Functionalized nanomaterials: their use as contrast agents in bioimaging: mono- and multimodal approaches
Quentin Le Trequesser, Hervé Seznec, Marie-Hélène Delville

To cite this version:
Functionalized Nanomaterials: Their Use As Contrast Agents In Bio-imaging: Mono- And Multimodal Approaches

Le Trequesser Quentin,1,2,3 Seznec Hervé,2,3 Delville Marie-Hélène1,*

1 CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, F-33608, Pessac, France
2 Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Etudes Nucléaires de Bordeaux Gradignan, Chemin du Solarium, BP120, F-33175, Gradignan, France
3 CNRS/IN2P3, Université de Bordeaux, UMR5797, Centre d'Etudes Nucléaires de Bordeaux Gradignan, Chemin du Solarium, BP120, F-33175, Gradignan, France

Correspondence should be addressed to MHD (delville@icmcb-bordeaux.cnrs.fr)

Abstract

The successful development of nanomaterials illustrates the considerable interest in the development of new molecular probes for medical diagnosis and imaging. Substantial progress was made in synthesis protocol and characterization of these materials whereas toxicological issues are sometimes incomplete. Nanoparticle-based contrast agents tend to become efficient tools for enhancing medical diagnostics and surgery for a wide range of
imaging modalities. Multimodal nanoparticles (NPs) are much more efficient than conventional molecular-scale contrast agents. They provide new abilities for in vivo detection and enhanced targeting efficiencies through longer circulation times, designed clearance pathways, and multiple binding capacities. Properly protected, they can safely be used for the fabrication of various functional systems with targeting properties, reduced toxicity and proper removal from the body. This review mainly describes the advances in the development of mono- to multimodal NPs and their in vitro and in vivo relevant biomedical applications ranging from imaging and tracking to cancer treatment. Besides specific applications for classical imaging, (MRI, PET, CT, US, PAI) are also mentioned less common imaging techniques such as terahertz molecular imaging (THMI) or ion beam analysis (IBA). Perspectives on multimodal theranostic NPs and their potential for clinical advances are also mentioned.

Keywords. Nanoparticles, Multimodal Bio-imaging, Characterization, Multifunctionality, Theranostic.

Contenu

Abstract .. 1

Introduction .. 3

1 Magnetic resonance imaging (MRI) .. 6

1.1 \(T_1 \) NPs-based contrast agents ... 6

1.2 \(T_2 \) NPs-based contrast agents ... 8

1.3 Other probes .. 10

1.3.1 PARACEST nanoparticles ... 10

1.3.2 Metal nanoparticles .. 10

2 Near-infrared fluorescence (NIRF) imaging ... 11

2.1 Quantum dots ... 11

2.2 Dye-doped nanoparticles ... 12

2.3 Upconverting nanomaterials ... 13

2.4 Carbon nanomaterials .. 14

2.5 Other probes and NIRF techniques .. 16
Introduction

Nanoparticles as contrast agents tend to become standard practice in the field of imaging, for both bio-imaging and medical imaging [1]. They are used to improve the enhancement of image contrast as compared to molecular species and improve the visibility of features that would otherwise be difficult to detect. They go on receiving considerable attention in this
field for their potential as contrast agents, [2-9] offering many advantages compared to more conventional chemical agents such as greater biocompatibility and reduced toxicity [8, 10-13]. Noninvasive imaging and minimally invasive in vivo bio-imaging techniques are of course the most valuable tools for clinical diagnostics. Clinical Imaging modalities generally include complementary techniques [14] such as: optical imaging, [15-23] magnetic resonance imaging (MRI), [24-27] computed tomography (CT), [28] ultrasound imaging (USI) [29-33] positron emission tomography (PET) [34-37] and single photon emission computed tomography (SPECT) [38-40]. Other techniques are also scrutinized, for example multi-photon plasmon resonance microscopy, [41] optical coherence tomography (OCT), [42] surface enhanced Raman spectroscopy (SERS), [15, 43-47] and diffuse optical spectroscopy [48]. Some of these techniques enable entire-organism anatomical imaging (e.g. MRI or PET) and others provide more specific molecular imaging (e.g., optical fluorescence or USI) at subcellular resolution. Combination of these different tools should allow a better early-stage cancer diagnosis, guided stem cell therapies, drug delivery, pathogen detection, gene therapy, image-guided surgery, and cancer staging, [49] in addition to many other clinically relevant procedures, diagnostics, and therapies.

To help improving these techniques resolution, nanoparticles (NPs) emerge as very powerful probes for both in vivo imaging in medical and biological diagnostics. Several NP-based contrast agents (CAs) have helped generating breakthroughs as compared to common CAs improving their properties and detection limits, in a broad array of imaging modalities. The specifications of an ideal NP CA are numerous. It should exhibit colloidal stability in biological in vivo media, non-dependence on solvent polarity, ionic strength, pH, or temperature. Other properties such as limited nonspecific binding, resistance to reticulo-endothelial system (RES) uptake, and easy clearance mechanisms are also required. High sensitivity and selectivity for the target (e.g., antigen, cell, tissue) with good contrast quality (high signal-to-noise ratio, (SNR)) and sufficiently long blood circulation times are also mandatory. In other words, this NP should have the adapted long-term quantitative imaging at low doses and be safely cleared from the body after imaging completion.

In Table 1 besides the characteristics of the most commonly used in vivo imaging modalities in the clinical field are also gathered some more recent ones such as TeraHetz molecular imaging (THMI), Particle induced x-ray emission (PIXE), Rutherford Backscattering Spectrometry (RBS), and Scanning Transmission Ion Microscopy (STIM). Each type of in
vivo imaging technique has its own advantages and limitations, which include spatial and/or temporal resolution, sensitivity, SNR, penetration depth in tissue, and quantitative accuracy.

Table 1. List of commonly used bio-imaging techniques (partly adapted from Refs [50] and [51]).

<table>
<thead>
<tr>
<th>Technique</th>
<th>Typical NP label</th>
<th>Signal measured</th>
<th>Resolution</th>
<th>Depth</th>
<th>Sensitivity (moles of label detected)</th>
<th>Advantages</th>
<th>Cost</th>
<th>Main limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical and NIRF</td>
<td>QDs, dye-doped NPs, upconverting NPs, SWNTs and other carbon-based nanomaterials (dots, diamonds, graphene)</td>
<td>Light, particularly in the near-infrared</td>
<td>1–3 mm</td>
<td><1 cm</td>
<td>10^{-12}</td>
<td>High sensitivity</td>
<td>Multicolor imaging</td>
<td>Low</td>
</tr>
<tr>
<td>MRI</td>
<td>Iron oxide NPs, Gd(III)-doped NPs, NP-based CEST and hyperpolarized probes (e.g., 129Xe)</td>
<td>Alterations in magnetic fields</td>
<td>25–100 μm</td>
<td>No limit</td>
<td>$10^{-2}–10^{-6}$</td>
<td>High spatial resolution</td>
<td>Hig h</td>
<td>Low sensitivity, cannot follow many labels, time consuming</td>
</tr>
<tr>
<td>PET</td>
<td>NPs incorporating radioisotopes (e.g., 18F, 11C, 64Cu, 124I)</td>
<td>Positron from radionuclide</td>
<td>1–2 mm</td>
<td>No limit</td>
<td>10^{-15}</td>
<td>High sensitivity quantitative entire body scanning</td>
<td>Hig h</td>
<td>Can detect only one radionuclide, requires radioactivity</td>
</tr>
<tr>
<td>SPECT</td>
<td>NPs incorporating radioisotopes (e.g., 99mTc, 111In)</td>
<td>γ-rays</td>
<td>1–2 mm</td>
<td>No limit</td>
<td>10^{-14}</td>
<td>High sensitivity</td>
<td>Hig h</td>
<td>Uses radioactivity Poor spatial resolution</td>
</tr>
<tr>
<td>CT</td>
<td>Iodinated NPs, gold NPs, iron oxide-doped nanomaterials</td>
<td>X-rays</td>
<td>50 μm</td>
<td>No limit</td>
<td>10^{-6}</td>
<td>High spatial resolution</td>
<td>Hig h</td>
<td>Poor resolution of soft tissues Not quantitative</td>
</tr>
<tr>
<td>US</td>
<td>Microbubbles, nanoemulsions, silica NPs, polystyrene NPs</td>
<td>Sound</td>
<td>50 μm</td>
<td>Several cm</td>
<td>10^{-8}</td>
<td>Real-time measurement</td>
<td>Low</td>
<td>Poor image contrast, works poorly in air-containing organs</td>
</tr>
<tr>
<td>PAT<sup>a</sup></td>
<td>Gold nanoshells, gold nanocages, gold nanorods, gold NPs, SWNTs, dye-doped NPs</td>
<td>Sound</td>
<td>50 μm</td>
<td><5 cm</td>
<td>10^{-12}</td>
<td>multiscale imaging anatomical, functional, molecular and fluid-dynamic imaging</td>
<td>Low</td>
<td>Information processing and machines still being optimized</td>
</tr>
<tr>
<td>THMI<sup>b</sup></td>
<td>Gold nanorods</td>
<td>Heat variation</td>
<td>100 μm</td>
<td>No limit</td>
<td>10^{-6}</td>
<td>High sensitivity molecular network information based on hydrogen bonding</td>
<td>Quantitative</td>
<td>Restricted to in vitro studies</td>
</tr>
</tbody>
</table>

