots, n - 1\} \setminus \mathcal{L}$. The right hand sides of the linear systems \mathbf{b}_i can be computed without field operations when $i \in \mathcal{L}^c$. Since the matrix \mathcal{H} is a non singular Hankel matrix, the $\#\mathcal{L}^c$ linear systems (3c) can be solved in $O(\#\mathcal{L}^c \log_2^2(D)D) = O(n \log_2^2(D)D)$ field operations. Then, to recover all the $h_i(x_n)$ for $i \in \mathcal{L}$ we perform $O(\#\mathcal{L} \#\mathcal{L}^c D) = O(n^2D)$ multiplications and additions in \mathbb{K}. Since the Bézout bound allows to bound D by d^n with d a fixed integer we have $\log_2(D) \leq n \log_2(d)$ and the arithmetic complexity of Algorithm 3 is $O(\log_2(D)(D^{\omega} + n \log_2(D)D))$ which can be expressed in terms of d and n as $O(d^{e^m})$.

Note that the deterministic version, mentioned in Remark 1 have a complexity in $O(\log_2(D)D^{\omega} + D^2(n + \log_2(D)\log_2(\log_2(D))))$ arithmetic operations, thanks to induction (3a) and section 3.2.2 in [22]. This deterministic version computes the LEX Gröbner basis of the radical of the ideal in input when the ideal is in Shape Position. In our case, this is not restricting since in Problem 1 we assume that all the roots of the system are simple which is equivalent to say that the ideal generated by the polynomial is radical.

Proposition 4. Let T_n be the multiplication matrix and G_{drl} be the DRL Gröbner basis of a radical ideal \mathcal{I} in Shape Position. There is a deterministic algorithm which computes the LEX Gröbner basis of \mathcal{I} in $O(\log_2(D)D^{\omega} + D^2(n + \log_2(D)\log_2(\log_2(D))))$ (or in $O(nd^{e^m})$) arithmetic operations in \mathbb{K}.

Now, to complete the first algorithm, we deal with the complexity of Algorithm 4 to compute the multiplication matrices. Note that in proposition 3 and 4 only the last matrix T_n is needed. Before to consider the complexity of Algorithm 4, we first discuss about the complexity of computing B and F.

Lemma 2. Given G_{drl} (resp. B) the construction of B (resp. F) requires at most $O(n^3D^2)$ (resp. $O(nD^2 + n^2D)$) elementary operations which can be decreased to $O(nD)$ (resp. $O(n^2D)$) elementary operations if a hash table is used.

Proof. It is well known that the canonical basis B can be computed in polynomial time (but no arithmetic operations). Nevertheless, in order to be self contained we describe an elementary algorithm to compute B. We start with the monomial 1 and we multiply it by all the variables x_i which gives n new monomials to consider. If the new monomials are not divisible by a leading term of a polynomial in G_{drl} then we keep it otherwise we discard it. At each step we multiply by the variables x_i only the monomials of highest degree that we have kept and we proceed until the step where all the new monomials are discarded. Hence, we have to test the irreducibility of all the elements in $F \cup B$ whose total number is bounded by $(n + 1)D$. Since $\text{LT}_{drl}(G_{drl}) \subset F$ we can bound the number of elements of G_{drl} by nD. Therefore, to compute B we have to test the divisibility of $(n + 1)D$ monomials by at most nD monomials. Hence, the construction of B can be done in $O(n^3D^2)$ elementary operations. Note that by using a hash table and assuming we have
no memory limit, for each monomial we can test its divisibility by a leading term of polynomials in \mathbb{G}_{drl} in $O(1)$ operations. In that case B can be constructed in $O(nD)$ elementary operations.

From B, the construction of F requires nD monomials multiplications i.e. n^2D additions of integers. Moreover, removing B of F can be done by testing if $(n + 1)D$ monomials are in B in at most $O(nD^2)$ elementary operations which can be decreased to $O(nD)$ if we use a hash table.

Now we seen how constructing B and F, the complexity of Algorithm 4 is treated in the following proposition.

Proposition 5. Given the DRL Gröbner basis \mathbb{G}_{drl} of an ideal, we can compute all the multiplication matrices in $O((d_{\text{max}} - d_{\text{min}})n^2D^\omega)$ (or in $O((d_{\text{max}} - d_{\text{min}})n^\omega d^{2n})$) arithmetic operations in \mathbb{K} where d_{max} (resp. d_{min}) is the maximal (resp. the minimal) degree of all the polynomials in \mathbb{G}_{drl}.

Proof. Algorithm 4 computes all the multiplication matrices incrementally degree by degree. The frontier F can be written as the union of disjoint sets $F_\delta = \{t \in F \mid \deg(t) = \delta\}$ so that we define $s_\delta := \#F_\delta$ and $S_\delta := s_{d_{\text{min}}} + \cdots + s_\delta$. The cost of the loop at Line 4 is, at each step, given by the complexity of computing the reduced row echelon form of M. In degree δ the shape of the matrix M is depicted on Figure 1 where $\text{Id}(S_{\delta - 1})$ is the $S_{\delta - 1} \times S_{\delta - 1}$ identity matrix, $0(S_{\delta - 1})$ is the $S_{\delta - 1} \times S_{\delta}$ zero matrix, T is a $s_{\delta} \times s_{\delta}$ upper triangular matrix and B, C, D are dense matrices of respective size $s_{\delta} \times S_{\delta - 1}, s_{\delta} \times D, S_{\delta - 1} \times D$.

![Figure 1: Shape of the matrix M of Algorithm 4](image)

Consequently the reduced row echelon form of M can be obtained from the following formula:

$$\text{ReducedRowEchelonForm}(M) = \begin{bmatrix} \text{Id}(S_\delta) & T^{-1}(C - BD) & \cdots \\ & & \cdots \\ & & \cdots \\ & & \cdots \end{bmatrix}.$$

Since $s_\delta \leq S_{\delta} \leq S_{d_{\text{max}}} \leq nD$ we can bound the complexity of computing the reduced row echelon form of M by $O(n^2D^\omega)$. From Lemma 2 the costs of the construction of B and F are negligible in comparison to the cost of loop in Line 4 which therefore gives the complexity of Algorithm 4 $O((d_{\text{max}} - d_{\text{min}})n^\omega d^{2n})$ arithmetic operations. Since $D \leq d^n$, this complexity can be written as $O((d_{\text{max}} - d_{\text{min}})n^\omega d^{2n})$.

