
HAL Id: hal-00815322
https://hal.science/hal-00815322

Submitted on 18 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Habitat preferences of different European eel size classes
in a reclaimed marsh: a contribution to species and

ecosystem conservation
Pascal Laffaille, Aurore Baisez, Christian Rigaud, Eric Feunteun

To cite this version:
Pascal Laffaille, Aurore Baisez, Christian Rigaud, Eric Feunteun. Habitat preferences of different
European eel size classes in a reclaimed marsh: a contribution to species and ecosystem conservation.
Wetlands, 2004, Vol. 24, pp. 642-651. �10.1672/0277-5212(2004)024[0642:HPODEE]2.0.CO;2�. �hal-
00815322�

https://hal.science/hal-00815322
https://hal.archives-ouvertes.fr


  
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
  
 
 
 
 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 6192 

To link to this article: DOI: 10.1672/0277-5212(2004)024[0642:HPODEE]2.0.CO;2  
URL: http://dx.doi.org/10.1672/0277-5212(2004)024[0642:HPODEE]2.0.CO;2 
 

To cite this version: Laffaille, Pascal and Baisez, Aurore and Rigaud, 
Christian and Feunteun, Eric Habitat preferences of different European eel 
size classes in a reclaimed marsh: a contribution to species and ecosystem 
conservation. (2004) Wetlands, Vol. 24 (n° 3). pp. 642-651. ISSN 0277-
5212 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@listes-diff.inp-toulouse.fr 
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Abstract: Freshwater reclaimed marshes along the European Atlantic coast are highly suitable for European

eels (Anguilla anguilla). However, European eel stocks have declined, and the coastal marshes have been

subjected to major disturbances. The objective of our study was to analyze the processes governing patterns

of European eel microhabitat distribution of four eel size classes (from ,160 mm to .360 mm) in a

reclaimed marsh (France). Analyses were conducted using artificial neural network (ANN) techniques and

ecological profiles. Our ANN results showed that eel densities were significantly related to three major

influencing variables: the width of ditch section, the silt depth, and the density of emergent plants. Such

ecological profiles were significantly different between small (,240 mm) and large eels (.360 mm): small

eels were more widespread than large eels. Large eels were absent or at low densities in shallow ditches

with a high aquatic plant cover obstructing the water column and a large quantity of silt. These characteristics

seem to define the ditches not directly connected with the main river where dredging operations were rare.

Management of regular dredging operations in the channels by maintaining a mosaic of permanent aquatic

habitats and avoiding the heavy silt loads in most ditches should be promoted. This dredging operation was

probably one of the most promising ways for restoring inland eel stocks.
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INTRODUCTION

Salt marshes, estuarine and coastal systems, are

among the most productive areas of the biosphere. On

the French Atlantic coast, over 230,000 ha of salt

marshes have been reclaimed since the 10th century to

create land for salt production, agriculture, and aqua-

culture. These altered systems obviously have new

ecological characteristics because they are managed

and developed to drain lands, to flood ponds or salt-

pans, and to control the marine influence (salinity and

floods). Therefore, the aquatic habitats form a dense

network of more or less interconnected ditches and

ponds. The biological carrying capacity of these en-

vironments depends essentially on management deci-

sions concerning water and silt levels, salinity, hy-

draulic connectivity, water residence time, and other

environmental factors (Feunteun et al. 1992, Eybert et

al. 1998, Feunteun et al. 1999, Baisez et al. 2000).

The habitats of the reclaimed marshes of the French

Atlantic coast are highly suitable for an abundant fish

community composed of either marine or freshwater

species, depending on the salinity, which depends

upon management options. Marine straggler species

(Clupeidae, Gadidae, etc.) are infrequently found. Ma-

rine estuarine-dependant species (Mugilidae, Serrani-

dae, Pleuronectidae, Gobiidae, etc.) are abundant in the

marine environment. Freshwater species (Cyprinidae,

Gasterosteidae, Exosidae, etc.) are abundant in the

freshwater environment. Anadromous (Petromyzonti-

dae, etc.) and catadromous (especially European eel,

Anguilla anguilla L.) species migrate between the ma-

rine and freshwater environment (Eybert et al. 1998,

Feunteun et al. 1999, Laffaille et al. 2000a). In both

cases, reclaimed marshes provide ideal habitats for Eu-

ropean eel, which is the most frequent and abundant

species of the fish community. In the 1980s and the

early 1990s, eels still represented more than 50% of

the fish biomass observed in these areas (Feunteun and

Marion 1994, Eybert et al. 1998, Feunteun et al. 1999).

