An optimal Poincaré-Wirtinger inequality in Gauss space
Barbara Brandolini, Francesco Chiacchio, Antoine Henrot, Cristina Trombetti

To cite this version:

HAL Id: hal-00814754
https://hal.archives-ouvertes.fr/hal-00814754
Submitted on 17 Apr 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
AN OPTIMAL POINCARÉ-WISSERTER INEQUALITY IN GAUSS SPACE

BARBARA BRANDOLINI¹, FRANCESCO CHIACCHIO¹, ANTOINE HENROT², AND CRISTINA TROMBETTI¹

Abstract. Let \(\Omega \) be a smooth, convex, unbounded domain of \(\mathbb{R}^N \). Denote by \(\mu_1(\Omega) \) the first nontrivial Neumann eigenvalue of the Hermite operator in \(\Omega \); we prove that \(\mu_1(\Omega) \geq 1 \). The result is sharp since equality sign is achieved when \(\Omega \) is a \(N \)-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space \(H^1(\Omega, d\gamma_N) \), where \(\gamma_N \) is the \(N \)-dimensional Gaussian measure.

1. Introduction

Let \(\Omega \) be a convex domain of \(\mathbb{R}^N \) (\(N \geq 2 \)) and let us denote by \(d\gamma_N \) the standard Gaussian measure in \(\mathbb{R}^N \), that is
\[
d\gamma_N = \frac{1}{(2\pi)^{N/2}} e^{-\frac{|x|^2}{2}} dx.
\]
In [3] (see also [36] and [2]) the authors prove, among other things, that, if \(\Omega \) is a convex, bounded domain, the first nontrivial eigenvalue \(\mu_1(\Omega) \) of the following problem
\[
\begin{cases}
-\text{div} \left(\exp \left(-\frac{|x|^2}{2} \right) Du \right) = \mu \exp \left(-\frac{|x|^2}{2} \right) u & \text{in } \Omega \\
\frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega
\end{cases}
\]
(1.1)
satisfies
\[
\mu_1(\Omega) \geq \max \left\{ 1, \frac{1}{2} + \frac{\pi^2}{\text{diam}(\Omega)^2} \right\}.
\]
Here \(\nu \) stands for the outward normal to \(\partial \Omega \) and \(\text{diam}(\Omega) \) for the diameter of \(\Omega \). It is well-known that \(\mu_1(\Omega) \) can be characterized in the following variational way
\[
\mu_1(\Omega) = \min \left\{ \frac{\int_{\Omega} |D\psi|^2 d\gamma_N}{\int_{\Omega} \psi^2 d\gamma_N} : \psi \in H^1(\Omega, d\gamma_N) \setminus \{0\}, \int_{\Omega} \psi^2 d\gamma_N = 0 \right\},
\]

1991 Mathematics Subject Classification. 35B45; 35P15; 35J70.

Key words and phrases. Neumann eigenvalue, Hermite operator, sharp bounds.

¹ Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Complesso Monte S. Angelo, via Cintia - 80126 Napoli, Italy; email: brandolini@unina.it; fchiacch@unina.it; cristina@unina.it.

² Institut Elie Cartan, UMR CNRS 7502, Université de Lorraine, F-54506 Vandoeuvre-les-Nancy Cedex, France; antoine.henrot@univ-lorraine.fr.
where $H^1(\Omega, d\gamma_N)$ is the weighted Sobolev space defined as follows

$$H^1(\Omega, d\gamma_N) \equiv \left\{ u \in W_{\text{loc}}^{1,1}(\Omega) \text{ such that } (u, |Du|) \in L^2(\Omega, d\gamma_N) \times L^2(\Omega, d\gamma_N) \right\},$$
edowed with the norm

$$\|u\|_{H^1(\Omega, d\gamma_N)} = \|u\|_{L^2(\Omega, d\gamma_N)} + \|Du\|_{L^2(\Omega, d\gamma_N)}.$$

Incidentally note that the space $H^1(\Omega, d\gamma_N) \equiv H^1(\Omega)$ whenever Ω is a bounded domain. Estimate (1.2) implies that, if Ω is a bounded, convex domain of \mathbb{R}^N, the following Poincaré-Wirtinger inequality holds

$$\int_{\Omega} \left(u - \frac{1}{|\Omega|} \int_{\Omega} u \right) d\gamma_N \leq \int_{\Omega} |Du|^2 d\gamma_N, \quad \forall u \in H^1(\Omega, d\gamma_N).$$

It is well-known (see for example [20]) that, when $\Omega = \mathbb{R}^N$, inequality (1.3) still holds true. The purpose of this paper is to fill the gap between convex, bounded sets and the whole \mathbb{R}^N by proving the following sharp lower bound.