5.2 Complexity for regular systems

Regular systems form an important family of polynomial systems. Actually, the complexity of computing a Gröbner basis of a regular system is well understood. Since the property of being regular is a generic property this also the typical behavior of polynomial systems.

Definition 4. A sequence of non zero homogeneous polynomials $(f_1, \ldots, f_m) \in k^m$ is regular if for all $i = 1, \ldots, m - 1$, $f_{i + 1}$ does not divide 0 in $k / (f_1, \ldots, f_i)$. A sequence of non zero affine polynomials is regular if the sequence (f_1^h, \ldots, f_m^h) is regular where f_i^h is the homogeneous part of highest degree of f_i.

14
For regular systems we can bound accurately the values of d_{max} which is the maximal degree of G_{drl} and we can prove the first main result of this paper.

Theorem 5.1. Let $S = \{f_1, \ldots, f_n\}$ be a polynomial system generating a radical ideal admitting a LEX Gröbner basis in Shape Position. Assume that (f_1, \ldots, f_n) is a regular sequence of polynomials whose degrees are uniformly bounded by a fixed integer d i.e. $\deg(f_i) \leq d$ for $i = 1, \ldots, n$. The univariate polynomial representation of all the solutions of S can be computed using a deterministic algorithm in $O(nd^{\omega_n} + (dn^{\omega+1} + \log_2(D))D^{\omega})$ arithmetic operations in \mathbb{K}.

Proof. For regular systems d_{max} can be bounded by the Macaulay bound [1][34]: $d_{\text{max}} \leq \sum_{i=1}^{n} (\deg(f_i) - 1) + 1 \leq n(d - 1) + 1$. Given the system S the complexity of computing the DRL Gröbner basis of $\langle S \rangle$ is bounded by [1]:

$$O\left(n\left(n + d_{\text{max}}\right)^{\omega}\right) = O\left(n\left(nd + 1\right)^{\omega}\right) = O(nd^{\omega_n})$$

arithmetic operations.

From this DRL Gröbner basis, according to Proposition 5 the multiplication matrix T_n can be computed in $O(dn^{\omega+1}D^\omega)$ arithmetic operations.

Finally, from T_n and the DRL Gröbner basis, thanks to Proposition 4 the univariate polynomial representation can be computed by a deterministic algorithm in $O(\log_2(D)D^\omega + D^2(n + \log_2(D)\log_2(\log_2(D))))$ arithmetic operations. Since, F_4 [17], F_5 [18] and Algorithm 4 are deterministic algorithms this finishes the proof.

In particular, a generic system is regular. Let $d_i = \deg(f_i)$ for all $i = 1, \ldots, n$. Since the Bézout bound allows to bound the number of solutions D by $\prod_{i=1}^{n} d_i \leq d^n$ and since this bound is generically reached, we have generically that $D = \prod_{i=1}^{n} d_i \leq d^n$ and we get the following corollary.

Corollary 1. Let \mathbb{K} be the rational field \mathbb{Q} or a finite field \mathbb{F}_q. Let $S = \{f_1, \ldots, f_n\} \subset \mathbb{K}[x_1, \ldots, x_n]$ be a generic polynomial system generating an ideal $I = \langle S \rangle$ of degree D. If I admits a LEX Gröbner basis in Shape Position and if the degree of each polynomial in S is uniformly bounded by a fixed integer d then there exists a deterministic algorithm which computes the univariate polynomial representation of the roots of S in $\tilde{O}(d^{\omega_n}) = \tilde{O}(D^\omega)$ arithmetic operations where the notation \tilde{O} means that we neglect logarithmic factors in D and polynomial factors in n.

In the next section, we study a first step towards the generalization of Theorem 5.1 to polynomial systems with equations of non fixed degree. More precisely, we are going to discuss what happens if one polynomial have a non fixed degree i.e. its degree depends on a parameter (for instance the number of variables). In this case, Theorem 5.1 does not apply but we present other arguments in order to obtain a similar complexity results for computing G_{lex} given G_{drl} and new ideas for its generalization.

6 A worst case ultimately not so bad

We consider, for instance, the following pathological case: $\deg(h_1) = \cdots = \deg(h_{n-1}) = 2$ and $\deg(h_n) = 2^n$. Then, $D = 2^{2n-1}$, $d_{\text{min}} = 2$ and $d_{\text{max}} = 2^n + n - 1$. In this context, the complexity of computing G_{lex} given G_{drl} seems to be in $O(\log_2(D)D^{\omega+\frac{1}{2}})$ arithmetic operations. However, we will show that an adaptation of Algorithm 4 allows to decrease this complexity.

In [38], Moreno-Socias studied the basis of the residue class ring \mathbb{A}/I, w.r.t. the DRL ordering, for generic ideals. In particular, he shows that when the smallest variable x_n is in abscissa any section of the stairs of I has steps of height one and of depth two. That is to say, for any variable x_i with $i < n$ and for all
instantiations of the other variables (\{x_1, \ldots, x_{n-1}\} \setminus \{x_i\}) the associated section of the stairs of \(\mathcal{I}\) has the shape in Figure 2.

This shape is summarized in Proposition 6.

Proposition 6 (Moreno-Socias [38]). Let \(\tilde{B}_i = \{m = x^{\alpha_1} \cdots x_n^{\alpha_{n-1}} | mx^n_i \in B\}\). Let \(\delta = \sum_{i=1}^n (\deg(h_i) - 1)\), \(\delta^* = \sum_{i=1}^{n-1} (\deg(h_i) - 1)\) and \(\sigma = \min(\delta^*, \lfloor \frac{\delta}{2} \rfloor)\). Let \(\mu = \delta - 2\sigma\), then

1. \(\tilde{B}_0 = \cdots = \tilde{B}_\mu\) and \(\tilde{B}_i = \tilde{B}_{i+1}\) for \(\mu < i < \delta\) and \(i \neq \delta\) mod 2;

2. The leading term of polynomials in \(G_{drl}\) of degree 0 in \(x_n\) have degree at most \(\sigma + 1 = \tilde{\sigma}\);

3. The leading term of polynomials in \(G_{drl}\) of degree \(\alpha\) in \(x_n\) with \(\mu < \alpha \leq \delta + 1\) with \(\alpha \neq \delta\) mod 2 are all of total degree \(d + \alpha\) where \(d = \max(\deg(m) | m \in \tilde{B}_{n-1})\). Moreover, all these leading terms are exactly given by \(t = mx^{\alpha}_n\) for all \(m \in \tilde{B}_{\alpha-1}\) of degree \(d\);

4. There is no leading term of polynomials in \(G_{drl}\) of degree 1, \ldots, \(\mu\) in \(x_n\) or of degree \(\alpha\) in \(x_n\) with \(\alpha > \delta + 1\) or \(\mu \leq \alpha \leq \delta\) and \(\alpha \equiv \delta\) mod 2.