Eels occurred in practically every type of accessible

habitat, and they were often the only species that col-

onized the most silty and vegetated ditches or ponds.

Biomass ranged from 30 to 300 kg.ha21 depending on

habitat characteristics (Feunteun 1994, Feunteun and

Marion 1994). Eels therefore represented a valuable

resource that was harvested and sold by most farmers,

the proceeds accounting for about 10% of their annual

income (Feunteun 1994). This income, together with

the need to drain pastures, represented one of the ma-

jor justifications for the upkeep and maintenance of

the aquatic network of the marshes by clearing silt and

vegetation. These altered wetlands form highly valu-

able habitats for waterfowl, waders, and species of

conservation value such as herons (Ardea cinerea L.)

(Feunteun and Marion 1994), Montagu’s harrier (Cir-

cus pygargus L.) (Butet and Leroux 2001) and otters

(Lutra lutra L.) (Beja 1996). The presence of these

species in these areas mainly depended upon the man-

agement options, which were themselves driven by the

exploitation of natural resources, including eels. For

these reasons, the European eel can be considered as

an umbrella species sensu Simberloff (1998), whose

restoration and management is profitable for the whole

hydrosystem and biocenosis (Feunteun 2002).

However, since the 1950s, these manmade areas

have been subjected to major environmental pressures

as traditional land use was progressively replaced by

intensive agriculture, which involved draining of wet-

lands, drastically lowering water levels in summer, and

use of fertilizers and pesticides. As a consequence,

many ditches and ponds were filled in and increasingly

interrupted biological connectivity. Consequently, the

area of aquatic habitats was reduced about tenfold

within 50 years; in the Poitevin marshes, the ditch den-

sity was reduced from 150 m.ha21 to 30 m.ha21 and

open water areas (relative to close and network water

areas) were reduced from 10 to 5% of the total. Similar

changes have been reported in a number of coastal

reclaimed marshes (Fustec and Lefeuvre 2000). In the

same time period, eutrophication provoked algal or cy-

anobacterial blooms and encroachment by aquatic veg-

etation (Marion and Brient 1998). Therefore, these

highly valuable habitats have been disappearing or

have become less suitable for eels.

At least since the 1980s, European eel stocks have

declined throughout the distribution range of the spe-

cies, including all accessible European and North Af-

rican hydrosystems (Moriarty and Dekker 1997). The

same change occurred in the reclaimed marshes (Feun-

teun et al. 1999, Baisez et al. 2000). In view of the

steep decline of the species, ICES (International Coun-

cil for the Exploration of the Sea) recently considered

that ‘‘the species is outside safe biological limits’’

(ICES 1998) and that ‘‘all fisheries should be reduced

to the lowest possible level’’ . . . until a ‘‘global man-

agement plan is implemented’’ (ICES 1999). This sit-

uation is troubling from a socio-economic perspective

but also from an ecological perspective because a

strong and permanent decline of the local eel abun-

dance could, in some hydrosystems, disturb the bal-

ance of the aquatic biocenoses (Feunteun 2002) and

even the intersystem fluxes (Laffaille et al. 2000b).

The major causes for the decline are now thought

to be habitat destruction and obstruction of migration

routes by dams and other chemical or physical obsta-

cles (Feunteun 2002, ICES 2002). The reclaimed

marshlands of the Atlantic coast are ideally located to

receive glass eel recruits after their oceanic migration.

The available habitats are highly suitable for eels.



Figure 1. Map of the mash site where habitat eel relation-

ships were studied and its location in the West France (south

of Loire River).

Therefore, the understanding of the factors governing

eel distribution in coastal reclaimed marshes is essen-

tial for proposing wetland restoration plans, not only

in marine environments, but also along river flood-

plains or in lakes.