Theorem 1.1. Let $\Omega \subset \mathbb{R}^N$ be a convex, C^2 domain whose boundary satisfies a uniform interior sphere condition (see (2.1) below). Then

$$\mu_1(\Omega) \geq 1,$$

equality holding if Ω is any N-dimensional strip.

Remark 1.1. We suspect that, up to a rotation, the strip is the unique minimizer of $\mu_1(\Omega)$, but it seems to be a challenging open problem to prove it.

Our strategy consists into constructing a suitable sequence $\{\Omega_k\}_{k \in \mathbb{N}}$ of bounded convex domains invading Ω and then passing to the limit in (1.2). To show that $\mu_1(\Omega_k)$ converge to $\mu_1(\Omega)$ one of the main ingredients is an extension theorem for functions belonging to $H^1(\Omega_k, d\gamma_N)$ with a constant independent of k (see Theorem 2.1, see also [19]).

The structure of the differential operator in (1.1) suggests the relevance of the case of unbounded sets since the density of Gaussian measure degenerates at infinity. Moreover, in such a case, the space $H^1(\Omega, d\gamma_N)$ does no longer coincide with $H^1(\Omega)$. Indeed, when $\Omega = \mathbb{R}^N$, the case mostly studied by physicists, the eigenvalues of problem (1.1) are the integers and the corresponding eigenfunctions are combinations of Hermite polynomials which clearly do not belong to $H^1(\mathbb{R}^N)$.

The Hermite operator appearing in problem (1.1) is widely studied in literature from many points of view. It is a classical subject in quantum mechanics (see for instance [20]) as well as in probability; indeed it is the generator of the Ornstein-Uhlenbeck semigroup (see for example [10]). Finally, problems of the kind (1.1) are related to some functional inequalities as the well-known Gross–Ös Theorem on the Sobolev Logarithmic embedding (see e. g. [31, 27, 26, 38, 21, 11, 24]).

Note that the convexity assumption in Theorem 1.1 cannot be relaxed; it is enough to consider the classical example of a planar domain made by two equal squares connected by a thin corridor. Problems linking the geometry of a domain and the sequence of eigenvalues of a second order elliptic operator are classical since the estimates by Faber, Krahn or Pólya, Szegő concerning the first eigenvalue of the Laplacian with Dirichlet or Neumann boundary conditions respectively. Further developments of this topic can be found for instance in [4, 5, 1, 16, 22, 17, 15, 8], where estimates for Dirichlet eigenvalues and eigenfunctions of linear and nonlinear operator
are derived. Concerning Neumann boundary conditions we refer the reader to [5, 12, 14] and to [37, 6, 18, 28, 29] for lower bounds of Neumann eigenvalues in different contexts (Laplacian, p-Laplacian, manifolds of constant curvature). For results in Gauss space we mention, for instance, [9, 23, 13]. Clearly the above list of references is far from being exhaustive; more papers in this growing field of research are cited in [34, 35, 33, 32].

2. Proof of Theorem 1.1

We recall that, given a subset Ω of \mathbb{R}^N, $\partial \Omega$ satisfies a uniform interior sphere condition if

$$\exists \tilde{r} > 0 : \forall x \in \partial \Omega \ \exists B_{\tilde{r}} \subset \Omega \text{ such that } \overline{B_{\tilde{r}}} \cap \overline{\Omega} = \{x\},$$

where $B_{\tilde{r}}$ denotes a ball with radius $\tilde{r} > 0$.

The proof of our result is divided in two steps. The first one provides an extension theorem that may have an interest by its own. In the second one we consider a sequence of convex, bounded domains $\{\Omega_k\}$ invading Ω satisfying $\mu_1(\Omega_k) \geq 1$ and we show that $\lim_{k} \mu_1(\Omega_k) = \mu_1(\Omega)$.