In our case, we have \(d_{\text{max}} = \delta + 1, \delta^* = n - 1, \delta = 2^n + n - 2, \sigma = n - 1\) and \(\mu = 2^n - n\). We can note that in this particular case, \(\mu\) is very large which implies that a large part of the monomials of the form \(\epsilon_i x_j\) are actually in \(B\). We will show that in Algorithm 4 instead of computing the loop in Line 3 for \(\delta = d_{\text{min}}, \ldots, d_{\text{max}}\) we can perform it only on restricted subset \(d = d_{\text{min}}, \sigma(n-1)+1, \mu+1, \ldots, d_{\text{max}}\). By consequence, the complexity of computing \(G_{\text{lex}}\) given \(G_{drl}\) will be in \(O((d_{\text{max}} - \mu + \sigma(n-1) - d_{\text{min}})n^\omega D^\omega) = O(\log_2^{\omega+2}(D)D^\omega)\) with \(d_{\text{max}} - \mu + \sigma(n-1) - d_{\text{min}} = n^2 - 2 \sim \log_2^3(D)\).

Lemma 3. Given the normal form of all monomials in \(F\) of degree less or equal to \(\sigma(n-1) + 1\) we can compute all the normal forms of all monomials in \(F\) of degree less or equal than \(\mu\) in less than \(O(nD^2)\) arithmetic operations.

Suppose that we know the normal form of the monomials of the forms \(\epsilon_i x_j\) of degree less than \(\mu\) which are not divisible by \(x_n\). From these normal forms, the idea of the proof is to show that the normal form of all the monomials of the form \(\epsilon_i x_j\) of degree less than \(\mu\) and of degree \(\alpha_n > 0\) in \(x_n\) is given by \(x_n^{\alpha_n} \text{NF}_{drl}(t)\) where \(\text{NF}_{drl}(t)\) is assumed to be known.

Proof. Let \(t \in F\) of degree less or equal to \(\mu\). First, assume that \(x_n\) does not divide \(t\). As \(\mathcal{I}\) is zero dimensional, there exists \(\eta_1, \ldots, \eta_{n-1} \in \mathbb{N}\) such that \(x_n^{\eta_i}\) is a leading term of a polynomial in \(G_{drl}\). Moreover, from Proposition 6 \(\eta_i \leq \tilde{\sigma}\). Hence, for all \(\epsilon \in \tilde{B}_0, \deg(\epsilon) \leq \sigma(n-1)\). The monomials in \(F\) not divisible by
In this section, in order to obtain our main result, we consider the result of Theorem 5.1 to polynomial systems whose equations have non fixed degree. Computed very efficiently, the impact of such a result is that there exists a Las Vegas algorithm extending i.e. thanks to the study of the stairs, is denoted \(E \) the form that for generic ideals, i.e. such that all monomials \(n \) of the form \(t \) with \(e \in B \). Suppose that \(i = n \) hence, \(\frac{1}{x_n} = e = x_n^{-1}t' \in (G_{drl}) \) which is impossible. Thus, \(i \neq n \) and we have, \(t' = \frac{1}{x_n} = x_i e' \in F \) with \(e' = \frac{1}{x_n} \in B \). Therefore, from the first part of this proof, \(NF_{drl}(t') = \sum_{i=1}^{s} \alpha_i e_i \in E \) is known. Finally, \(NF_{drl}(t) = \sum_{i=1}^{s} \alpha_i \cdot NF_{drl}(x_n^{\alpha_i} e_i) \) with \(\deg(x_n^{\alpha_i} e_i) \leq \mu \). Let \(k_i \) be such that \(x_n^{k_i} | e_i \) and \(x_n^{k_i + 1} \nmid e_i \) as \(B_{k_i} = B_{k_i + 1} \) then \(x_n^{\alpha_i} e_i \in B \) and \(NF_{drl}(t) = \sum_{i=1}^{s} \alpha_i x_n^{\alpha_i} e_i \).

By consequence, computing the normal form of \(t \) can be done in less than \(D \) arithmetic operations. As usual, we can bound the size of \(F \) by \(nD \) which finishes the proof.

One can notice that Algorithm 3 – which computes univariate polynomial representation – takes as input only the multiplication matrix by the smallest variable. Thus in the proof of Theorem 5.1 we did not fully take advantage of this particularity. Hence, the next section is devoted to study if this matrix can be computed more efficiently than computing all the multiplication matrices. By studying the structure of the basis of the \(\mathbb{K} \)-vector space \(A/I \) we will show that, up to a linear change of variables, \(T_n \) can be deduced from \(G_{drl} \).

In the previous results, the algorithm restricting the order of magnitude of the degrees of the equations is Algorithm 4 to compute the multiplication matrices. Since, we need only \(T_n \) which can be computed very efficiently, the impact of such a result is that there exists a Las Vegas algorithm extending the result of Theorem 5.1 to polynomial systems whose equations have non fixed degree.