Ion beam Analysis [52] (PIXE^c, RBS^d, STIM^e [53])

a) PAT: photoacoustic tomography
b) THMI: TeraHetz molecular imaging
c) PIXE: Particle induced x-ray emission
d) RBS: Rutherford Backscattering Spectrometry
A close look at the literature reveals that basically there are some types of NPs which always appear as contrast agents: metal NPs (mostly gold) and metal oxide NPs. They appear either as active agents such as iron oxide in MRI for example, or as carriers of the active agent like silica NPs.

In this review, our aim is to give a state of the art of the most recent works on the subject including the most recent techniques, and to categorize these NPs according to their field of activities: MRI, near-infrared fluorescence (NIRF) imaging, positron emission tomography (PET), computed tomography (CT), ultrasound (US), photoacoustic imaging (PAI) and TeraHetz molecular imaging (THMI). Table 1 highlights the current NP-based contrast labels for each of these techniques. The accent will be stressed on multifunctional/multimodal NPs and theranostic NPs; their potential for clinical use, will also be discussed. The reader can also get information on numerous imaging techniques in various reviews [14, 16, 28, 54-56].

1 Magnetic resonance imaging (MRI)

MRI is typically the noninvasive and nonionizing imaging method that provides both physiological and pathological information about living tissue, usually by measuring water proton relaxation rates. MRI offers high soft tissue contrast especially with contrast agents (CAs) and provides deep tissue imaging with high spatial resolution (~ 50 μm). The major drawback of this technique is its low sensitivity requiring the use of these CAs whose role is to alter relaxation processes. CAs are divided in two classes: those that increase the T_1 signal in T_1-weighted images (so-called positive contrast agents, giving a bright contrast), and those that reduce the T_2 signal in T_2-weighted images (so-called negative contrast agents, leading to a dark contrast). The effectiveness of a particular probe is defined by its longitudinal (r_1) and transverse (r_2) relaxivities. T_2 agents are not so convenient for diagnosis because they provide dark contrast which is not so easy to interpret for clinicians. In contrast, the signal produced by T_1 (paramagnetic) contrast agents, can easily be detected with high spatial resolution.

1.1 T_1 NPs-based contrast agents

Three important requirements for the design of highly sensitive paramagnetic NPs have been identified: (i) a large number of labile water molecules coordinated to the metal; (ii) optimum residence lifetime at the metal site; and (iii) a slow tumbling motion of the NP containing the
contrast agent. To fulfill these requirements, a well-known T_1 CA, Gd(III), has been incorporated into various nanomaterials, for example silica and perfluorocarbon nanoparticles, carbon nanotubes, carbon nanodots, and nanodiamonds, which all exhibit high MR contrast because of a high payload of gadolinium ions and a slow tumbling motion of particles. For a Gd(III) complex attached to nanodiamonds, a 10-fold relaxivity increase was observed compared with the monomeric Gd(III) complex. Gadolinium chelates were grafted on to gold for dual imaging and mesoporous silica NPs, leading to a high local concentration of CA as compared to molecular complexes. They were associated with other lanthanides to provide particles capable of dual imaging, with drug for therapeutic function or with gene in microglial cells for therapy.

However, gadolinium loading on these systems strongly depends on the number of anchoring sites available on the surface of the NPs even if Gd (III) could also recently be dispersed in a carbon matrix. A way to solve this problem relies in the synthesis of Gd–based paramagnetic NPs, such as Ln$_2$O$_3$, GdF$_3$, and GdPO$_4$ which yield high magnetic moments because of the abundance of paramagnetic ions on their surfaces. Transition metal oxide (MnO) NPs have recently been developed by various groups for T_1-contrast imaging of brain tumors, in addition to the liver and kidney. Hollow MnO NPs could also carry drug molecules in their cavities for simultaneous imaging and therapy applications.

Silica has been recognized as a good candidate for a coating material because it is relatively biocompatible and resistant to biodegradation. Among others, mesoporous silica-coated hollow MnO NPs (HMnO@mSiO$_2$) have been synthesized and characterized. These nanoparticles show a significantly higher r_1 relaxivity than other existing manganese oxide nanoparticle based contrast agents. The porous SiO$_2$ coating enables water exchange across the shell and the high surface-to-volume ratio of the hollow structure increases the water accessibility to the manganese core and consequently enhances T_1 contrast. HMnO@mSiO$_2$ nanoparticles also showed potential MRI cell tracking using positive contrast.

With relaxivities that depend on the biological environment, “smart” T_1 MR probes that respond to their surroundings have been pursued extensively. This class of probe primarily consists of Gd(III)-based complexes; incorporation of these smart probes into NPs will further enhance their efficiency in molecular imaging applications. Very recently, the use of an improved hydrolysis method of inorganic salts assisted by incubation in a water bath, led to water-soluble extremely small-sized metal-iron oxide nanoparticles iron oxide based NPs: MFe$_2$O$_4$ (ESIONs) (M = Fe, Zn, Ni) NPs with average sizes of 4 to 5 nm. The r_1
relaxivities and the r_2/r_1 ratios of these nanoparticles were more than 5 and less than 3, respectively, which indicated that they were good candidates as T_1-weighted MRI contrast agents. As an example, the γ-Fe$_2$O$_3$ ESIONs were synthesized by controlled thermal decomposition of iron-oleate complex in the presence of oleyl alcohol via heat-up process. These ESIONs revealed a maghemite crystal structure with a magnetization much smaller than that of 12 nm-sized iron oxide NPs due to their small magnetic moment and a spin canting effect. ESIONs have a large number of surface Fe$^{3+}$ ions with 5 unpaired electrons exhibited high r_1 relaxivities of > 4.7 mM$^{-1}$ s$^{-1}$ and low r_2/r_1 ratios of < 6.2. Their high r_1 relaxivity and long blood circulation time enabled high-resolution blood pool T_1-weighted MR imaging of various blood vessels with sizes down to 0.2 mm. With their low toxicity, high r_1 relaxivity, long blood half-life, they could become the new T_1 MRI contrast agents for various clinical applications including diagnosis of the myocardial infarction, renal failure, atherosclerotic plaque, thrombosis, and angiogenesis of tumor cells.

1.2 T_2 NPs-based contrast agents

Besides these lanthanide derivatives, magnetic NP-based probes have been developed for MRI to achieve high tissue contrast and to improve imaging sensitivity. The most popular material studied for T_2 (superparamagnetic) contrast agents is based on iron oxide NPs (maghemite and magnetite), which are generally coated with dextran, PEG, or other polymers, and are used for clinical MRI [78-82]. Based on their size, these NPs have been classified as magnetic iron oxide NPs (MION, μm), superparamagnetic iron oxide (SPIO, hundreds of nm), ultra-small paramagnetic iron oxide (USPIO, <50 nm) and down. SPIO contrast agents have been essentially used clinically for diagnosis of liver diseases, [83] whereas USPIO probes are generally used for lymph-node imaging, angiography, and blood-pool imaging [84-89]. Besides their clinical use, MRI contrast agents based on iron oxide nanoparticles are actually developed for studying biological processes: Significant contributions in this research area have illustrated the potential use of these particles for molecular and cellular imaging applications [78, 80, 82, 90-94].

