Computing rational solutions of linear matrix inequalities

Qingdong Guo 1 Mohab Safey El Din 2 Lihong Zhi 1
2 PolSys - Polynomial Systems
LIP6 - Laboratoire d'Informatique de Paris 6, Inria Paris-Rocquencourt
Abstract : Consider a $(D\times D)$ symmetric matrix $\sfA$ whose entries are linear forms in $\Q[X_1, \ldots, X_k]$ with coefficients of bit size $\leq \tau$. We provide an algorithm which decides the existence of rational solutions to the linear matrix inequality $\sfA\succeq 0$ and outputs such a rational solution if it exists. This problem is of first importance: it can be used to compute algebraic certificates of positivity for multivariate polynomials. Our algorithm runs within $(k\tau)^{O(1)}2^{O(\min(k, D)D^2)}D^{O(D^2)}$ bit operations; the bit size of the output solution is dominated by $\tau^{O(1)}2^{O(\min(k, D)D^2)}$. These results are obtained by designing algorithmic variants of constructions introduced by Klep and Schweighofer. This leads to the best complexity bounds for deciding the existence of sums of squares with rational coefficients of a given polynomial. We have implemented the algorithm; it has been able to tackle Scheiderer's example of a multivariate polynomial that is a sum of squares over the reals but not over the rationals; providing the first computer validation of this counter-example to Sturmfels' conjecture.
Document type :
Conference papers
Liste complète des métadonnées

Cited literature [20 references]  Display  Hide  Download
Contributor : Mohab Safey El Din <>
Submitted on : Thursday, April 18, 2013 - 11:52:00 AM
Last modification on : Thursday, March 21, 2019 - 2:17:19 PM
Document(s) archivé(s) le : Monday, April 3, 2017 - 6:57:43 AM


Files produced by the author(s)


  • HAL Id : hal-00815174, version 1


Qingdong Guo, Mohab Safey El Din, Lihong Zhi. Computing rational solutions of linear matrix inequalities. ISSAC 2013 - International Symposium on Symbolic and Algebraic Computation, Jun 2013, Boston, United States. 2013. 〈hal-00815174〉



Record views


Files downloads