7 Polynomial equations with non-fixed degree: the wild case

In this section, in order to obtain our main result, we consider initial and generic ideals. The initial ideal of \(\mathcal{I} \), denoted \(in_<(\mathcal{I}) \), is defined by \(in_<(\mathcal{I}) = \{ LT_<(f) \mid f \in \mathcal{I} \} \). A minimal set of generators of \(in_<(\mathcal{I}) \) is denoted \(E(\mathcal{I}) \), and is given by the leading terms of the polynomials in the Gröbner basis of \(\mathcal{I} \) w.r.t. the monomial ordering \(<\). To compute the multiplication matrix \(T_n \) we need to compute the normal forms of all monomials \(e_i x_n \) for \(i = 1, \ldots, D \) with \(e_i \in B \). As mentioned in Section 4, a monomial of the form \(e_i x_n \) can be either in \(B \) or in \(E(\mathcal{I}) \) or in \(in_<(\mathcal{I}) \setminus E(\mathcal{I}) \). As previously shown, the difficulty to compute \(T_n \) lies in the computation of the normal forms of monomials \(e_i x_n \) that are in \(in_<(\mathcal{I}) \setminus E(\mathcal{I}) \). In this section, thanks to the study of the stairs, i.e. \(B \), of generic ideals by Moreno-Socias, see Section 5, we first show that for generic ideals, i.e. ideals generated by generic systems (as defined in Section 5.2), all monomials of the form \(e_i x_n \) are in \(B \) or in \(E(\mathcal{I}) \). Hence, the multiplication matrix \(T_n \) can be computed very efficiently. Then, we show that, up to a linear change of variables, this result can be extended to any ideal. According to these results, we finally propose an algorithm for solving the PoSSo problem whose complexity allows to obtain the second main result of this paper.

7.1 Reading directly \(T_n \) from the Gröbner basis

In the sequel, the arithmetic operations will be the addition or the multiplication of two operands in \(\mathbb{K} \) that are different from \(\pm 1 \) and \(0 \). In particular we do not consider the change of sign as an arithmetic operation.

Proposition 7. Let \(\mathcal{I} \) be a generic ideal. Let \(t \) be a monomial in \(E(\mathcal{I}) \) i.e. a leading term of a polynomial in the DRL Gröbner basis of \(\mathcal{I} \). If \(x_n \) divides \(t \) then for all \(k \in \{1, \ldots, n - 1\} \), \(\frac{x_n^k}{x_n} \in in_{drl}(\mathcal{I}) \).

Proof. This result is deduced from the shape of the stairs of \(\mathcal{I} \) (see Figure 2 for a representation in dimension 2). Let \(t = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \) be a leading term of a polynomial in \(G_{drl} \) divisible by \(x_n \) i.e. \(\alpha_n > 0 \) and \(m = x_1^{\alpha_1} \cdots x_{n-1}^{\alpha_{n-1}} \). We use the same notations as in Proposition 6.
From Proposition 6 item (4), since \(t \in E(\mathcal{I}) \) and \(\alpha_n > 0 \) we have \(\alpha_n > \mu \) and \(\alpha_n \not\equiv \delta \mod 2 \). Then, from Proposition 6 item (3), \(\deg(m) \) is the maximal degree reached by the monomials in \(\tilde{B}_{\alpha_{n-1}} \). Thus \(x_k m \not\in \tilde{B}_{\alpha_{n-1}} \) for all \(k \in \{1, \ldots, n-1\} \). As a consequence, for all \(k \in \{1, \ldots, n-1\} \) we have \(\frac{x_k \alpha_k}{x_n} \in \text{in}_{drl}(\mathcal{I}) \). □

Consequently, from the previous proposition, we obtain the following result.

Theorem 7.1. Given \(\mathcal{G}_{drl} \) the DRL Gröbner basis of a generic ideal \(\mathcal{I} \), the multiplication matrix \(T_n \) can be read from \(\mathcal{G}_{drl} \) with no arithmetic operation.

Proof. Suppose that there exists \(i \in \{1, \ldots, D\} \) such that \(t = x_n \epsilon_i \) is of type \(III \). Hence, \(t = m \ \text{LT}_{drl}(g) \) for some \(g \in \mathcal{G}_{drl} \) and \(\deg(m) > 1 \) with \(x_n \nmid m \) (otherwise \(\epsilon_i \not\in B \)). Then, there exists \(k \in \{1, \ldots, n-1\} \) such that \(x_k \mid m \). By consequence, from Proposition 7 we have \(\epsilon_i = \frac{m}{x_k} \cdot \text{LT}_{drl}(g) \in \text{in}_{drl}(\mathcal{I}) \) which yields a contradiction. Thus, all monomials \(t = x_n \epsilon_i \) are either in \(B \) or in \(E(\mathcal{I}) \) and their normal forms are known and given either by \(t \) (if \(t \in B \)) or by changing the sign of some polynomial \(g \in \mathcal{G}_{drl} \) and removing its leading term. Note that by using a linked list representation (for instance), removing the leading term of a polynomial does not require arithmetic operation. □

Thanks to the previous theorem, Algorithm 3 can be used to compute the LEX Gröbner basis of a generic ideal:

Corollary 2. Let \(\mathcal{I} \) be a generic ideal in Shape Position. From the DRL Gröbner basis \(\mathcal{G}_{drl} \) of \(\mathcal{I} \), its LEX Gröbner basis \(\mathcal{G}_{lex} \) can be computed in \(O(\log_2(D)(D^\omega + n \log_2(D)D)) \) arithmetic operations with a probabilistic algorithm or \(O(\log_2(D)D^\omega + D^2(n + \log_2(D)\log_2(\log_2(D)))) \) arithmetic operations with a deterministic algorithm.

However, polynomial systems coming from applications are usually not generic. Nevertheless, this difficulty can be bypassed by applying a linear change of variables. Let \(g \in \text{GL}(\mathbb{K}, n) \) the ideal \(g \cdot \mathcal{I} \) is defined as follows \(g \cdot \mathcal{I} = \{f(g \cdot X) \mid f \in \mathcal{I}\} \) where \(X \) is the vector \([x_1, \ldots, x_n] \). By studying the structure of the generic initial ideal of \(\mathcal{I} \) – that is to say, the initial ideal of \(g \cdot \mathcal{I} \) for a generic choice of \(g \) – we will show that results of Proposition 7 and Theorem 7.1 can be generalized to non generic ideals, up to a random linear change of variables. Indeed, in [24] Galligo shows that for the characteristic zero fields, the generic initial ideal of any ideal satisfies a more general property than Proposition 7. Later, Pardue [41] extends this result to the fields of positive characteristic.