Theorem 2.1. Let $\Omega \subset \mathbb{R}^N$ be a convex, C^2 domain whose boundary satisfies (2.1) and let us denote $d_0 = \text{dist}(0, \partial \Omega)$. Let $u \in H^1(\Omega, d\gamma_N)$; there exist a function $\tilde{u} \in H^1(\mathbb{R}^N, d\gamma_N)$ extending u to the whole \mathbb{R}^N and a constant C such that

$$||\tilde{u}||_{H^1(\mathbb{R}^N, d\gamma_N)} \leq C||u||_{H^1(\Omega, d\gamma_N)}.$$

In (2.2) $C = C(\tilde{r}, N)$ if $0 \in \Omega$, while $C = C(\tilde{r}, N, d_0)$ if $0 \notin \Omega$.

Proof of Theorem 2.1. We distinguish two cases: $0 \in \Omega$ and $0 \notin \Omega$ and we fix $\tilde{r} = \frac{\tilde{r}}{2}$.

Suppose first that $0 \in \Omega$. Let us denote by $d(x) = \text{dist}(x, \partial \Omega)$ the distance of a point $x \in \mathbb{R}^N$ from $\partial \Omega$ and

$$\Omega_{\tilde{r}} = \{x \in \mathbb{R}^N \setminus \overline{\Omega} : d(x) < \tilde{r}\}, \quad \Omega_{\tilde{r}} = \{x \in \Omega : d(x) < \tilde{r}\}.$$

Let $u \in H^1(\Omega, d\gamma_N)$; we want to extend u to \mathbb{R}^N by reflection along the normal to $\partial \Omega$. Define $\Phi : x \in \Omega_{\tilde{r}} \rightarrow \Phi(x) = x - 2d(x)Dd(x) \in \Omega_{\tilde{r}}$.

By construction Φ is a C^1 one-to-one map; we claim that

$$1 \leq |J_\Phi(x)| \leq 3^{N-1}, \quad \forall x \in \Omega_{\tilde{r}}.$$

A straightforward computation yields

$$\frac{\partial \Phi_i(x)}{\partial x_j} = \delta_{ij} - 2\frac{\partial d(x)}{\partial x_j} \frac{\partial d(x)}{\partial x_i} - 2d(x) \frac{\partial^2 d(x)}{\partial x_i \partial x_j}.$$

By a rotation of coordinates we can assume that the x_N-axis lies in the direction $Dd(x)$. By a further rotation of the first $N - 1$ coordinates we can also assume that the x_1, \ldots, x_{N-1} axes lie along the principal directions corresponding to the principal curvatures $\kappa_1, \ldots, \kappa_{N-1}$ of $\partial \Omega$ at $p(x) = \frac{x + \Phi(x)}{2}$. Clearly $p(x)$ is the projection of x on $\partial \Omega$. In this coordinate system, known as principal coordinate system at $p(x)$, it is immediate to verify that

$$|J_\Phi(x)| = \prod_{i=1}^{N-1} \left(1 + \frac{2d(x)\kappa_i}{1 - d(x)\kappa_i}\right).$$

Claim (2.3) follows recalling that $d(x) < \tilde{r} = \frac{\tilde{r}}{2}$ and $\kappa_i \leq \frac{1}{\tilde{r}}$.

We observe that in the simplest case $N = 2$, (2.3) has been proven, in a different and more direct way, in [13].
Now define

$$\overline{u}(x) = u(\Phi^{-1}(x)) \quad \forall x \in \Omega^\epsilon.$$

Let $\theta \in C^\infty_0(\mathbb{R}^N)$ be a cut-off function such that $0 \leq \theta \leq 1$ in \mathbb{R}^N, $\theta = 1$ on Ω, $\theta = 0$ in $\mathbb{R}^N \setminus (\Omega \cup \Omega^\epsilon)$ and $|D\theta| \leq C = C(\bar{r})$. Set

$$\tilde{u} = \begin{cases}
 u & \text{in } \Omega \\
 \theta \overline{u} & \text{in } \Omega^\epsilon \\
 0 & \text{in } \mathbb{R}^N \setminus (\Omega \cup \Omega^\epsilon).
\end{cases}$$