The objective of our study was to quantify the spa-

tial distribution of European eels in a reclaimed marsh

(‘Marais breton-vendéen’, France) relative to both bi-

otic and abiotic characteristics using artificial neural

network (ANN) techniques. Predictive modelling has

recently gained importance as a tool for assessing the

impact of accelerated land use and other environmental

changes on the distribution of organisms (see review

of Guisan and Zimmermann 2000). Colasanti (1991)

found similarities between ANNs and ecosystems and

recommended the use of this tool in ecological mod-

elling. Relevant examples are found in very different

fields in applied ecology (see review of Lek and Gué-

gan 1999), such as modelling spatial dynamics of fish

(Giske et al. 1998, Laffaille et al. 2003). This model-

ling approach is developed (1) to understand the

changes of habitat preference of European eels ac-

cording to size, (2) to apply these results to the de-

velopment of a methodology for surveying eel abun-

dance in inland habitats, and (3) to provide a support

for the management and the restoration of European

eel habitats.

MATERIAL AND METHODS

Study Site

The ‘Marais breton-vendéen’ is situated to the south

of the Loire estuary (478 N, 28 W). This flat landscape

of 36,000 ha includes 7,200 km of narrow ditches (3-

to 4-m mean width, 1.3-m mean depth), with variable

characteristics (dredging, silting up, etc.). These ditch-

es are organized in networks with a mean of 200

m.ha21 (Feunteun et al. 1992). They receive water

from a natural river catchment, the Falleron, but an

artificial water supply from the Loire River is via a

pump (Figure 1). The study took place in a 3,000-ha

area in the northern portion of the marsh, representa-

tive to freshwater marsh (Rigaud et al.1996).

Sampling Method

Electrofishing was conducted in stream sections at

least 30-m long delimited by 3-mm-mesh stop nets, in

sample areas of about 120 m2. A ‘Heron’ apparatus

(see Lamarque et al. 1978) was used and delivered a

direct current (150 to 365 V and 0.8 to 6 A). A stan-

dardized depletion method (Lambert et al. 1994, Feun-

teun et al. 1998) was used to assess fish abundance

(expressed as number 100.m22) using the Carle and

Strub (1978) estimator. Eels were caught in two con-

secutive electrofishing passes using a modified Point

Abundance Sampling by Electrofishing (PASE) tech-

nique (Nelva et al. 1979). At each point, the anode

was swiftly immersed to the bottom of the ditch and

was turned in an area of 1 m2 around the same spot

for at least 30 seconds, and then until all the eels spot-

ted were caught. This was the minimum duration that

was effective in provoking a response from the eels

present in the vicinity of the anode (see Feunteun

1994). Fish were then collected with fine-mesh dip-

nets. The mean number of sampling points was 27.3

6 8 per ditch section. The Carle and Strub (1978)

estimator was the method that produced statistically

reliable estimates (Cowx 1983). Because of the shal-

lowness of the ditch, capturability and sampling effi-

ciency were high (on average, p 5 0.70 in the first

electrofishing pass), as observed in previous studies

(Lambert et al. 1994, Feunteun et al. 1998, Baisez

2001). The efficiency of the sampling method was

quantified using fyke nets and traps and confirmed the

scarcity of large eels in the catchment (Baisez et al.

2000, Baisez 2001). Eels were measured (to the near-

est mm) and released outside the sampled ditch section

immediately after their capture.

An average of 28 ditch sections (not the same every

year) were sampled yearly in June from 1996 to 2000,

with a total of 141 samplings. Several local environ-



mental variables were measured to analyze eel distri-

bution in relation to microhabitat conditions: (i) three

topographical variables: section width (cm), water

depth (cm), and silt depth (cm) and (ii) three biotic

variables: emergent plants on the ditch bank (mainly

composed of Carex spp. and Juncus spp.), floating-

leaved plants (mainly Lemna spp. and Hydrocharis

morsus-ranae), and submerged plant beds in the water

column (Ceratophyllae, Potamogeton sp., Myriophyl-

lae, Elodea Canadensis Rich.) expressed as a cover

index (from minimum 0 to maximum 5) calculated for

the whole area of each sampling section (see Baisez

2001 for more details).

Development of the Model

Fish size-class groups were identified with cluster

analyses of the fish densities at each sampling site us-

ing Ward’s method. This method uses the average val-

ue of all objects in one cluster as the reference point

for distances to other objects and normalized Euclid-

ean distances (i.e., root mean squared distances).

Prior to ANN modelling, a Pearson correlation ma-

trix (with Bonferroni post analysis) was used to test

independence of the variables used in the ANN mod-

els. We used one of the principles of ANN, the back-

propagation algorithm (Rumelhart et al. 1986). The

network was trained using an error backpropagation

training algorithm. This algorithm adjusts the connec-

tion weights according to the backpropagated error

computed between the observed and the estimated re-

sults. This is a supervised learning procedure that at-

tempts to minimize the error between the desired and

the predicted outputs (see Gevrey et al. 2003 for more

details). The modelling was carried out in two steps.