Definition 5. Let \(\mathbb{K} \) be an infinite field and \(\mathcal{I} \) be a homogeneous ideal of \(\mathbb{K}[x_1, \ldots, x_n] \). There exists a Zariski open set \(U \subset \text{GL}([\mathbb{K}, n]) \) and a monomial ideal \(\mathcal{J} \) such that \(\text{in}_{drl}(g \cdot \mathcal{I}) = \mathcal{J} \) for all \(g \in U \). The generic initial ideal of \(\mathcal{I} \) is denoted \(\text{Gin}(\mathcal{I}) \) and is defined by \(\mathcal{J} \).

The next result, is a direct consequence of [5, 24, 41] and summarized in [16, p.351–358]. This result allows to extend, up to a linear change of variables, Proposition 7 to non generic ideals.

Theorem 7.2. Let \(\mathbb{K} \) be an infinite field of characteristic \(p \geq 0 \). Let \(\mathcal{I} \) be a homogeneous ideal of \(\mathbb{K}[x_1, \ldots, x_n] \) and \(\mathcal{J} = \text{Gin}(\mathcal{I}) \). For the DRL ordering, for all generators \(m \) of \(\mathcal{J} \), if \(x_i^t \) divides \(m \) and \(x_i^{t+1} \) does not divide \(m \) then for all \(j < i \), the monomial \(\frac{x_j^t}{x_i^m} \) is in \(\mathcal{J} \) if \(t \equiv 0 \mod p \).

Let \(f = \sum_{i=0}^{d} f_i \) be an affine polynomial of degree \(d \) of \(\mathbb{K} \) where \(f_i \) is an homogeneous polynomial of degree \(i \). The homogeneous component of highest degree of \(f \), denoted \(f^h \), is the homogeneous polynomial \(f_d \). Let \(\mathcal{I} \) be an affine ideal i.e. generated by a sequence of affine polynomials. In the next proposition we highlight an homogeneous ideal having the same initial ideal than \(\mathcal{I} \). This allows to extend the result of Theorem 7.2 to affine ideals.
Proposition 8. Let $\mathcal{I} = \langle f_1, \ldots, f_s \rangle$ be an affine ideal. If (f_1, \ldots, f_s) is a regular sequence, then there exists a Zariski open set $U_a \subset \text{GL}(\mathbb{K}, n)$ such that for all $g \in U_a$, $E(g \cdot \mathcal{I}) = E(\text{Gin}(\mathcal{I}^h))$.

Proof. Let f be a polynomial. We denote by f^h the homogeneous component of highest degree of f and $f^a = f - f^h$. Let $t \in d_{\text{dr}}(\mathcal{I})$, there exists $f \in \mathcal{I}$ such that $\text{LT}_{\text{dr}}(f) = t$. Since, $f \in \mathcal{I}$ and (f^1_1, \ldots, f^h_s) is assumed to be a regular sequence then there exist $h_1, \ldots, h_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that $f = \sum_i h_i f_i = \sum_i h_i f^h_i + \sum_i h_i f^a_i$ with deg$(h_i f_i) \leq \deg(f)$ for all $i \in \{1, \ldots, s\}$ and there exists $j \in \{1, \ldots, s\}$ such that deg$(h_j f_j) = \deg(f)$. By consequence, $0 \neq \sum_i h_i f^h_i \in \mathcal{I}^h$ where \mathcal{I}^h is the ideal generated by $\{f^h_1, \ldots, f^h_s\}$ and $\text{LT}_{\text{dr}}(f) = \text{LT}_{\text{dr}}\left(\sum_i h_i f^h_i\right)$. Thus, $d_{\text{dr}}(\mathcal{I}) \subset d_{\text{dr}}(\mathcal{I}^h)$. It is straightforward that $d_{\text{dr}}(\mathcal{I}^h) \subset d_{\text{dr}}(\mathcal{I})$ hence $d_{\text{dr}}(\mathcal{I})^h = d_{\text{dr}}(\mathcal{I})$.

For all $g \in \text{GL}(\mathbb{K}, n)$, since g is invertible the sequence $(g \cdot f_1, \ldots, g \cdot f_s)$ is also regular. Indeed, if there exists $i \in \{1, \ldots, s\}$ such that $g \cdot f_i$ is a divisor of zero in $\mathbb{K}[x_1, \ldots, x_n]/\langle g \cdot f_1, \ldots, g \cdot f_i \rangle$ then f_i is a divisor of zero in $\mathbb{K}[x_1, \ldots, x_n]/\langle f_1, \ldots, f_i \rangle$. Hence, $d_{\text{dr}}(g \cdot \mathcal{I}) = d_{\text{dr}}\left((g \cdot \mathcal{I})^h\right)$.

Moreover, g is a linear change of variables thus it preserves the degree. Hence, for all $f \in \mathcal{I}$, we have $(g \cdot f)^h = g \cdot f^h$. Finally, let U_a be a Zariski open subset of $\text{GL}(\mathbb{K}, n)$ such that for all $g \in U_a$, we have the equality $d_{\text{dr}}(g \cdot \mathcal{I}^h) = \text{Gin}(\mathcal{I}^h)$. Thus, for all $g \in U_a$, we then have $d_{\text{dr}}(g \cdot \mathcal{I}) = d_{\text{dr}}\left((g \cdot \mathcal{I})^h\right) = d_{\text{dr}}(g \cdot \mathcal{I}^h) = \text{Gin}(\mathcal{I}^h)$.

Hence, from the previous proposition, for a random linear change of variables $g \in \text{GL}(\mathbb{K}, n)$ we have $d_{\text{dr}}(g \cdot \mathcal{I}) = \text{Gin}(\mathcal{I}^h)$. Thus from Theorem 7.2, for all generators m of $d_{\text{dr}}(g \cdot \mathcal{I})$ (i.e. m is a leading term of a polynomial in the DRL Gröbner basis of $g \cdot \mathcal{I}$) if x^m_n divides m and x^{m+1}_n does not divide m then for all $j < n$ we have $\frac{x^m_j}{x^m_n}m \in d_{\text{dr}}(g \cdot \mathcal{I})$ if $t \neq 0 \mod p$. Therefore, in the same way as for generic ideals, the multiplication matrix T_n of $g \cdot \mathcal{I}$ can be read from its DRL Gröbner basis. This is summarized in the following corollary.