As an example, [95] Transferrin(Tf)-SPIONs were injected intravenously in a rat bearing two tumors with different levels of Transferrin receptor (TfR) and MRI performed (Figure 1). The decrease in T_2 relaxation time was much more pronounced for the tumor expressing high levels of the TfR compared to the tumor expressing low levels of the receptor showing that both in vitro and in vivo MRI can be significantly improved when iron oxide NPs are targeted
towards cell surface receptors that are overexpressed in tumors. A better understanding of imaging biology could significantly influence the design, synthesis, and efficacy of MRI probes.

Figure 1 here

The efficiency of iron oxide probes as T_2 contrast agent is size-dependent and increases with higher particle crystallinity [26, 79, 86, 96, 97]. However, these NPs generally synthesized at low temperatures, have poor crystallinity associated with small size, and lack of monodispersity, as also found for other nanomaterials [98].

Another challenge for this class of contrast agents is the development of efficient methods for their dispersion in biological media and surface functionalization for biological targeting. Their encapsulation in a silica coating [99] may be a good option since it provides colloidal stability in biological solutions by avoiding inter-particle interactions and agglomeration. Furthermore, it can act as an anchor for the binding of biological vectors at the NPs surface. The thickness of the silica shell has also a strong influence on the physical properties of the NPs, especially in terms of contrast agent efficacy for magnetic resonance imaging. An ideal shell thickness was determined to be around 35 nm [100].

The inherent negative contrast associated with iron oxide NPs has limited their use in low-signal regions of the body or in organs with intrinsically high magnetic susceptibilities, for example the lungs. To solve this problem, specific methods based on either pulse sequences [101, 102] design [103] or size control [76] of nanoparticles have been developed by researchers to generate bright contrast from iron oxide NPs.

Other T_2-based NPs contrast agents with improved magnetic and physicochemical properties have been developed such as paramagnetic dysprosium nanomaterials (nanoparticles and nanorods) [104, 105]. Their negligible r_1 relaxivity enhances T_2 MR imaging because in that case protons are nearly exclusively induced for T_2 MR imaging at a negligible r_1. Bimetallic ferrite NPs such as CoFe$_2$O$_4$, MnFe$_2$O$_4$, and NiFe$_2$O$_4$ NPs have been investigated as potential T_2 contrast agents, and some of them, especially MnFe$_2$O$_4$ NPs have been found to display a very high magnetization and large T_2 relaxivity values [106]. However, long term toxicity issues of these new nanomaterials have yet to be assessed. The key point for these NPs to serve as T_1 or T_2 agents is their size. Indeed, some of these ferrites (Fe$_3$O$_4$, ZnFe$_2$O$_4$ and NiFe$_2$O$_4$) when displaying a 4-5 nm size have recently been used as T_1-weighted contrast agents for magnetic resonance imaging (MRI), see ref. [77].
1.3 Other probes

1.3.1 PARACEST nanoparticles

Nanoparticle CAs are also now used as paramagnetic chemical exchange saturation transfer (PARACEST) agents when they display bound water signals that can exchange protons with the bulk water. PARACEST magnetic resonance imaging (MRI) relies on these exchangeable protons that resonate at a chemical shift which is clearly distinguishable from the bulk water signal due the paramagnetism of the particle. Radiofrequency pre-pulses when applied at an appropriate frequency saturate the exchangeable protons, which transfer into the bulk water pool and lead to reduced equilibrium magnetization allowing the image contrast to be switched ‘on’ and ‘off’ by a simple change of the pulse sequence parameters. To enhance the inherent insensitivity of MRI to PARACEST agents and improve the limit of detection for these agents, nanoscale carriers have been developed such as liposomes, dendrimers, polymers, adenovirus particles, and perfluorocarbon nanoparticles [79, 107-109]. The unique MRI properties of such nanoparticle systems generate a large interest in potential medical applications.

1.3.2 Metal nanoparticles

Ferromagnetic cobalt particles coated with gold (Au) for biocompatibility with a unique shape that enables optical absorption over a broad range of frequencies were used for MRI and photoacoustic tomography (PAT) so as to detect picomolar concentrations of nanoparticles. This dual-modality probe revealed very useful for detection of trace amounts of nanoparticles in biological tissues, in which MRI provides volume detection, whereas PAT performs edge detection [110]. Water-soluble cobalt oxide nanocrystals (CoO NCs) were obtained via a phase-transfer method with amphiphilic surfactants, such as anionic (sodium dodecyl sulfate, SDS), neutral (Pluronic F127, PF127) and cationic (cetyltrimethyl ammonium bromide, CTAB) [111]. A field-dependence of the magnetization on the type of surfactants showed the crucial role of the later. The longitudinal relaxivities (r_1) and transverse relaxivities (r_2) of the functionalized CoO NCs gave a r_2/r_1 of about 26 for CoO NCs functionalized with PF127 showing some potential as T_2 contrast agents. Cobalt ferrite NPs were also probed and displayed r_2 values higher than those of commercial ferumoxytol (91 mM$^{-1}$ s$^{-1}$) [111].
2 Near-infrared fluorescence (NIRF) imaging

Fluorescence imaging is a powerful molecular imaging technique, in which specific probes (i.e., fluorophores) are excited by incident radiation, usually in the visible or NIR, and emit energy at a (usually) lower energy than that of the excitation one. Despite its extremely high-sensitivity detection and location of individual cells, mRNA, DNA, proteins, peptides, receptors, low-expressing cellular markers, it lacks the ability to provide anatomical resolution which is limited to 2-3 mm. As long as noninvasive imaging is concerned, fluorescence in the visible region is usable only for thin tissue sections. Deeper penetration depths required for most clinical applications need fluorescence-based techniques working in the NIR region (650-950 nm). In this NIR window, the absorption of water, hemoglobin, and lipids are at their minimum while auto-fluorescence and tissue scattering are low, enabling maximum light penetration and therefore high SNRs and sensitive detection. The light penetration depth depends on the type of tissue imaged; indeed skin and muscles are more transparent than organs with lots of vasculature (e.g., liver and spleen) because of absorption by hemoglobin. However, new advances in optical microscopy imaging techniques [18] have increased light penetration depths. The fluorophores must be bright with large Stokes shifts and high fluorescence quantum yields in the NIR, photostable as well as resistant to degradation in biological systems. Reviews on NPs used in in vivo fluorescence imaging are available [112-114].

2.1 Quantum dots

Quantum dots (QDs) exhibit broad absorption spectra, large absorption cross-sections, narrow and tunable emission spectra, high fluorescence quantum yields, and high photostability. [115] For all these reasons they are extremely popular in fluorescence imaging application. Their optical properties enable bi- [116] and even multicolor imaging, with different colored QDs used in a single assay with only one excitation source [117]. This is illustrated in Figure 2, which clearly shows one of the first demonstrations of an in vivo simultaneous imaging of five different lymphatic flows and their trafficking to distinct lymph nodes. The versatility and use of multiple QDs in a single assay to visualize several lymphatic drainages in a mouse give rise to a new powerful tool.

Figure 2 here
NIR emitting QDs comprise II–VI, IV–VI, and III–V compounds, such as CdSe, CdTe, HgTe, PbS, PbSe, PbTe, InAs, InP, and GaAs, as well as alloys of these materials, and core@shell structures, which can allow the emission tuning further and alter fluorescence lifetimes. Interesting probes are based on self-illuminating QDs, using fluorescence resonance energy transfer (FRET) from bioluminescent proteins conjugated to the QD [118, 119]. However, potential toxicity due to heavy metal ions has to be taken into account and may be detrimental for their use in clinical bio-imaging [120] and limit their use to in vitro and diagnostic assays. However, they have been used successfully in a sentinel lymph node mapping using intraoperative NIRF imaging [121] and more recently in non-human primates. [122] The authors showed that rhesus macaques injected with phospholipid micelle encapsulated CdSe/CdS/ZnS quantum dots did not exhibit evidence of toxicity. Blood and biochemical markers remained within normal ranges following treatment, and histology of major organs after 90 days showed no abnormalities. They deduced that acute toxicity of these quantum dots in vivo can be minimal even if chemical analysis revealed that most of the initial dose of cadmium still remained in the liver, spleen and kidneys after 90 days significant of slow breakdown and clearance of quantum dots.