Since Ω contains the origin, it is easy to verify that

$$\exp\left(\frac{-|\Phi(x)|^2}{2} + \frac{|x|^2}{2}\right) \leq 1 \quad \forall x \in \Omega^\epsilon.$$

Thus, by (2.3), (2.4) and (2.5) we get

$$\int_{\mathbb{R}^N} \tilde{u}^2 d\gamma_N = \int_{\Omega} u^2 d\gamma_N + \int_{\Omega^\epsilon} \tilde{u}^2 d\gamma_N$$
$$\leq \int_{\Omega} u^2 d\gamma_N + \int_{\Omega^\epsilon} u^2(x) \exp\left(\frac{-|\Phi(x)|^2}{2} + \frac{|x|^2}{2}\right) |J_\Phi| d\gamma_N$$
$$\leq C(N) \int_{\Omega} u^2 d\gamma_N.$$

On the other hand, (2.3), (2.4), (2.5) and (2.6) imply

$$\int_{\mathbb{R}^N} |D\tilde{u}|^2 d\gamma_N \leq C(N, \bar{r}) \left[\int_{\Omega^\epsilon} \tilde{u}^2 d\gamma_N + \int_{\Omega \setminus \Omega^\epsilon} |D\tilde{u}|^2 d\gamma_N \right]$$
$$\leq C(N, \bar{r}) \left[\int_{\Omega} u^2 d\gamma_N + \int_{\Omega} |Du|^2 d\gamma_N + \int_{\Omega^\epsilon} |Du|^2 \exp\left(\frac{-|\Phi(x)|^2}{2} + \frac{|x|^2}{2}\right) |J_\Phi| d\gamma_N \right]$$
$$\leq C(N, \bar{r}) \left[\int_{\Omega} u^2 d\gamma_N + \int_{\Omega} |Du|^2 d\gamma_N \right].$$

Hence if Ω contains the origin (2.2) holds true.

Suppose now that $0 \notin \Omega$. Up to a rotation about the origin, the translation $T : x = (x_1, x_2, ..., x_N) \in \mathbb{R}^N \to (x_1 - \delta, x_2, ..., x_N) \in \mathbb{R}^N$, for a fixed $\delta > d_0$, maps Ω onto a set $T(\Omega)$ containing the origin. Define

$$v(x) = v(x_1, x_2, ..., x_N) = u(x_1 + \delta, x_2, ..., x_N) \exp\left(\frac{-x_1\delta}{2} - \frac{\delta^2}{4}\right), \quad x \in T(\Omega);$$

then

$$\int_{\Omega} u^2 d\gamma_N = \int_{T(\Omega)} v^2 d\gamma_N.$$

Since by construction $T(\Omega)$ contains the origin, there exists a function $\tilde{v} \in H^1(\mathbb{R}^N, d\gamma_N)$ such that $\tilde{v} \big|_{T(\Omega)} = v$ and

$$||\tilde{v}||_{H^1(\mathbb{R}^N, d\gamma_N)} \leq C(\bar{r}, N)||v||_{H^1(T(\Omega), d\gamma_N)}.$$

Let

$$\tilde{u}(x) = \tilde{u}(x_1, x_2, ..., x_N) = \tilde{v}(x_1 - \delta, x_2, ..., x_N) \exp\left(\frac{x_1\delta}{2} - \frac{\delta^2}{4}\right).$$
we finally get
\[||\tilde{u}||_{H^1(\mathbb{R}^N, d\gamma_N)} \leq C(\tilde{r}, N, d_0)||u||_{H^1(\Omega, d\gamma_N)}. \]