Corollary 3. Let \mathbb{K} be an infinite field of characteristic $p \geq 0$. Let \mathcal{I} be a radical ideal of $\mathbb{K}[x_1, \ldots, x_n]$. There exists a Zariski open subset U of $\text{GL}(\mathbb{K}, n)$ such that for all $g \in U$, the arithmetic complexity of computing the multiplication matrix by x_n of $g \cdot \mathcal{I}$ given its DRL Gröbner basis can be done without arithmetic operation. If $p > 0$ this is true only if deg$_{x_n}(m) \neq 0 \mod p$ for all $m \in E(g \cdot \mathcal{I})$. Consequently, under the same hypotheses, computing the LEX Gröbner basis of $g \cdot \mathcal{I}$ given its DRL Gröbner basis can be bounded by $\mathcal{O}(\log_2(D)(D^\omega + n \log_2(D)D))$ arithmetic operations.

Following this result, we propose another algorithm for polynomial systems solving.

7.2 Another algorithm for polynomial systems solving

Let $S \subset \mathbb{K}[x_1, \ldots, x_n]$ be a polynomial system generating a radical ideal denoted \mathcal{I}. For any $g \in \text{GL}(\mathbb{K}, n)$, from the solutions of $g \cdot \mathcal{I}$ one can easily recover the solutions of \mathcal{I}. Let U be the Zariski open subset of $\text{GL}(\mathbb{K}, n)$ such that for all $g \in U$, $d_{\text{dr}}(g \cdot \mathcal{I}) = \text{Gin}(\mathcal{I}^h)$. If g is chosen in U then the multiplication matrix T_n for $i = 1, \ldots, D$ are in B or in $E(g \cdot \mathcal{I})$ and their normal are easily known. Moreover, as mentioned in Section 2, there exists U' a the Zariski open subset of $\text{GL}(\mathbb{K}, n)$ such that for all $g \in U'$ the ideal $g \cdot \mathcal{I}$ admits a LEX Gröbner basis in Shape Position. If g is also chosen in U' then we can use Algorithm 3 to compute the LEX Gröbner basis of $g \cdot \mathcal{I}$. Hence, we propose in Algorithm 5 a Las Vegas algorithm to solve the PoSSo problem. A Las Vegas algorithm is a randomized algorithm whose output (which can be fail) is always correct. The end of this section is devoted to evaluate its complexity and its probability of failure i.e. when the algorithm returns fail.

Algorithm 5 succeeds if the three following conditions are satisfied.
Algorithm 5: Another algorithm for PoSSo.

Input : A polynomial system \(S \subset \mathbb{K}[x_1, \ldots, x_n] \) generating a radical ideal.

Output: \(g \) in \(\text{GL}(\mathbb{K}, n) \) and the LEX Gröbner basis of \(\langle g \cdot S \rangle \) i.e. a univariate parametrization of the solutions of \(S \) or fail.

1. Choose randomly \(g \) in \(\text{GL}(\mathbb{K}, n) \);
2. Compute \(\mathcal{G}_{\text{drl}} \) the DRL Gröbner basis of \(g \cdot S \);
3. if \(T_n \) can be read from \(\mathcal{G}_{\text{drl}} \) then
 4. Extract \(T_n \) from \(\mathcal{G}_{\text{drl}} \);
 5. From \(T_n \) and \(\mathcal{G}_{\text{drl}} \) compute \(\mathcal{G}_{\text{lex}} \) using Algorithm 3;
 6. if Algorithm 3 succeeds then return \(g \) and \(\mathcal{G}_{\text{lex}} \);
 7. else return fail;
8. else return fail;

1. \(g \in \text{GL}(\mathbb{K}, n) \) is chosen in a non empty Zariski open set \(U' \) such that for all \(g \in U' \), \(g \cdot \mathcal{I} \) has a LEX Gröbner basis in Shape Position;

2. \(g \in \text{GL}(\mathbb{K}, n) \) is chosen in a non empty Zariski open set \(U \) such that for all \(g \in U \), \(\text{in}_{\text{drl}}(g \cdot \mathcal{I}) = \text{Gin}(\mathcal{I}^h) \);

3. \(p = 0 \) or \(p > 0 \) and for all \(m \in E(g \cdot \mathcal{I}) \), \(\deg_{x_n}(m) \neq 0 \mod p \).

The existence of the non empty Zariski open subset \(U' \) is proven in [26]. Conditions (1) and (2) are satisfied if \(g \in U \cap U' \). Since, \(U \) and \(U' \) are open and dense, \(U \cap U' \) is also a non empty Zariski open set.

7.2.1 Probability of failure of Algorithm 5

Usually, the coefficient field of the polynomials is the field of rational numbers or a finite field. For fields of characteristic zero, if \(g \) is chosen randomly then the probability that the condition (1) and (2) be satisfied is 1. By consequence, the probability of failure of Algorithm 5 in case of field of characteristic zero, is 0.

For finite fields \(\mathbb{F}_q \), the Schwartz-Zippel lemma [42, 47] allows to bound the probability that the conditions (1) and (2) do not be satisfied by \(\frac{d}{q} \) where \(d \) is the degree of the polynomial defining \(U \cap U' \). Thus, in order to bound this failure probability we recall briefly how are constructed \(U \) and \(U' \).

Construction of \(U' \). Let \(\mathcal{I} = \langle f_1, \ldots, f_n \rangle \) be a radical ideal of \(\mathbb{K}[x_1, \ldots, x_n] \). Since \(\mathcal{I} \) is radical, all its solutions are distinct. Therefore, let \(\{a_i = (a_{i,1}, \ldots, a_{i,n}) \in \mathbb{K}^n \mid f_j(a_1, \ldots, a_n) = 0, j = 1, \ldots, n \} \) be the set of solutions of \(\mathcal{I} \) (recall that its cardinality is \(D \)). Let \(g \) be a given matrix in \(\text{GL}(\mathbb{K}, n) \). We denote by \(v_i = (v_{i,1}, \ldots, v_{i,n}) \) the point obtained after transformation of \(a_i \) by \(g \), i.e \(v_i = g \cdot a_i^t \). To ensure that \(g \cdot \mathcal{I} \) admits a LEX Gröbner basis in Shape Position, \(g \) should be such that \(v_{i,n} \neq v_{j,n} \) for all couples of integers \((i, j) \) verifying \(1 \leq j < i \leq D \). Hence, let \(g = (g_{i,j}) \) be a \((n \times n) \) matrix of unknowns, the polynomial \(P_{U'} \) defining the Zariski open subset \(U' \) is then given as the determinant of the Vandermonde matrix associated to \(v_{i,n} \) for \(i = 1, \ldots, D \) where \(v_i = (v_{i,1}, \ldots, v_{i,n}) = g \cdot a_i^t \). Therefore, we know exactly the degree of \(P_{U'} \), which is \(\frac{D(D-1)}{2} \).