First, model training was performed using the whole

data matrix. This step was used to estimate the per-

formance of the ANN for calibrating the parameters

of the models and to study the contribution of each

independent variable. Second, a jacknife cross vali-

dation test (Efron 1983) was performed. Each sample

was left out of the model formulation in turn and pre-

dicted once. This procedure is appropriate when the

data set is quite small and/or when each sample is

likely to have ‘unique information’ that is relevant to

the regression model (Rumelhart et al. 1986, Kohavi

1995). This step was used to assess the prediction ca-

pacity of the network. The correlation coefficient be-

tween observed and predicted eel density was used to

quantify the ability of the model to produce the right

answer through the training procedure (recognition

performance).

To determine the relative importance of the param-

eters, we used the procedure for partitioning the con-

nection weights of the ANN model. Partial derivatives

(PAD) of the network response with respect to each

descriptor were used to determine the sensitivity of the

environmental variables (Dimopoulos et al. 1999). The

PAD method was found to be the most useful, as it

gave the most complete results (Gevrey et al. 2003).

Ecological Profiles

European eel habitats (spatial distribution of eel

densities according to the environmental variables and

eel size classes) were examined in more detail using

ecological profiles. The influence of each variable was

examined independently. Ecological profiles (prefer-

ence indices for each environmental variable as a mea-

sure of habitat use by each eel size class vs. habitat

availability) were developed for each size-class matrix,

based on methods that have evolved over the last 40

years (Ivlev 1961, Beecher et al. 1993, Brosse et al.

2001). Preference was calculated as a normalized ratio

of utilization to availability for different intervals of

each environmental variable. Preference indices were

obtained after dividing each variable into several clas-

ses. Their number was defined according to the range

of variation of each variable. The following formula

was used:

I 5 [(Ob/Ex)/(Ob/Ex) ] 2 0.5max

where Ob is the density of eels observed for the class,

Ex is the expected density for a theoretical random

distribution, and (Ob/Ex)max is the maximum value of

(Ob/Ex) for the class. I varies between 20.5 and 10.5.

Positive values indicate preference, and negative val-

ues indicate avoidance for a given variable. Therefore,

values between 20.1 and 10.1 can be considered as

revealing indifference; from 20.3 to 20.1 and from

10.1 to 10.3 illustrate slight avoidance or preference,

respectively; and from 20.5 to 20.3 and 10.3 to 10.5

reveal strong avoidance or preference, respectively. To

estimate any significant differences between ecological

profiles of three different size classes, we used the

Wilcoxon non-parametric test (Z).

RESULTS

Population Structure

A total of 1774 European eels were sampled. The

sizes varied from 60 mm to 790 mm; mean 6 sd 5

214 6 108 mm (Figure 2). Total densities were be-

tween 0.0 eel.100 m22 and 52.5 eels.100 m22 (mean 6

sd 5 10.5 6 11.0 eel.100 m22); however, eels ,280

mm were much more abundant than eels .280 mm

(Table 1, Figure 2). Depending on the sampling date,

the eel frequency of occurrence (percentage of sam-

pling sites where eels were present) varied between

70% and 100%.



Figure 2. Length histogram (mm) of eels sampled (N 5

1774 eels) in 141 stations of the marsh study between 1996

and 2000.

Table 1. Density of each eel size class in the study site (number

of eels. 100 m22). Min: minimum density, Max: maximum den-

sity, Mean: mean density, sd: standard deviation. n: number of

eels measured.

Eel Size Classes

,160 mm

[160–240

mm]

[240–360

mm] .360 mm

Min

Max

Mean

sd

n

0

40

9.4

10.0

630

0

27

6.0

5.4

671

0

13

1.8

2.4

297

0

7

1.2

1.7

176

Figure 3. Cluster analysis (Ward’s method, Euclidean dis-

tance) of eel size-class abundance. The linkage distance

(Dlink) is presented as a percentage of the maximum linkage

distance (Dmax). A, B, C, D: cluster groups. Numerical col-

umn (from 80 to 480) is eel length (mm).