Using the fact that \(H^1(\mathbb{R}^N, d\gamma_N) \) is compactly embedded into \(L^2(\mathbb{R}^N, d\gamma_N) \) (see for example [25]) and the above extension theorem we deduce the compact embedding of \(H^1(\Omega, d\gamma_N) \) into \(L^2(\Omega, d\gamma_N) \). By classical arguments (see for instance Theorem 5.4.3 in [7], see also Proposition 3.4 in [30]) we can deduce a Poincaré-Wirtinger inequality with a constant depending on \(\Omega \). Therefore, as we said in Section 1, by the classical spectral theory on compact self-adjoint operators, \(\mu_1(\Omega) \) satisfies the following variational characterization
\[
\mu_1(\Omega) = \min \left\{ \frac{\int_\Omega |D\psi|^2 d\gamma_N}{\int_\Omega |\psi|^2 d\gamma_N} : \psi \in H^1(\Omega, d\gamma_N) \setminus \{0\}, \int_\Omega \psi d\gamma_N = 0 \right\}.
\]

When \(\Omega \) is a convex, bounded domain, estimate (1.4) is contained in [3]. Therefore, from now on \(\Omega \) will denote a convex, unbounded domain. Let \(\Omega_k \) be a sequence of convex, bounded, \(C^2 \) domains whose boundaries satisfy (2.1) for every \(k \in \mathbb{N} \), and invading \(\Omega \) in the sense that
\[
\Omega_k \subset \Omega_{k+1} \quad \forall k \in \mathbb{N} \quad \text{and} \quad \bigcup_{k \in \mathbb{N}} \Omega_k = \Omega.
\]

For the explicit construction of a sequence of this kind see for instance [13]. As proven in [3] we have that
\[
(2.7) \quad \mu_1(\Omega_k) \geq 1, \quad \forall k \in \mathbb{N},
\]
that can be equivalently written as
\[
(2.8) \quad \int_{\Omega_k} \psi^2 d\gamma_N \leq \int_{\Omega_k} |D\psi|^2 d\gamma_N, \quad \forall \psi \in H^1(\Omega_k, d\gamma_N) : \int_{\Omega_k} \psi d\gamma_N = 0.
\]