2.2 Dye-doped nanoparticles

NIR dye-doped silica NPs are becoming popular choices of contrast agent for several reasons: silica NPs are optically transparent, water dispersible, biologically inert, nontoxic in the amorphous form, with well-established conjugation strategies to modify the surface to proteins, peptides, and other ligands for cellular receptors using silane chemistry. The use of such as matrix, in which many NIR fluorophores can be encapsulated, reduces the potential toxicity of these fluorescent probes and shields the NIR emitter from the aqueous environment, where the dye usually suffers from low fluorescence quantum yield, degradation, and unsatisfactory photostability. NIR-emitting dyes such as polymethines (Cy5.5, Cy7), indocyanine green (ICG), Alexa Fluor 750, and IRDye78 have already been incorporated into silica NPs. Encapsulation of multiple dyes within a single silica NP generates much brighter and more stable probes than those loaded with a single one. Dye-doped silica NPs are usually synthesized by a sol–gel Stöber process or in microemulsion by simply adding the dye (or a modified form of the dye) to the silica-forming solution.[123] In addition, the use of mesoporous silica NPs enables the loading of an additional functions into the resulting pores, for example imaging probes of sentinel lymph nodes (SLNs) known as the first defense against primary tumor metastasis, [124] sensing [125] or a therapeutic agent
capable of photothermal ablation or a controlled drug release [126]. The covalent chemical grafting of lanthanide complexes on metal oxide nanoparticles was also recently performed and introduction of two different lanthanides gave bimodal contrast agents [64, 65, 127].

2.3 Upconverting nanomaterials

Fluorescence imaging for small animals has received an increasing attention due to its ability to obtain anatomical and physiological details of living systems [128]. Most of the conventional fluorescence probes for bio-imaging are based on single-photon excitation, emitting low energy fluorescence when excited by high energy light. These single-photon probes exhibit some limitations such as (i) DNA damages with cell death due to long-term exposure to high energy excitation; (ii) low signal-to-noise ratio (SNR) due to the significant auto-fluorescence of the biological tissues; (iii) low penetration depth in the biological tissues. As opposed to visible light excitation, near-infrared (NIR) light excitation for in vivo imaging provides several advantages, such as deep penetration, weak autofluorescence, minimal photobleaching and low phototoxicity. In particular, two-photon-excited fluorescence imaging based on the anti-Stokes luminescence process revealed a useful strategy for imaging of the living brain to reduce autofluorescence [129].

Nanocrystals with both excitation and photoluminescence (PL) in the biological optical transparency window combined with high quantum efficiency, spectral sharpness, and photostability, makes them extremely promising as optical bio-imaging probes. Rare-earth upconversion nanophosphors (UCNPs) belong to this new generation of luminescent probes for small-animal imaging. When excited by continuous-wave near-infrared light, they exhibit a unique narrow photoluminescence with higher energy. This upconversion luminescence (UCL) makes UCNPs promising as bio-imaging probes with attractive features, such as suppression of the auto-fluorescence from biological samples and a large penetration depth. As a result, UCNPs have emerged as novel imaging agents for small animals. Rules suitable to develop new optical labels for in vivo near-infrared optical imaging procedures were reported [130]. Later on, in their critical review, [131] Li et al. have recently reviewed the recent developments in the preparation, surface modification and bioconjugation chemistry of these UCNPs, and their applications in bio-imaging and multimodality imaging of small animals.

Among others, upconverting NPs developed as agents for in vivo fluorescence imaging, are doped with rare-earth ions derivatives.[132] They absorb NIR light (usually around 980 nm) and emit upconverted light at a higher energy, usually in the green or far-red/NIR, with long
fluorescence lifetime (μs to ms) [133, 134]. For example, polyethyleneimine-coated NaYF₄: Yb,Er and NaYF₄:Yb,Tm NPs when exposed to a 980-nm NIR laser could be used as upconverting NPs and evidence the first demonstration of use of upconversion fluorophores for cellular and tissue imaging via the imaging of visible fluorescence through mouse thigh muscle down to 10 mm depth [135]. Er-doped or Yb/Er-doped ceramic phosphors were synthesized and partly modified with polyethylene glycol to give dispersion and controlled interaction with the biological objects. Near infrared fluorescence of nematodes, mouse tissue and M1 cells was observed by detecting 1.5 μm emission from Er-doped in the ceramic phosphor [136]. In the same way, a new generation of ¹⁸F-labeled co-doped with Gd³⁺/Yb³⁺/Er³⁺ lanthanide nanoparticles of NaYF₄ proved to be multimodality nanoprobes for UCL but also for PET, and MR imaging [137]. The presence of Yb³⁺ and Er³⁺ co-doped in the NaYF₄ nanoparticles gave rise to intense UCL emission in the visible relaxivity for MRI. Successful labeling of the lanthanide nanoparticles with ¹⁸F gave a particle suitable for PET imaging. In vivo PET/MR entire-body imaging of small animals and ex vivo UCL imaging experiments on the biodistribution of ¹⁸F-labeled lanthanide NPs in small animals indicated the effectiveness of such NPs as a multimodality nanoprobe as discussed later on. Functionalized Y₂O₃-based upconverting NPs also form a promising platform for in vivo optical-based diagnostic imaging with an excellent photostability in the NIR as well as a low toxicity [138]. The Yb and Er-doped version of the yttrium oxide nanoparticles (Y₂O₃:YbEr-NPs) exhibit beside a visible UCL, a strong NIR emission under NIR excitation (NIR-NIR emission): the particles shows bright green (550 nm) and red (660 nm) upconversion (UC) as well as near infrared (NIR) fluorescence (1550 nm) under 980 nm excitation [139, 140]. These NPs with NIR fluorescence at energies lower than their excitation wavelength could provide more advantages for bio-imaging applications. When judiciously coated some YF₃:Yb³⁺/Er³⁺ NPs lead to upconversion luminescence in the NIR (831 nm) rather than in the visible, which enables greater penetration of the light. [141] Other examples include core@shell NdF₅@SiO₂, (α-NaYbF₄:Tm³⁺)@CaF₂, NaGdF₄: Nd³⁺@NaGdF₄ NPs which also have excitation and emission in the NIR range, and efficient deep tissue imaging of small animals. [133, 142] All of these materials were modified as to become dispensible in aqueous solutions and conjugated to relevant biomolecules for targeting purposes.

2.4 Carbon nanomaterials
Carbon-based nanomaterials are also potential NIR contrast agents for in vivo imaging. The near-infrared photoluminescence intrinsic to the semiconducting single-walled carbon nanotubes (SWNTs) is ideal for biological imaging through the low autofluorescence and deep tissue penetration in the near-infrared region beyond 1 µm [143]. Their NIR fluorescence also offers a powerful approach for sensor development and in vivo or real-time imaging of biological systems [144]. They present an emission in the second IR window (1000-1350 nm), which would enable even deeper light penetration. The toxicity of SWNTs is still a controversy; their surface chemistry, therapeutics applications and toxicology as well as their use in biomedical imaging were reviewed [145]. A recent strategy to functionalize CNTs with bioactive glycoproteins, glycolipids and glycodendrimers led to a series of biocompatible and water-soluble CNTs which exhibit highly selective interactions with proteins and living cells. Their biomedical applications in cell sensing, gene delivery, bio-imaging, biosensors and bone tissue engineering were analyzed in a review paper [146]. Bioanalytical applications and bio imaging of carbon dots (CDs) have been reviewed [147]. They exhibit the advantages of being excited by single-photon (ultraviolet or near-ultraviolet) as well as multi-photon (red or near-infrared) excitation, and their luminescence properties are essentially due to surface defects. CDs were found to have emission in the visible region when they are passivated by polymer chains [148], doped with inorganic salts or photosensitizer [59, 149-152]. These materials are being investigated for optical imaging agents using both one and two-photon excitation [153]. Despite the fact that small animal or thin tissue imaging has been largely illustrated, clinical applications have not been yet proven.