The cluster analysis indicated that fish sorted into

four size-class groups at the 60% probability level

based on dissimilarities between size-class group

abundance and samples (Figure 3): cluster A was com-

posed of eels ,160 mm; cluster B of eels between 160

and 240 mm; cluster group C of eels between 240 and

360 mm, and cluster D of eels .360 mm. These size

classes correspond to different behaviors, especially in

this reclaimed marsh, and according to this analysis to

different habitat preferences (see ecological profiles).

The first size class (,160 mm) represents recently re-

cruited elvers, which have just started their coloniza-

tion of the marsh system. The second class (between

160 and 240 mm) consists mainly of sedentary yellow

eels. The two remaining stages (240–360 mm and

.360 mm) reflect potential reproductive status repre-

sented by future male or female silver eels.

So, four ANN models were developed, one for each

size class (,160, [160–240], [240–360], and .360

mm). We could have used a single neural network with

four dependent variables (one for each of the four size

classes), but we preferred four networks with the same

architecture, each predicting the abundance of one

size-class group. This allowed us to estimate the influ-

ence of the local environmental variables on each eel

size class independently.

Model Fitting and Testing

According to the Pearson correlation matrix (with

Bonferroni post-analysis) few of the habitat variables

were significantly correlated with each other (all r ,

0.5). The only significant relations were between float-

ing-leaved plants and submerged plant beds (r 5

0.485, p , 0.001) and between ditch width and water

depth (r 5 0.463, p , 0.001). Therefore, all micro-

habitat factors were included in the models.

The ANN used was a three-layered (6–3–1), feed-

forward network with bias. There were six input neu-

rons to code the six independent variables (local en-

vironmental variable). The hidden layer had three neu-

rons, determined as the optimal configuration, to give

the lowest error in the training and testing sets of data.

The output neuron computes the values of the depen-

dent variables (eel densities according to size classes).

A ‘bias’ neuron was added to each computational layer

(i.e., hidden and output layer). These neurons had a

constant input value of one and were used to lower

biases in the modelling procedure.

The ANN models of 500 iterations (best compro-

mise between bias and variance, which is quite low in

ANN modelling) show that the correlation coefficient

(r) between observed and predicted values of the de-

pendent variable varied from 0.89 to 0.92 for training



Table 2. Correlation coefficient (r) between observed and esti-

mated values in the artificial neural network (ANN) during train-

ing and testing for each eel size class.

Eel Size Classes

,160 mm

[160–240

mm]

[240–360

mm] .360 mm

r training

r testing

0.90

0.74

0.89

0.71

0.91

0.76

0.92

0.81

Table 3. Percentage contribution of each independent variable to

the prediction of eel densities according to eel size class obtained

by partial derivatives (PAD).

Eel Size Classes

,160 mm

[160–240

mm]

[240–360

mm] .360 mm

Width

Water Depth

Silt Depth

Floating plants

Submerged plant

Emergent plant

40.7

3.7

26.8

5.9

3.1

21.3

51.6

2.6

35.3

2.8

3.8

6.9

10.9

0.6

34.4

21.3

1.4

31.4

49.9

7.0

30.5

0.9

6.9

4.8

Figure 4. Microhabitat profile (axe Y) of three European

eel size classes, ,160 mm (A), [160 mm2240 mm] (B),

[240 mm2360 mm] (C), and .360 mm (D) calculated for

each environmental variable (axe X—see text for detail).

Width: section width, Water: water depth, Silt: silt depth,

Subm: submerged plant beds, Emerg: emergent plants on the

bank of ditch and Float: floating-leaved plants.

sets and from 0.71 to 0.81 for testing sets (Table 2).

Relationships between residuals and values predicted

by the model show that the correlation coefficients

were negligible and not significant (r between 0.01 and

0.03, and p between 0.68 and 0.82 in both training and

testing set). We can thus consider residuals indepen-

dent of the predicted values.

The PAD results stress the relative contribution of

the independent variables in the ANN models. The

modelling procedure showed that eel densities were

highly connected to two or three important influencing

variables: the width of ditch section (contributions

ranged from 11% to 52%, mean: 38%), the silt depth

(from 27% to 35%, mean: 32%), and emergent plants

(from 5% to 31%, mean: 16%). Except for floating

plants for eels between 240 and 360 mm, other vari-

ables had a lower individual contribution (Table 3).