Construction of \(U \).The Zariski open subset \(U \) is constructed as the intersection of Zariski open subsets \(U_1, \ldots, U_{\delta} \) of \(\text{GL}(\mathbb{K}, n) \) where \(\delta \) is the maximum degree of the generators of \(\text{Gin}(\mathcal{I}^h) \). Let \(d \) be a fixed degree. Let \(\mathbb{K}[x_1, \ldots, x_n]_d = R_d \) be the set of homogeneous polynomials of degree \(d \) of \(\mathbb{K}[x_1, \ldots, x_n] \). Let
\{f_1, \ldots, f_t\}$ be a vector basis of $T^h_d = T^h \cap R_d$. Let $g = (g_{i,j})$ be a $(n \times n)$ matrix of unknowns and let M be a matrix representation of the map $T^h_d \rightarrow g \cdot T^h_d$ defined as follow:

$$M = (M_{i,j}) = \begin{pmatrix} m_1 & \cdots & m_N \\ \vdots & \ddots & \vdots \\ m_1 & \cdots & m_N \end{pmatrix} g \cdot f_i \quad \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix} g \cdot f_t$$

where $M_{i,j}$ is the coefficient of m_j in $g \cdot f_i$ and \{m_1, \ldots, m_N\} is the set of monomials in R_d. In \[5,6\], the polynomial P_{U_d} defining U_d is constructed as a particular minor of size t_d of M. Since each coefficient in M is a polynomial in $K[g_{1,1}, \ldots, g_{n,n}]$ of degree d, the degree of P_{U_d} is $d \cdot t_d$. Finally, since U_d is open and dense for all $d = 1, \ldots, \delta$ we deduce that $U = \cap_{d=1}^{\delta} U_d$ is a non empty Zariski open set whose defining polynomial, P_U, is of degree $\sum_{d=1}^{\delta} d \cdot t_d \leq \delta \sum_{i=1}^{t_d} t_d$. Moreover, $D = \dim_K(\mathbb{K}[x_1, \ldots, x_n]/T^h) = \sum_{d=0}^{\delta} \dim_K(R_d/T^h_d)$. Thus, $\sum_{d=0}^{\delta} \dim_K(I^h_d) = \sum_{d=0}^{\delta} \dim_K(R_d) - D = \binom{n+\delta}{n} - D$. By consequence, $\deg(P_U) \leq \delta \left(\binom{n+\delta}{n} - D \right)$.

For ideals generated by a regular sequence (f_1, \ldots, f_n), thanks to the Macaulay’s bound, δ can be bounded by $\sum_{i=1}^{n}(\deg(f_i) - 1) + 1$. Note that the Macaulay’s bound gives also a bound on $\deg_{x_{n}}(m)$ for all $m \in E(g \cdot \mathcal{I})$. To conclude, if $p > \sum_{i=1}^{n}(\deg(f_i) - 1) + 1$ then condition (3) is satisfied and for any p the probability that conditions (1) and (2) be satisfied is greater than

$$1 - \frac{1}{q} \left(\frac{D(D-1)}{2} + \left(\sum_{i=1}^{n}(\deg(f_i) - 1) + 1 \right) \left(\binom{n}{\sum_{i=1}^{n}(\deg(f_i) + 1)} - D \right) \right).$$

7.2.2 Complexity of Algorithm 5

As previously mentioned, the matrix T_n can be read from G_{drl} (test in Line 3 of Algorithm 5) if all the monomials of the form $\epsilon_i x_n$ are either in B or in $E(\langle G_{drl} \rangle)$. Let $F_n = \{ \epsilon_i x_n \mid i = 1, \ldots, D \}$, the test in Line 3 is equivalent to test if $F_n \subseteq B \cup E(\langle G_{drl} \rangle)$. Since F_n contains exactly D monomials and $B \cup E(\langle G_{drl} \rangle)$ contains at most $(n+1)D$ monomials; in a similar way we can use a hash table to decide if the test in Line 3 of Algorithm 5 are negligible in comparison to the complexity of Algorithm 3. Hence, the complexity of Algorithm 5 is given by the complexity of G_{drl} algorithm to compute the DRL Grobner basis of $g \cdot \mathcal{I}$ and the complexity of Algorithm 3 to compute the LEX Grobner basis of $g \cdot \mathcal{I}$. From \[34\], the complexities of computing the DRL Grobner basis of $g \cdot \mathcal{I} or \mathcal{I}$ are the same. Since it is straightforward to see that the number of solutions of these two ideals are also the same we obtain the second main result of the paper.

Theorem 7.3. Let \mathbb{K} be the rational field \mathbb{Q} or a finite field \mathbb{F}_q of sufficiently large characteristic p. Let $S = \{f_1, \ldots, f_n\} \subseteq \mathbb{K}[x_1, \ldots, x_n]$ be a polynomial system generating a radical ideal $\mathcal{I} = \langle S \rangle$ of degree D. If the sequence (f_1, \ldots, f_n) is a regular sequence such that the degree of each polynomial is uniformly bounded by a fixed or non fixed parameter d then there exists a Las Vegas algorithm which computes the univariate polynomial representation of the roots of S in $O(n d^{k_n} + \log_2(D) (D^2 + n \log_2(D) D))$ arithmetic operations.