Colloidal diamond NPs (i.e., nanodiamonds) are yet another nanomaterial being investigated as potential in vivo fluorescent probes for biological and medical imaging. They have been shown to be biocompatible, not cytotoxic, and to have a highly reactive surface that is easily functionalized with biological entities [154]. These nanodiamonds emit single photon luminescence when stimulated by laser light owing to a number of different point defects based on different types of vacancies. Comprehensive reviews on nanodiamonds [155] their use as biolabels [156] and in nanomedecine [157] have been published.

Similar to these luminescent carbon dots (C-dots), graphene quantum dots or graphene quantum discs (GQDs) have generated enormous excitement because of their superiority in chemical inertness, biocompatibility and low toxicity. Besides, GQDs, consisting of a single atomic layer of nano-sized graphite, have the excellent performances of graphene, such as high surface area, large diameter and better surface grafting using π–π conjugation and surface groups [158, 159].
2.5 Other probes and NIRF techniques

Luminescent porous silicon NPs (LPSiNPs) emitting at ~ 800 nm are also attractive candidates, excitable by NIR or two-photon excitation (Figure 3) and as opposed to most optically active nanomaterials (carbon nanotubes, gold nanoparticles and quantum dots), they can self-destruct in a mouse model into kidney cleared components in a relatively short period of time with no evidence of toxicity [160].

Figure 3 here

3 Positron emission tomography (PET)

PET is a nuclear medicine imaging technique that produces a three-dimensional (3D) image or picture of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by which is introduced into the body on a biologically active molecule. It relies on the detection of a positron emitted by radioisotopes (tracer); 3D images of the tracer concentration within the body are then constructed by computer analysis. Approved and used on a daily basis as a clinical molecular imaging technique with a resolution of 1-2 mm, [54] it presents however a relatively low spatial resolution which needs be improved. However, PET exhibits the highest sensitivity of all imaging modalities which enables quantification of the local concentration of radionuclide tracer, with only a few trace isotopes [55, 161]. Furthermore, PET penetration depth is unlimited, so the probe can always be imaged, irrespective of the target location. Especially important in cancer imaging and research, PET is capable of detecting molecular changes that are occurring in the body before the macroscopic disease is observed [37, 89, 162] and of monitoring disease progression after treatment (i.e., tumor response to therapy) [163].

Over the past decades, positron emitter labeled nanoparticles have been widely used and substantially improved in a wide range of diagnostic biomedical research. One of the main challenges in this field is now to develop disease-specific nanoprobes with facile and robust radiolabeling strategies. These nanoprobes should also provide (i) imaging stability, (ii) enhanced sensitivity for disease early stage detection, (iii) optimized in vivo pharmacokinetics for reduced nonspecific organ uptake, and (iv) improved targeting for high efficacy. A variety of nanoparticles have been engineered and explored for diagnostic and therapeutic potential in various diseases and lately reviewed [164]. They are essentially labeled with PET isotopes for
cardiovascular, pulmonary, and tumor imaging, as well as for pharmacokinetic evaluation [161].

3.1 Radionuclide Labeled Nanoparticles

Common isotopes that can be chelated on to or incorporated within NPs (in an analogous way to the gadolinium ions used for MRI) include 18F, 11C, 15O, 13N, 64Cu, 124I, 68Ga, 82Rb, and 86Y. PET imaging using 18F, which is the most widespread radionuclide probe used in this field, has become an established clinical tool for whole-body imaging. In light its short half-life, its quick conjugation into the probe with a high reaction yield is necessary to improve its efficiency and to reduce cost. A general synthesis strategy for such 18F-labeled rare-earth nanoparticles was developed through a facile inorganic reaction between rare-earth cations (Y$^{3+}$ and Gd$^{3+}$) and fluoride ions [165]. The 18F-labeled rare-earth NPs were further evaluated by PET imaging, for their in vivo distribution and their application in lymph monitoring. There are, however, other types of probes and the main nanoparticle-based PET ones and their labeling radionuclide are reported in Table 2.

<table>
<thead>
<tr>
<th>NPs</th>
<th>labeling strategy</th>
<th>radionuclide</th>
<th>$T_{1/2}$</th>
<th>β energy (KeV)</th>
<th>decay (%)</th>
<th>main photon KeV (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>QDs</td>
<td>nucleophilic substitution</td>
<td>18F</td>
<td>109.7 min</td>
<td>β^+ (634)</td>
<td>245</td>
<td>511 (193.5)</td>
<td>[166]</td>
</tr>
<tr>
<td>DOTA</td>
<td>64Cu</td>
<td>12.7 h</td>
<td></td>
<td>β^+ (653)</td>
<td>278</td>
<td>511 (34.8)</td>
<td>[167]</td>
</tr>
<tr>
<td>DO3A</td>
<td>64Cu</td>
<td></td>
<td></td>
<td>β^+ (653)</td>
<td>278</td>
<td>511 (34.8)</td>
<td>[168]</td>
</tr>
<tr>
<td>Iron oxide</td>
<td>Click chemistry</td>
<td>18F</td>
<td></td>
<td>β^+ (653)</td>
<td>278</td>
<td>511 (34.8)</td>
<td>[34, 169]</td>
</tr>
<tr>
<td>DOTA</td>
<td>64Cu</td>
<td></td>
<td></td>
<td>β^+ (653)</td>
<td>278</td>
<td>511 (34.8)</td>
<td>[170]</td>
</tr>
<tr>
<td>dithiocarbamatebispophonate</td>
<td>64Cu</td>
<td>67.7 m in</td>
<td></td>
<td>β^+ (89)</td>
<td>829</td>
<td>511 (178.3)</td>
<td>[173]</td>
</tr>
<tr>
<td>Direct labeling</td>
<td>68Ga</td>
<td></td>
<td></td>
<td>β^+ (89)</td>
<td>829</td>
<td>511 (178.3)</td>
<td>[174]</td>
</tr>
<tr>
<td>Chelation</td>
<td>64Cu</td>
<td></td>
<td></td>
<td>β^+ (89)</td>
<td>829</td>
<td>511 (178.3)</td>
<td>[175]</td>
</tr>
<tr>
<td>NOTA</td>
<td>68Ga</td>
<td></td>
<td></td>
<td>β^+ (89)</td>
<td>829</td>
<td>511 (178.3)</td>
<td>[176]</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>124I</td>
<td>4.18 d</td>
<td></td>
<td>β^+ (2138)</td>
<td>820</td>
<td>511 (46); 603 (62.9)</td>
<td>[177]</td>
</tr>
<tr>
<td>Aluminum hydroxide</td>
<td>Inorganic interaction</td>
<td>18F</td>
<td>1.81 d</td>
<td>β^+ (2138)</td>
<td>820</td>
<td>511 (46); 603 (62.9)</td>
<td>[178]</td>
</tr>
<tr>
<td>Upconversion nanophosphors</td>
<td>Inorganic interaction</td>
<td>18F</td>
<td>1.81 d</td>
<td>β^+ (2138)</td>
<td>820</td>
<td>511 (46); 603 (62.9)</td>
<td>[137]</td>
</tr>
<tr>
<td>Gold</td>
<td>DOTA</td>
<td>64Cu</td>
<td>12.7 h</td>
<td>β^+ (653)</td>
<td>278</td>
<td>511 (34.8)</td>
<td>[161]</td>
</tr>
</tbody>
</table>

Table 2. Labeling Strategies and Specific Activities of PET Radionuclides Labeled Nanoparticles and the Nuclear Characteristics of the corresponding PET Radionuclides. Adapted from Ref. [164] and up-dated.
Table 1: Comparison of Nanoparticle Properties