Ecological Profiles

The ecological profiles of the four size classes were

only significantly different between eels .360 mm and

eels ,160 mm and between eels .360 mm and eels

from 160 mm to 240 mm (Wilcoxon’s non-parametric

test, Z 5 22.343, p 5 0.019 and Z 5 22.296, p 5

0.022, respectively). In fact, the ecological profiles re-

vealed no strong avoidance, except for high emergent

vegetation for eels between 240 and 360 mm (Figure

4). Nevertheless, a number of tendencies were appar-

ent: 1) All size classes except small eels avoided hab-

itats with a high emergent aquatic vegetation cover. 2)

Small eels (,160 mm) were found in every type of

habitat (Figure 4A). 3) Eels of intermediate size class

(160–240 mm and 240–360 mm) had very similar eco-

logical profiles, but they were associated with larger

ditches (widths .3 m) and silt depths ,50 cm (Figure

4B and 4C). 4) The most significant differences con-

cern larger eels (size class .360 mm); they were

linked to wide ditches (widths .5 m) with water

depths .80 cm, silt depth ,30 cm and small quantities

of aquatic plants (Figure 4D).

In summary, ecological profiles revealed that small

eels were more widespread than large eels. Large size

class were absent or scarce (low density) in shallow



ditches with a high cover of aquatic plants obstructing

the water column. As a consequence, this analysis sug-

gests a shift in habitat preference according to the eel

size class, mainly for large eels .360 mm.

DISCUSSION

Capacity of the Predictive Model

In the context of defining the threshold size of the

European eel stock (recommended by the ICES 1998),

several studies have attempted to estimate the size of

local stocks using various methods based on fishery

surveys (Ardizzone and Corsi 1985), scientific surveys

(Feunteun et al. 1998, Baisez 2001), or modelling

(Dekker 2000). However, most of these studies did not

take into account the characteristics of the available

habitats and potential variations in habitat preferences

of the eels according to size. However, preliminary

studies in reclaimed marshes (Feunteun 1994, Baisez

2001) revealed surprising heterogeneity in the eel dis-

tribution, suggesting that such relationships may be

important. Since the 1970s, studies have been con-

ducted to describe the European eel spatial distribu-

tions in river systems (e.g., Naismith and Knights

1993, Lobon-Cervia et al. 1995, Feunteun et al. 1998,

Laffaille et al. 2003) and lakes (e.g., Adam 1997).

Most of these studies concluded that the species is

ubiquitous. Knights et al. (2001) even concluded that

no strong habitat index could be developed for Euro-

pean eels except a general decrease of abundance and

increase of size from downstream to upstream reaches.

Smogor et al. (1995) underlined the difficulty of

modelling American eel (Anguilla rostrata LeSueur)

densities according to available habitat heterogeneity

and eel size classes. In fact, these authors found that

eel distribution differed with density in small coastal

catchments: in catchments where eel density was very

high, habitat associations were apparent, whereas in

others, distance from the sea governed eel distribution.

For example, Ibbotson et al. (2002) found that the neg-

ative relation with distance from the sea accounted for

between 19 and 90% of the variation in European eel

density in 18 UK rivers. Glova et al. (1998) arrived at

a similar conclusion for the New Zealand eel species.

However, Laffaille et al. (2003) developed a spatial

organization model of European eel in a densely pop-

ulated small catchment using ANN methodology. Our

present study demonstrated that ANN models can pro-

vide a reliable prediction of the spatial distribution of

an European eel population in a freshwater reclaimed

marsh using simple microhabitat descriptors such as

ditch width, water and silt depths, and vegetation cov-

er. Given the success of the developed models, it is

not unreasonable to combine density predictions with

GIS approaches to identify and map habitat types with

related density estimates and finally produce a quan-

tification of the eel stock per size class across large

areas (i.e., the whole catchment or the whole marsh

system). Broad et al. (2001) have used this method-

ology to predict successfully the probabilities of oc-

currence of longfinned eel (Anguilla dieffenbachii

Gray) in a New Zealand river.

Ecological Profiles

In a preliminary analysis, the abundance of the ‘bre-

ton-vendéen’ marsh’s eel population seems high com-

pared to other west European catchment (Moriarty and

Dekker 1997, Feunteun et al. 1998). This is not sur-

prising, given the situation in the Atlantic coastal

marshes with respect to the arrival of European glass

eels. Since at least the 1980s, the stocks have declined

in the reclaimed marshes (Feunteun et al. 1999, Baisez

et al. 2000).