As previously mentioned, the Bézout bound allows to bound the number of solutions D by the product of the degrees of the input equations. Since this bound is generically reached we get the following corollary.
Corollary 4. Let K be the rational field \mathbb{Q} or a finite field \mathbb{F}_q of sufficiently large characteristic p. Let $S = \{f_1, \ldots, f_n\} \subset \mathbb{K}[x_1, \ldots, x_n]$ be a generic polynomial system generating an ideal $I = \langle S \rangle$ of degree D. If the degree of each polynomial in S is uniformly bounded by a fixed or non fixed parameter d then there exists a Las Vegas algorithm which computes the univariate polynomial representation of the roots of S in $\tilde{O}(D^\omega) = \tilde{O}(d^\omega n)$ arithmetic operations where the notation \tilde{O} means that we neglect logarithmic factors in D and polynomial factors in n.

8 Acknowledgments

The authors would like to thanks André Galligo and Daniel Lazard for fruitful discussions about generic initial ideals and Vanessa Vitse for providing us with an example for which the randomization is required to “freely” construct the multiplication matrix T_n.

References

A Impact of Algorithm 5 on the practical resolution of the PoSSo problem in the worst case

In this appendix we discuss about the impact of Algorithm 5 on the practical resolution of the PoSSo problem. Note that Algorithm 3 to compute the LEX Gröbner basis given the multiplication matrix \(T_n \) is of theoretical interest. Hence, in practice we use the sparse version of Faugère and Mou [23]. In Table 1 we give the time to compute the LEX Gröbner basis using the usual algorithm (Algorithm 1) and Algorithm 5. This time is divided into three steps, the first is the time to compute the DRL Gröbner basis using \(F_5 \) algorithm, the second is the time to compute the multiplication matrix \(T_n \) and the last part is the time to compute the LEX Gröbner basis given \(T_n \) using the algorithm in [23]. Since, this algorithm takes advantage of the sparsity of the matrix \(T_n \) we also give its density. We also give the number of normal forms to compute (i.e. the number of terms of the form \(\epsilon_i x_n \) that are not in \(B \) or in \(E(\langle S \rangle) \) (or in \(E(g \cdot I) \)).

The experiments are performed on a worst case for our algorithm in the sense that the system in input is already a DRL Gröbner basis. Thus, while the usual algorithm does not have to compute the DRL Gröbner basis, our algorithm need to compute the DRL Gröbner basis of \(g \cdot I \). The system in input is of the form \(S = \{ f_1, \ldots, f_n \} \subset \mathbb{F}_{65521}[x_1, \ldots, x_n] \) with \(\text{LT}_{\text{drl}}(f_i) = x_i^2 \). Hence, the monomials in the basis \(B \) are all the monomials of degree at most one in each variable. The degree of the ideal \(D \) is then \(2^n \). The monomials \(\epsilon_i x_n \) that are not in \(B \) or in \(E(\langle S \rangle) \) are of the form \(x_n^2 m \) where \(m \) is a monomial in \(x_1, \ldots, x_{n-1} \) of total degree greater than zero and linear in each variable. By consequence, using the usual algorithm we have to compute \(2^n - 1 \) normal forms to compute only \(T_n \).

<table>
<thead>
<tr>
<th>n</th>
<th>D</th>
<th>Algorithm</th>
<th>First GB</th>
<th>Build (T_n)</th>
<th># NF</th>
<th>Density</th>
<th>Compute (h_1, \ldots, h_n)</th>
<th>Total PoSSo</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>usual</td>
<td>0s</td>
<td>0s</td>
<td>63</td>
<td>34.20%</td>
<td>0s</td>
<td>0s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This work</td>
<td>0s</td>
<td>0s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>usual</td>
<td>0s</td>
<td>13s</td>
<td>255</td>
<td>32.81%</td>
<td>0s</td>
<td>13s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This work</td>
<td>0s</td>
<td>0s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>usual</td>
<td>0s</td>
<td>7521s</td>
<td>1023</td>
<td>31.93%</td>
<td>23s</td>
<td>7544s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This work</td>
<td>5s</td>
<td>0s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>usual</td>
<td>0s</td>
<td>> 2 days</td>
<td>4095</td>
<td>19.86%</td>
<td>26s</td>
<td>> 2 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This work</td>
<td>157s</td>
<td>2s</td>
<td></td>
<td></td>
<td></td>
<td>185s</td>
</tr>
<tr>
<td>15</td>
<td>32768</td>
<td>usual</td>
<td>0s</td>
<td>> 2 days</td>
<td>16383</td>
<td>18.52%</td>
<td>1886s</td>
<td>> 2 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This work</td>
<td>5786s</td>
<td>46s</td>
<td></td>
<td></td>
<td></td>
<td>7718s</td>
</tr>
<tr>
<td>16</td>
<td>65536</td>
<td>usual</td>
<td>0s</td>
<td>> 2 days</td>
<td>32767</td>
<td>18.33%</td>
<td>14297s</td>
<td>> 2 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This work</td>
<td>38067s</td>
<td>195s</td>
<td></td>
<td></td>
<td></td>
<td>52559s</td>
</tr>
</tbody>
</table>

Table 1: A worst case example: comparison of the usual algorithm for solving the PoSSo problem and Algorithm 5 the proposed algorithm. Computation with FGb on a 3.47 GHz Intel Xeon X5677 CPU.

One can note that in the usual algorithm the bottleneck of the resolution of the PoSSo problem is the change of ordering due to the construction of the multiplication matrix \(T_n \). Since our algorithm allows to compute very efficiently the matrix \(T_n \) (for instance for \(n = 11 \), 0 seconds in comparison to 7544 seconds for the usual algorithm), the most time consuming step becomes the computation of the DRL Gröbner basis. However, the total running time of our algorithm is far less than that of the usual algorithm. For instance, for \(n = 13 \) the PoSSo problem can now be solved in approximately three minutes whereas we are not allow to solve this instance of the PoSSo problem using the usual algorithm.

Moreover, using Algorithm 5 the density of the matrix \(T_n \) is decreased (which implies that the running time of Faugère and Mou algorithms is also decreased). This can be explained by the fact that the dense
columns of the matrix T_n comes from monomials of the form $x_n\epsilon_i$ that are not in B i.e. in the frontier. Since Algorithm 5 allows to ensure that the monomials $x_n\epsilon_i$ are either in B or in $E(g \cdot \mathcal{I})$ then the number of dense columns in T_n is potentially decreased.