<table>
<thead>
<tr>
<th>Nanoparticle Type</th>
<th>Coating Material</th>
<th>Chelator</th>
<th>Radiotracer</th>
<th>Half-life (h)</th>
<th>β+ (EC)</th>
<th>EC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold nanoshells (SiO₂@Au)</td>
<td>DOTA</td>
<td>⁶⁴Cu</td>
<td>[180]</td>
<td>[181]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latex</td>
<td>Direct labeling</td>
<td>⁶⁷Ga</td>
<td>[182]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOTA</td>
<td>⁶⁴Cu</td>
<td>[183]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETA, CB-TE2A</td>
<td>⁶⁴Cu</td>
<td>[184]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liposome</td>
<td>Encapsulation</td>
<td>¹⁸⁸F</td>
<td>[185]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chelation</td>
<td>⁶⁴Cu</td>
<td>[186]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Encapsulation</td>
<td>⁶⁴Cu</td>
<td>[187]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid lipid nanoparticle</td>
<td>Encapsulation</td>
<td>¹⁸⁸F</td>
<td>[188]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTPA</td>
<td>⁶⁷Ga</td>
<td>[189]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAT chelate</td>
<td>⁶⁴Cu</td>
<td>[190]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymer</td>
<td>Tyrosine</td>
<td>⁷⁴Br</td>
<td>16.2</td>
<td>β+ (55)</td>
<td>3941</td>
<td>1180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EC (45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOTA</td>
<td>⁶⁴Cu</td>
<td>[191]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[¹⁸⁸F] FETos</td>
<td>¹⁸⁸F</td>
<td>[192]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOTA</td>
<td>⁶⁴Cu</td>
<td>[193]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>desferrioxamine B</td>
<td>⁹⁹Zr</td>
<td>3.3 d</td>
<td>β+ (23)</td>
<td>901</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EC (77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOTA</td>
<td>⁹⁶Y</td>
<td>14.7 h</td>
<td>β+ (33)</td>
<td>3141</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EC (43.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>¹⁸⁶Ga</td>
<td>⁹⁶Y</td>
<td>14.7 h</td>
<td>β+ (56.5)</td>
<td>4150</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EC (43.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The pharmacokinetic and *in vivo* cancer targeting issues of ⁶⁴Cu²⁺ ions functionalized gold nanocages (NCs) (⁶⁴Cu-DOTA-PEG Au NCs) when followed by PET imaging in normal rodents revealed Au NCs size dependent [161]. 30 nm Au NCs showed much-improved *in vivo* pharmacokinetics with decreased RES system uptake and enhanced blood circulation as compared to 55 nm ones. The PET/CT imaging demonstrated rapid accumulation and centralized distribution of the 30 nm Au NCs in tumors and, more importantly, high tumor-to-muscle ratios. PET/CT images (Figure 4) clearly showed this rapid localization of the 30 nm ⁶⁴Cu-DOTAPEG-Au NCs in tumors at 1 h post-injection even only with the administration of a trace amount (23.8 fmol).

Figure 4 here

Most of the time PET tracers are incorporated with another modality in NPs, most notably CT [199-202]. Figure 5 illustrates the use ¹⁸F-doped cross-linked iron oxide modified tri-modal NPs (18F-CLIO) to image the liver and blood pool of a mouse. The *in vivo* dynamic PET imaging showed very high signal-to-noise ratios for injected ¹⁸F-CLIO. The nanoparticle had a vascular half-life of 5.8 h in mice and was internalized into macrophages of liver, spleen,
and phagocytic cells of other lymphatic organs. The NP is additionally biodegradable and breaks down into elemental components within months. PET/CT allows concentrations at 2-4 orders of magnitude lower than those required for MR imaging which likely makes PET imaging an important platform for clinical molecular.

Biocompatible inorganic NPs such as hydroxyapatite NPs also revealed as useful PET/CT probes [178]. They showed particularly avid and stable binding of 18F-fluoride in various biological media. The in vivo behaviour of the 18F-labelled hydroxyapatite particles determined by PET-CT imaging in mice showed that hydroxyapatite was stable in circulation but its accumulation in liver via reticuloendothelial clearance was followed by gradual degradation and release of 18F-fluoride (over a period of 4 h) which then accumulated in bone.

3.2 Coupling with other contrast agents

Among the other modalities that have been combined with PET, should be mentioned ultra-small cancer-selective silica particles grafted with iodine and dye-doped polymers which were recently approved by FDA for in-human clinical trials [203], NIRF agents within the silica NPs [204] or QDs [168, 205, 206] and MRI [199] agents in conjunction with iron oxide nanomaterials [35, 171]. A bifunctional chelator (dithiocarbamate bisphosphonate, (dtcbp)) containing a dithiocarbamate group for binding the PET isotope 64Cu, and a bisphosphonate group for strong binding to Fe$_3$O$_4$ was elaborated. Dtcbp efficiently binds 64Cu to form the [Cu(dtcbp)$_2$] complex which is then grafted on the iron oxide NPs leading to a PET-MR dual modality imaging capabilities of which in vivo accumulates in draining lymph nodes (Figure 6) [173].

However, the ratio between PET tracer and MRI contrast agent must be carefully controlled, because PET is extremely sensitive whereas MRI is not. Single-photon emission computed tomography (SPECT), a similar technique which can also detect nanomoles of tracer. SPECT is based on the detection of lower energy γ-emitting radioisotopes such as 99mTc, 111In, 123I, and 131I [14, 207-209]. As compared to PET, SPECT has the advantage to be more sensitive and versatile, it is cheaper and more widely available.
as it does not rely on a local cyclotron for production of isotopes even if it is an order of magnitude less sensitive than PET.

Covalent functionalization of radionuclide-filled single-walled carbon nanotubes were used as radio-probes [210]. The intravenous administration of these 125I loaded SWNTs was tracked in vivo using SPECT. Specific tissue accumulation (here lung) coupled with high in vivo stability prevented leakage of radionuclide to high-affinity organs (thyroid/stomach) or excretion, and resulted in ultrasensitive imaging and delivery of unprecedented radio-dose density. The nano-encapsulation of iodide within SWNTs enabled its biodistribution to be completely redirected from tissue with innate affinity (thyroid) to lung (Figure 7).

Figure 7 here

4 X-ray imaging and computed tomography (CT)

X-ray computed tomography (CT) is one of the most powerful noninvasive diagnostic imaging techniques in modern medicine. It has been a clinical tool for more than half a century and the first widespread clinical use of NPs as X-ray contrast agents in humans were 3 to 10-nm thorium dioxide nanoparticles [12, 211]. However due to the long-term radiation effects and significant carcinogenicity of the 232Th, its clinical application was rapidly given up.

Iodinated molecules were then used as CT contrast agents in the clinics. They however have relatively short in vivo circulation times, which significantly restrict the applications of this technique in target-specific imaging and angiography. The use of large dose of these agents, which may induce serious adverse effects as well as a hypersensitivity to iodine of some patients, led researchers to address these issues. Over the past decade, advances in nanoscience brought some solutions thanks to the unique properties of nanomaterials, such as their prolonged circulating half-life, passive accumulation at the tumor sites, facile surface modification, and integration of multiple functions into a single particle, make them advantageous for in vivo applications [212].

4.1 Iodinated nanoparticles

The widespread clinical use of iodinated compounds has encouraged the development of iodinated nanomaterials. Research essentially focuses [213, 214] on the incorporation of iodinated organic compounds into NPs, with designs ranging from emulsions, [215-218]
liposomes, [214, 219-223] and lipoproteins, [224, 225] to insoluble nano objects, [214, 226-228] and polymeric NPs, [215, 229-233]; many of them have been successfully applied in vivo [28, 56]. The purpose of these nanomaterials is to locally increase iodine concentrations, resulting in higher local contrast compared with conventional water-soluble CT contrast agents. A key feature of many of these NPs is their pharmacokinetics, which are often markedly different from those of small iodinated molecules in clinical use. They have increased circulation time with the subsequent implications for targeting because longer circulation times increase the chance of interaction and binding of the contrast agent to a target.

Some multimodal nanoparticles were doped with an iodinated compound and used to enhance X-ray contrast [216, 224, 234, 235] as discussed in later on in the review. Iodine has a lower atomic number than gold and bismuth, it however exhibits higher elemental mass attenuation coefficient and incident X-ray energies so that when compared to gold NPs under conditions used for coronary angiography, iodinated contrast agents had equivalent performance [236]. When a contrast agent was developed by combining the two radio-dense elements iodine and gold within a single PAMAM dendrimer, it was demonstrated that the incorporation of both Au NPs and iodine-containing small molecules resulted in a significant cooperative enhancing effect in X-ray attenuation [237].