It is generally believed that the distance to the sea

is the most structuring parameter for the density, the

average size, the age, and the sex ratio of European

eels within a catchment area (e.g., Naismith and

Knights 1993, Lobon-Cervia et al. 1995, Ibbotson et

al. 2002). In reclaimed marshes, the strong space-time

heterogeneity of the eel densities (Baisez et al. 2000)

seems surprising since all the sampled sites are located

less than 10 km from the sea and show relatively ho-

mogeneous characteristics compared to inland rivers

(only one type of substrate, no water-velocity fluctu-

ation, etc.). However, without taking into account the

distance to the sea, some preferences by size classes

were highlighted by this study. Firstly, the eels of size

,160 mm seem to have a more ubiquitous behavior.

Only deeper silt and dense aquatic vegetation seem to

be unsuitable for this small size class. Secondly, the

eels of intermediate sizes (between 160 mm and 360

mm) show a progressive change of habitat preference.

These eel sizes prefer deeper habitats with less silt.

Finally, the large eels (.360 mm) have a strong pref-

erence for large ditches with deep water, a thin silt

layer, and low aquatic vegetation cover. The general

pattern is for eels to shift progressively to deeper hab-

itats as they grow. Similar to the observations of Glova

et al. (1998) for A. australis (Richardson) and A. dief-

fenbachii, we found that this shift in behavior and hab-

itat preferences occur around a size of 300 mm for

European eels.

Consequently, small eels prevail in relatively narrow

shallow ditches with significant vegetation where the

larger sizes of eels are absent. These habitats are ditch-

es poorly connected to the main river (Feunteun 1994,

Baisez 2001). This type of distribution is relatively

well-known. For example, Ford and Mercier (1986)



showed that the small sizes of Anguilla rostrata pre-

vail in the narrowest sections of salt marshes. Chisnall

(1996) indicated that Australian eels (A. australis) of

size ,380 mm are primarily present around the edge

of lakes. Neveu (1981) also showed a predominance

of small sizes of European eel in shallow river habi-

tats. Conversely, large eels dominate in the deeper sec-

tions of the marshes. Similar observations were made

in large (Lamouroux et al. 1999) and small rivers (Laf-

faille et al. 2003). These results are also consistent

with other studies that found that deeper habitats are

the main feeding and resting sites for large eels (e.g.,

Glova 1988, Chisnall and Hicks 1993, Baisez 2001).

According to Baisez (2001), these preferences seem to

define the primary ditch network (main rivers) and sec-

ondary ditch network (directly connected to the pri-

mary network). Both secondary and primary networks

are subject to regular maintenance (silt clearing) to

prevent floods and to facilitate either drainage or irri-

gation of croplands.

Application for Conservation

Even if fish abundance and microhabitat use are

strongly affected by underlying biotic interactions such

as competition, predation, and resource limitation, the

spatial assemblages of fish communities or populations

are often related to environmental variables (Grossman

et al. 1998, Laffaille et al. 2001, 2003). In the re-

claimed marshes, it is not distance from the sea or

other typical habitat variables that most strongly influ-

ence eel spatial organization, but mainly the synergy

of three factors: ditch width, silt depth, and density of

aquatic vegetation. These factors are related to the

maintenance level of the ditches: the closest to the

main river being the most regularly dredged and the

most distant being rarely maintained. In turn, the nar-

rowest and most silted-up ditches are less accessible

and only available for moving eels belonging to the

smallest size classes (Baisez 2001). As eels grow, they

progressively leave these shallow habitats, which are

then available for new recruits. For habitat mainte-

nance or restoration, the difficulty is to assess what

proportions of different habitat types are necessary to

maintain an eel population according to production ob-

jectives (production of pre-spawners and fishery pro-

duction).

The heterogeneity of each sampling station was gen-

erally defined according to a landscape connectivity

descriptor of the ditch network and human manage-

ment. The large and deep ditches, which correspond

to the main rivers (ditches directly connected to the

sea) and the secondary network (ditches directly con-

nected to the river), are managed to maintain a low

quantity of aquatic vegetation and silt. Analysis

showed that the largest eels mainly colonized these

areas, which are generally excavated every 5 to 10

years by collective management. The narrow and shal-

low ditches, connected to the secondary network, are

more rarely managed by private landowners and are

more often characterized by a high cover of submerged

plants and greater silt depth. In these ditches repre-

senting about 85% of the total network length in the

study area (Baisez 2001), only small sizes were ob-

served before a clearing operation. So, the lowered fre-

quency of dredging of this part of the ditch network

(reductions observed since the 1970s) seems to have

resulted in a decreased carrying capacity of the marsh

for the largest eel sizes. On the other hand, the bio-

logical richness and diversity of these ecosystems are

mainly correlated with the preservation of a diversity

of silting stages among the ditch population. So, man-

agement of regular dredging operations in the channels

by maintaining a mosaic of permanent aquatic habitats

and avoiding the heavy silt loads in most ditches

should be promoted.

