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Cold atomic gases have proven to be a useful resource for precision measurements of the atom 

properties or of the external forces acting on them. For example, atom interferometers permit the 

measurement of the local gravity constant g with a relative accuracy of the order of 10
-8

 at 1s
 1
. A long 

observation time is demanded in order to obtain the best accuracy. This time is limited not only by the 

expansion of the sample and thus its temperature (100 nK corresponds to an expansion velocity of  ~3 m/s 

for  Rubidium 87 and can be achieved by a combination of laser cooling and evaporative cooling 

techniques), but also by the size of the vacuum chamber in which the atoms are in free fall. In this paper, 

we describe two schemes producing atomic mirrors
2
 in order to bounce the atoms upward in a 

controllable way and thus keep them in a small volume for a long time. These  two schemes are  hereafter 

called classical
3,4

 and quantum trampolines
5
. 

The mirrors for both schemes are based on atom diffraction by a periodic optical potential
6
, i.e. a 

vertical light standing wave of period !/kL, where kL is the laser wavevector (in our case 2!/kL=780 nm). 

An atom in the momentum state |-kL>  can be reflected to the state |+kL> by a standing wave laser pulse. 

This is a process called Bragg diffration. After a time T0 = 2 !kL /mg ! 1.2 ms for 
87

Rb, where ! is the 

reduced Planck constant and m the atomic mass
7
, the state |+kL> evolves back into the state |-kL>  because 

of the downwards acceleration of gravity g. Repeating the standing-wave laser pulse with a period T0 thus 

allows to suspend the atoms at an almost constant altitude. It realizes a trampoline for ultra-cold atoms. 

This setup allows for the measurement of g
3,4

 as the trampoline only suspends atoms for the precise value 

of the period T0.  

We first analyse more precisely the diffraction process.  The Hamiltonian H of an atom in the 

presence of the standing wave and of gravity reads: H=p
2
/2m+mgz+Vsin

2
(2kLz). In the absence of the 

standing wave (V=0), a momentum state |k> evolves with time t in |k-gt/!>. The interaction between the 

atoms and the optical potential leads to vertical momentum changes quantized in units of 2!kL. Starting 

with a momentum state |k> at time t=0, only the states |k-gt/!+2nkL>, where n is an integer, will be 

populated over time. In this basis, the Hamiltonian reduces to a simple matrix with the energies !
2
/2m (k-

mgt/!+2nkL)
2
 along the diagonal and V/4 as the coupling between the states differing by 2kL. The system 

dynamics can be simulated numerically. 

To use the standing wave as a mirror, the idea is to use the resonant coupling between the states |-

kL> and |+kL>, which have the same energy. In this case a perfect mirror should be realizable. However, 

as the momentum states are constantly changing due to gravity, the resonant condition is only transiently 

met, reducing the possible duration of the pulse. In order to realize a good mirror (avoiding higher order 

diffraction), it is also favourable to use a smoothly varying intensity of the standing wave rather than 

square-shaped pulsed
8,9

. In our case, we use a laser intensity varying as cos
2
(! t/") between t=-"/2 and "/2, 

where " is the total duration of the pulse and where the resonant condition is met at t=0. For each value of 

", the absolute value of the intensity is adjusted in order to obtain the maximum amount of transfer from 

the state |- kL> to |+kL>. Theoretically, we find that "=170 µs gives an optimum transfer efficiency  (larger 

than 0.999). Figure 1 shows the different state occupation probabilities as a function of time during the 

pulse.  

In the experiment, we use "=180 µs and are able to bounce a cloud of atoms 25 times 

corresponding to a total time of 30 ms (see 
10

 for details on the cold atom sample preparation). By varying 

the period T between the laser pulses, we observe a resonance in the number of atoms kept on the 

trampoline
3,4

 (see figure 2). This effect can be simply understood. If the period T does not match T0, the 

atoms have a mean residual acceleration and later laser pulses are applied on atoms with a momentum 

different from – !kL. The reflection probability is then reduced. From our experimental data, we can 



2 

estimate T0 and thus also give an estimate of the value of gravity g=9.81(1). This method does not rely on 

the phase between the different pulses as it is not an interferometer. We call it a classical trampoline
11

. 

The suspended atoms can then by used to build a two-path interferometer has demonstrated in 
4
. 

Interestingly, our setup can also efficiently suspend atoms against gravity using shorter and 

square-shaped pulses
5
. This may seem surprising as in this case, the quality of an individual atomic mirror 

is poor. For example, for a 35 µs pulse acting on |-kL>, 93% of the atoms are transferred to |+kL>, but also 

3% to |-3kl> and |+3kl> and a fraction below 1% remains in |-kL>. Experimentally, in this case, we observe 

that (unlike in the smoothed pulse case) the fraction of suspended atoms shows fringes as a function of T 

(see figure 3). This behavior is characteristic of an interferometer. These interferences actually arise from 

the recombination of the various trajectories populated due to the splitting induced by the imperfect 

mirror pulses, as detailled in 
5
 and similarly to the theoretical proposition

12
. This method thus permits to 

simultaneously suspend the atom against gravity and create an interferometer. Actually, one can use the 

absolute fringe position for a measurement of gravity, as in standard atom gravimeters. In order to do that, 

one has to be able to predict the phase acquired during the laser pulses (using the diffraction model 

presented previously). For example, the phase of the interferometer varies with the laser pulse duration 

"  (see Fig. 3b). Here we find g= 9.815(4) in agreement with the expected value in Palaiseau
13

.  

In conclusion, we have shown methods to suspend atoms against gravity using a standing-wave as 

an atomic mirror. Using smoothed standing-wave laser pulses, very efficient reflection is expected and 

the atoms are suspended as on a trampoline. Alternatively, short square-shaped laser pulses lead to 

numerous possible atom trajectories, which then interfere. The atoms may then efficiently bounce due to 

quantum interferences hindering the losses. In this case, our setup is a quantum trampoline
5
, a multiple-

wave interferometer
14,15,16 

permitting the measurement of gravity. Our work opens perspectives for new 

types of compact interferometers, in which atoms do not fall over an extended distance.  
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Figure 1: Evolution of the occupation probability of the different momentum states as a function 

of time for a smooth standing-wave light pulse of duration 180 µs (left) and for a square-shaped 

pulse of duration 35 µs (right). Solid red line: |-kL>, dashed green line: |+kL>, dot-dashed light 

blue line: |-3kL>, dotted blue line: |+3kL>.   
 
 

 
  
Figure 2: Fraction of suspended atoms after 25 Bragg reflections using smooth light pulses as a 
function of the period T. Solid line: Gaussian fit to the data centred at T=1.1996(10) ms, 
corresponding to g=9.81(1). 
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Figure 3: Fraction of suspended atoms after 10 square-shaped light pulses as a function of the 
period T. The overall envelope is due to the velocity selectivity

3
 
 
of the pulses as in the classical 

trampoline while the modulation is due to quantum interference. The solid line corresponds to a 
theoretical model

5
. b, position of three consecutive fringe maxima around the highest maximum, 

as a function of the pulse duration, showing the influence of the phase shift imprinted by the 
diffraction pulses : Dots are experimental points, with error bars reflecting the experimental 
uncertainties. Solid lines come from a theoretical model using g=9.815 m.s

-2
. 

 
 
   
 