4.2 Gold nanoparticles

In addition to the clinically used iodine, the element gold has received much attention due to its higher atomic number than iodine, and thus, a larger contribution of photoelectron effect to X-ray attenuation generating a substantial interest in gold NP-based contrast agents for in vivo X-ray CT. Gold nano-objects contain a large number of the contrast element (Au) as opposed to iodine-based nanoparticles in which iodinated molecules are often only covalently grafted onto the NP surface thereby lowering the concentration of the agent. Various gold, [10, 61, 238-240] gold@dielectric hybrids, [10, 241-246] and multimodal materials, [96, 246-248] have been fabricated and their in vivo functionality as X-ray CT contrast agents for cancer, tissue-specific, and blood-pool imaging. Gold nanomaterials are currently being explored in multiple clinical trials and they constitute a promising next generation candidate for X-ray contrast materials, radiotherapy [249-251] and cancer therapy [252].

4.3 Other contrast materials
Other CT molecular imaging agents have also been studied besides iodinated and gold-based ones. These NPs consist of bismuth sulfide and composite ceramics containing iron oxide and lanthanide materials. Bismuth sulfide NPs have recently been shown to have superior performance to iodine on a molar basis [253-255]. Even if bismuth displays similar mass attenuation coefficients to that of gold and a higher k-edge transition, its toxicity may prevent bismuth-based nanomaterials clinical use as CT agents. Other types of CT contrast agents, are those based on iron oxide [256] and have recently been reviewed [94, 257, 258]. A facile approach for fabrication of Fe$_3$O$_4$@Au NPs as a dual mode contrast agent for both magnetic resonance (MR) and computed tomography (CT) imaging applications has been performed via the combination of a LbL (layer by layer) self-assembly process and dendrimer chemistry [259]. The use of Fe$_3$O$_4$@Au NPs as a contrast agent for dual mode MR/CT imaging has been demonstrated not only for in vitro imaging of cancer cells, but also for in vivo liver imaging via MR and subcutaneous tissue imaging via CT.

The high atomic weight and large number of unpaired electron makes Gadolinium an excellent contrasting agent both for MRI and CT imaging [12, 260-262]. Therefore, most of the time, NPs are at least dual probe: CT/MRI or CT/NIRF [261, 263, 264]. As an example Gd$^{3+}$ complex-modified NaLuF$_4$-based upconversion nanophosphors were successfully applied for UCL, MR and CT multi-modal imaging, by integrating NIR-to-NIR UCL, X-ray attenuation and paramagnetic function in one single nanoparticle. The property of NIR-to-NIR UCL enhances the high signal-to-noise ratio of in vivo imaging of small animal. Moreover, Gd$^{3+}$ grafting on the surface of NPs generates high r_1 relaxivity for the core–shell nanoparticles which become suitable for T$_1$ MR imaging. In addition, this nanoparticle with the core of Yb$^{3+}$ and Tm$^{3+}$-doped NaLuF$_4$ shows a high X-ray attenuation and are good for CT imaging. The SiO$_2$ shell reduces the toxicity of these lanthanide-based nanoparticles for small animals, which was confirmed by MTT assays and histological analyses. The incorporation of different lanthanide ions of Lu$^{3+}$, Yb$^{3+}$, Tm$^{3+}$ and Gd$^{3+}$ into one particle, NaLuF$_4$:Yb$^{3+}$,Tm$^{3+}$@SiO$_2$-GdDTPA, provides a facile design strategy to fabricate multimodality imaging agents [261].

Yb-based NPs (NaYbF$_4$:Er) which already revealed to be efficient upconversion nanophosphors (UCNPs) have also recently been identified as CT contrasts agents [265]. When encapsulated in a polymer (PEG) shell they showed low cytotoxicity and long circulation time in vivo. And a much higher efficacy as compared to the clinical iodinate agents commonly used. This improvement was attributed to the K-edge energy of Yb that locates within the higher energy region of the X-ray spectrum. Furthermore, a gadolinium
doping in these nanoparticles endowed them with enhanced fluorescence as well as NMR imaging capabilities providing clearance issues are solved.

By virtue of its high atomic number and this well-positioned K-edge, Yb provides excellent spectral CT contrast both in vitro and in vivo.[266] To partly solve bioelimination and preliminary biodistribution issues Yb nanocolloids were used as spectral CT contrast agents. The synthetic approach involved an organically soluble organometallic Yb(III)-2,4-pentadionate complex to produce polysorbate encapsulated nanocolloids of Yb incorporating a high density of Yb (>500K/nanoparticle) into a stable metal particle. Such high payloads of the Yb in the form of hydrophobic small molecule metal complexes could be obtained and stably concentrated into lipid-encapsulated nanocolloids and provide novel molecular imaging for use for spectral“multicolor” computed tomography (CT).

5 Ultrasound (US)

US is also a well-established clinical imaging modality. In particular, it is routinely used to characterize lesions in liver, urogenital tract, head and neck and soft tissues. Its main advantages are (i) the ability to extract molecular information (ii) portability, (iii) cost-effectiveness, (iv) absence of ionizing irradiation, (v) high spatial and temporal resolution (real-time examination) and (vi) global availability. It is based on the pulse–echo principle, with emitted and received wave’s frequencies higher than 20 kHz. US clinical application involves sound waves in the range of 2–3 MHz for pediatric imaging and 5–12 MHz for adult imaging, providing spatial resolution in the range 0.2 to 1 mm [28].

Contrast in US is provided by the variable ability of sound to propagate through media, resulting in reflection and refraction of the sound waves. Reflection and refraction depend on the sound itself but also on the nature of the medium and of its density. Therefore several microbubble-based contrast agents have been developed and are applied clinically to enhance the echogenicity of vasculature and organ-specific regions [267-272]. These microbubbles composed of surfactant, protein, and/or polymer shells containing gas cores, for example air, perfluorocarbons, or nitrogen should have an optimum size of 2-3 μm for common imaging practice [273]. Contrast agents for ultrasound imaging echogenic liposomes, [274-276] perfluorocarbon droplets, [277] and other materials such as gold particles, which have a density and compressibility substantially different from that of blood and tissue.
The use of nanobubbles [29, 278-286] as US contrast agents is in constant progress. Even if named nanobubbles they are typically in the range 150 to 1000-nm in diameter. They are generally composed of a perfluorocarbon gas encapsulated by a surfactant, protein, and/or polymer shell. The clinical significance of ultrasound as well as the labeling advantages of nanomaterials prompted a continued interest in developing smaller ultrasound contrast agents. [287-289] Despite this increasing interest, one should mention that due to lower scattering cross sections and often low mechanical properties of the shell, the performance of these nanomaterials is often inferior to that of microbubbles.

As for other imaging techniques, there is a general trend to combine both imaging and therapy. A solution was proposed which consisted in a medical imaging contrast agent combining both NPs and microbubbles for imaging and therapy applications in a single agent resulting in more accurate diagnosis and local treatment of diseased tissue. Various silica-coated NPs (e.g., CdSe/ZnS QDs, Au NRs, Fe₃O₄, and Gd-loaded silica NPs) were incorporated into highly monodisperse, microfluidic-generated compressible protein-lipid-coated, perfluorobutane microbubbles (with size control down to 3 μm) [290]. When diluted in saline the NP-incorporated microbubbles are detectable using low-pressure ultrasound. They can be produced at high-throughput, sufficient for in vivo usage (106 MB/s).

Polymeric micelles and perfluorocarbon nano/microbubble systems that encapsulated a drug, which can be released locally within tumor cells were also obtained; US was then used to determine the efficacy of this drug therapy [278, 279]. Designed redox polymer NPs were shown to reduce intra-cerebral hemorrhage induced by 1-MHz focused ultrasound sonication coupled with microbubble treatment. Sonication coupled with redox polymer NPs loaded microbubbles produced intra-cerebral hemorrhage but the incorporated redox polymer nanoparticles had a significant neuro-protective on the intra-cerebral hemorrhage-induced brain [291].