The geographic setting of the Atlantic coastal

marshes favors high European eel density (Baisez et

al. 2000). Various methods of capture (fishing, exten-

sive production in ponds, etc.) have been used since

the creation of these systems (Feunteun 1994). This

exploitation was, and is still in some areas, a justifying

element for the regular management of marsh waters.

The integrated management of these coastal wetlands

and their resources is an increasingly commonly ac-

cepted objective. Many marshes have been restored for

waterfowl conservation (Eybert et al. 1998, Lefeuvre

et al. 2003), but habitat restoration is rarely used to

restore eel stocks, despite the belief that habitat deg-

radation is one of the causes of the population decline

(see Feunteun 2002). According to Feunteun (2002),

this is probably one of the most promising ways for

restoring inland eel stocks. Better knowledge of hab-

itat-eel relationships may contribute to this objective,

as we have tried to demonstrate in this study.
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tique française (Marais breton). Cybium 24:23–32.

Beecher, H. A., T. H. Johnson, and J. P. Carleton. 1993. Predicting
microdistributions of steehead (Oncorhynchus mykiss) parr from
depth and velocity preference criteria: test of an assumption of
the instream flow incremental methodology. Canadian Journal of
Fisheries and Aquatic Sciences 50:1380–1387.

Beja, P. R. 1996. Seasonal breeding and food resources of otters,
Lutra lutra (Carnivora, Mustelidae), in South-West Portugal: a
comparison between coastal and inland habitats. Mammalia 60:
27–34.

Broad, T. L., C. R. Townsend, C. J. Arbuckle, and D. J. Jellyman.
2001. A model to predict the presence of longfin eels in some
New Zealand streams, with particular reference to riparian vege-
tation and elevation. Journal of Fish Biology 58:1098–1112.

Brosse, S., P. Laffaille, S. Gabas, and S. Lek. 2001. Is scuba sam-
pling a relevant method to study fish microhabitat in lakes? Ex-
amples and comparisons for three European species. Ecology of
Freshwater Fish 10:138–146.

Butet, A. and A. B. Leroux. 2001. Effects of agriculture develop-
ment on vole dynamics and conservation of Montagu’s harrier in
western French wetlands. Biological Conservation 100:289–295.

Carle, F. L. and M. R. Strub. 1978. A new method for estimating
population size from removal data. Biometrics 35:621–630.

Chisnall, B. L. 1996. Habitat associations of juvenile shortfinned
eels (Anguilla australis) in shallow lake Waahi, New Zealand.
New Zealand Journal of Marine and Freshwater Research 30:233–
237.

Chisnall, B. L. and B. J. Hicks. 1993. Age and growth of longfinned
eels (Anguilla dieffenbachii) in pastoral and forested streams in
the Waikato river basin and in two hydro-electric lakes in the
North island, New Zealand. New Zealand Journal of Marine and
Freshwater Research 27:317–332.

Colasanti, R. L. 1991. Discussions of the possible use of neural
network algorithms in ecological modelling. Binary 3:13–15.

Cowx, I. G. 1983. Review of the methods for estimating fish pop-
ulation size from survey removal data. Fisheries Management 14:
67–82.

Dekker, W. 2000. A Procrustean assessment of the European eel
stock. ICES Journal of Marine Science 57:938–947.

Dimopoulos, I., J. Chronopoulos, A. Chronopouls-Sereli, and S. Lek.
1999. Neural networks models to study relationship between lead
concentration in grasses and permanent urban descriptors in Ath-
ens city (Greece). Ecological Modelling 120:157–165.

Efron, B. 1983. Estimating the error rate of a prediction rule: some
improvements on cross-validation. Journal of the American Sta-
tistical Association 78:316–331.

Eybert, M.-C., J. Y. Bernard, P. Constant, E. Feunteun, J. Hedin,
and S. Questiau. 1998. Réhabilitation des prairies inondables dans
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peuplement piscicole, relation ichthyofaune habitat, mise en évi-
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