Now we want to pass to the limit in (2.7). To this aim consider the operator
\[
A_k : f \in L^2(\Omega, d\gamma_N) : \int_\Omega f d\gamma_N = 0 \rightarrow \tilde{u}_k \in H^1(\Omega, d\gamma_N),
\]
where \(\tilde{u}_k \) is the extension provided in Theorem 2.1 of the solution \(u_k \in H^1(\Omega_k, d\gamma_N) \) to the following problem
\[
(2.9) \quad \begin{cases}
-\text{div} \left(\exp \left(-\frac{|x|^2}{2} \right) Du_k \right) = (f - c_k) \exp \left(-\frac{|x|^2}{2} \right) & \text{in } \Omega_k \\
\frac{\partial u_k}{\partial \nu} = 0 & \text{on } \partial \Omega_k \\
\int_{\Omega_k} u_k d\gamma_N = 0,
\end{cases}
\]
where \(c_k =: \int_{\Omega_k} f d\gamma_N \) and \(\nu \) is the outward normal to \(\partial \Omega_k \). Observe that Lax-Milgram theorem ensures the existence and uniqueness of \(u_k \). Moreover \(\gamma_N(\Omega \setminus \Omega_k) \rightarrow 0 \) implies \(c_k \rightarrow 0 \). We also
introduce the operator
\[A : f \in L^2(\Omega, d\gamma_N) : \int_{\Omega} f \, d\gamma_N = 0 \longrightarrow u \in H^1(\Omega, d\gamma_N), \]
where \(u \) is the unique solution, whose existence is guaranteed by Lax-Milgram theorem, to the problem
\[
\begin{align*}
\begin{cases}
-\text{div} \left(\exp \left(-\frac{|x|^2}{2} \right) Du \right) = f \exp \left(-\frac{|x|^2}{2} \right) & \text{in } \Omega \\
\frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \\
\int_{\Omega} u \, d\gamma_N = 0.
\end{cases}
\end{align*}
\]
Using \(u_k \) as test function in (2.9), from Schwarz inequality we deduce
\[
\int_{\Omega_k} |Du_k|^2 \, d\gamma_N = \int_{\Omega_k} u_k(f - c_k) \, d\gamma_N \leq \left(\int_{\Omega_k} u_k^2 \, d\gamma_N \right)^{1/2} \left(\int_{\Omega_k} (f - c_k)^2 \, d\gamma_N \right)^{1/2}.
\]
Using (2.8) and recalling that \(c_k \to 0 \), we get
\[
\int_{\Omega_k} |Du_k|^2 \, d\gamma_N \leq C_1 \left(\int_{\Omega} f^2 \, d\gamma_N \right)^{1/2} + C_2,
\]
where \(C_1, C_2 \) are positive constants whose values are independent of \(k \). The above inequality together with (2.8) yield
\[
\int_{\Omega_k} u_k^2 \, d\gamma_N + \int_{\Omega_k} |Du_k|^2 \, d\gamma_N \leq C,
\]
where \(C \) is a positive constant whose value is independent of \(k \). From (2.2) we deduce that the sequence \(\{u_k\}_{k \in \mathbb{N}} \) is bounded in \(H^1(\Omega, d\gamma_N) \). Since the embedding of \(H^1(\Omega, d\gamma_N) \) into \(L^2(\Omega, d\gamma_N) \) is compact, there exists a (not relabelled) subsequence \(\tilde{u}_k \) such that \(\tilde{u}_k \to v \) in \(H^1(\Omega, d\gamma_N) \), \(\tilde{u}_k \to v \) in \(L^2(\Omega, d\gamma_N) \) and a.e. in \(\Omega \). In fact \(v \) coincides with \(u \) since they both solve the same problem (2.10). Indeed, let \(\phi \in C^\infty(\Omega) \). Recalling that \(\gamma_N(\Omega \setminus \Omega_k) \to 0 \) and \(\Omega_k \subset \Omega \), we get
\[
\int_{\Omega} Dv \, D\phi \, d\gamma_N = \lim_k \int_{\Omega} D\tilde{u}_k \, D\phi \, d\gamma_N = \lim_k \left(\int_{\Omega_k} D\tilde{u}_k \, D\phi \, d\gamma_N + \int_{\Omega \setminus \Omega_k} D\tilde{u}_k \, D\phi \, d\gamma_N \right)
\]
Finally, as \(k \) goes to \(+\infty \),
\[
(2.11) \quad \|(A_k - A)f\|_{L^2(\Omega, d\gamma_N)} = ||\tilde{u}_k - u||_{L^2(\Omega, d\gamma_N)} \to 0.
\]
The compact embedding of \(H^1(\Omega, d\gamma_N) \) into \(L^2(\Omega, d\gamma_N) \) and (2.11) allow us to adapt Theorems 2.3.1 and 2.3.2 in [32] to conclude that the operators \(A_k \) strongly converge to \(A \) and hence
\[
\mu_1(\Omega_k) \to \mu_1(\Omega).
\]
Finally we prove the optimality of our estimate (1.4). Consider the \(N \)-dimensional strip
\[
S_a = \{ x = (x_1, x_2, \ldots, x_N) \in \mathbb{R}^N : -a < x_1 < a, x_2, \ldots, x_n \in \mathbb{R} \}, \quad a \in (0, +\infty).
\]
The eigenfunctions are factorized and can be written as linear combinations of products of homogeneous Hermite polynomials $H_{n_1}(x_1), H_{n_2}(x_2),\ldots, H_{n_N}(x_N)$. We recall that the Hermite polynomials in one variable are defined by

$$H_n(t) = (-1)^n e^{t^2/2} \frac{d^n}{dt^n} e^{-t^2/2}, \quad n \in \mathbb{N} \cup \{0\},$$

and they constitute a complete set of eigenfunctions to problem (1.1) when $\Omega = \mathbb{R}$; more precisely

$$-\left(e^{-t^2/2} H'_n(t) \right)^{-t^2/2} H_n(t), \quad n \in \mathbb{N} \cup \{0\}.$$

Denote by $\lambda_1(-a,a)$ the first Dirichlet eigenvalue of the one-dimensional Hermite operator in the interval $(-a,a)$. One can easily verify that

$$\mu_1(-a,a) = \lambda_1(-a,a) + 1 > 1 = \mu_1(\mathbb{R}).$$

Therefore $\mu_1(S_a) = 1$ for every $a \in (0, +\infty)$ and a corresponding eigenfunction is, for instance, $H_1(x_2) = x_2$.

References