Microbubbles can potentially be used as carriers for nanoscale US contrast agents and the incorporation of multimodal probes with potential therapeutic applications: sonodynamic therapy, ultrasound-induced apoptosis, sonoporation/sonotransfection, ultrasound-induced drug/gas delivery, and focused ultrasound-induced thermal ablation [32, 33, 280, 292-299]. Very recently mesoporous silica nanocapsules were also used as ultrasound contrast agents and can be can be potentially used as the inorganic theranostic platform for contrast-intensified ultrasound imaging, ultrasound-induced cytoclasis and drug release, and ultrasound-guided efficient HIFU tumor ablation therapy [300].
6 Photoacoustic imaging (PAI)

Photoacoustic imaging, PAI, [301] also known as laser optoacoustic imaging, is an emerging noninvasive, nonionizing, imaging modality that combines the high sensitivity of optical methods with the excellent resolution of acoustic methods [302, 303]. When illuminated by a short-pulsed laser, the biological sample absorbs the given light and this excitation is followed by a transient increase in temperature (~10 mK) and subsequent thermo-elastic expansion of the absorbent. This generates an ultrasonic acoustic signal, which is detected by wideband transducers surrounding the object and used to determine its geometry. Electromagnetic energy in the optical from visible to near-IR and radio-frequency regions is often utilized for PA excitation in soft tissues. This is not only because electromagnetic waves in these regions are nonionizing and safe for human use but also because they provide both high contrast and adequate penetration depths in biological tissues. PAI is generally performed using two main techniques, photoacoustic microscopy (PAM) and photoacoustic computed tomography (PAT). [301, 303, 304] PAM uses a coupled, focused ultrasonic detector–confocal optical illumination system [302] to generate multidimensional tomographic images without any reconstruction algorithms, whereas the detectors in PAT scan the laser-illuminated object in a circular path and use inverse algorithms to construct three-dimensional images [301, 305-307].

While in vivo imaging with optical techniques, suffers from hemoglobin absorption and tissue scatter, which limit overall light penetration depth, PAI can overcome this primary drawback thanks to the lower ultrasonic scattering coefficients (by 2-3 orders of magnitude) of absorbents compared with their optical equivalents leading to ~ 5 cm depth analysis with a resolution of < 1 mm [308, 309]. The depth issue can even be completely eliminated when microwaves or radio waves (referred to as thermo-acoustic tomography (TAT)) are used as illumination sources [310-313].

6.1 Gold-based nanomaterials

Gold-based nanomaterials are the most significant class of materials explored for PAT applications. Some of those commonly used for PAT include spherical gold NPs, [304, 314-320] nanorods, [321-327] nanostars, [328] nanocages, [305, 329-334] hollow nanoshells, [335] and composite materials with gold nanoshells: SiO$_2$@Au, [306, 336, 337] Fe$_3$O$_4$@Au,
cobalt@gold NPs, gold-speckled silica, and gold nanobeacons. The reasons for such an attention to gold nanosystems are many fold: they have tunable size- and shape-dependent plasmonic properties which allow them to absorb and scatter light from the visible to NIR region, and make them suitable for image-guided therapy and photothermal ablation of tumors. A comparison of gold plasmonic nanostructures (surface plasmon resonance (SPR) tuned to 800 nm), revealed that gold nanorods and nanocages have much larger absorption and scattering cross sections than gold nanoshells.

Gold nanorods have similarly been used as NIR photoacoustic contrast agents with high sensitivity. Manipulation of the aspect ratio enables tuning of the SPR of the resulting nanorods, which has led to multiplexing applications. Gold nanorods are also effective as tracers for noninvasive in vivo spectroscopic photoacoustic SLN mapping in a rat model. When they are silica-coated, gold nanorods show increased photoacoustic and photothermal stability and retain their superior optical properties under much higher fluences when compared to PEG-coated gold nanorods which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy. A recent paper reported the use of silica-coated gold nanorods in photoacoustic imaging for quantitation of mesenchymal stem cells MSCs in rodent muscle tissue. The silica coating increased the uptake of gold into the cell more than 5-fold, without any sign of proliferation changes in cells suggesting that the therapeutic benefit of the MSCs will be retained despite the presence of contrast agent.

Gold-based compounds have a low toxicity which makes them good candidates for clinical and medicinal applications. Gold nano-objects are also used as multimodal systems which will be addressed later on.

6.2 Carbon nanomaterials

Carbon nanomaterials have been considered as potential biomedical materials for pharmaceutical, biomedical, and bio-imaging applications including PAI and thermo-acoustic imaging. The characteristic optical properties of SWNTs, particularly those with optical properties in the NIR region, play an important role in photoacoustic imaging.
As an example, single-walled carbon nanotubes conjugated with cyclic Arg-Gly-Asp (RGD) peptides can be used as a contrast agent for photoacoustic imaging of tumours. Intravenous administration of these targeted SWNTs (~ 2 nm in diameter and 50–300 nm in length) nanotubes to mice bearing tumors showed eight times greater photoacoustic signal in the tumor than mice injected with non-targeted nanotubes [376]. Antibody-conjugated SWNTs targeted to integrins αvβ3-positive U87 human glioblastoma tumors in mice generated a high photoacoustic contrast in vivo [377] As an alternative and noninvasive approach to detection of the SLN, SWNTs have been shown to result in significant signal enhancement for detection by PAI [378]. To overcome the limitation of their relatively low absorption coefficients, the nanotubes are modified enhancing their NIR absorption and, thus, photoacoustic contrast. In one report, nanotubes were plated with a thin layer (4-8 nm) of gold; use of these golden carbon nanotubes (GNTs) resulted in a 100-fold increase in photoacoustic signal enhancement [379, 380]. The photoacoustic signals of GNTs as compared to other NIR contrast agents exhibited higher PA signals and correspondingly lower bubble-formation thresholds than those of pristine carbon nanotubes and gold nanoparticles, and comparable properties to those of gold nanorods and nanoshells [380-382]. The antibody-conjugated GNTs were used to target lymphatic vessels in vivo by PAI. In another modification of SWNTs, ICG dye molecules were attached to the surface of the nanotubes by π-π stacking interactions and showed 20-fold higher absorbance than bare SWNTs as illustrated in Figure 8 [371]. The synergy between the NIR absorption property of the dye and SWNT led to SWNT-ICG nanomaterials which provide an ~300× improvement in photoacoustic sensitivity compared with unmodified SWNTs in vivo.

In a recent work, [383] novel probe based on reduced graphene oxide (RGO)-iron oxide NPs(IONP) nanocomposite, was non-covalently functionalized with a biocompatible polymer, polyethylene glycol (PEG), for applications in multimodal imaging guided photothermal therapy of cancer base on PAT. Using this theranostic nanoprobe, in vivo triple modal fluorescence, photoacoustic, and magnetic resonance imaging are carried out, uncovering high passive tumor targeting, which is further used for effective photothermal ablation of tumors in mice.

6.3 Other types of nanoparticles

The encapsulation of dyes within protective NPs would certainly provide additional advantages in improving image contrast [384] due to signal amplification, reduced chemical
as well as photo-degradation, and additional ability to target specific biologically relevant sites [385-387]. In the selection of a dye, the relevant absorption profile is a key point but others can also be crucial, such as fluorescence imaging or therapeutic function such as photodynamic therapy (PDT) [126, 388-391]. ICG is the most commonly used for photoacoustic imaging in molecular and nanoparticulate formulations because it is the only FDA-approved dye for human applications. Its absorption peak at ~780 nm lies within the biological NIR window and enables deep tissue imaging only if encapsulated in NP matrices: organically modified silica (ORMOSIL), poly(lactic-co-glycolic acid) (PLGA), and calcium phosphate) due to its short plasma half-life (4 min). As such it has shown an improved stability and longer blood circulation time [392]. Superparamagnetic iron oxide nanoparticles (SPION) which have been widely used as FDA approved contrast agents for magnetic resonance imaging (MRI) and are known to have an excellent safety profile [80, 81] were also analyzed for photoacoustic applications. With such NPs photoacoustic imaging which enhances imaging contrast by visualizing the optical absorption of either tissue or injected contrast agents could be coupled with magneto-motive ultrasound (MMUS) imaging which enhances the sensitivity and specificity of ultrasound based on the detection of magnetic nanoparticles perturbed by an external magnetic field. This integrated magneto-photo-acoustic (MPA) imaging helped identifying morphological properties, molecular information and complementary functional information of tissues [393]. The same MPA imaging used to noninvasively detect the delivery and endocytosis of NPs could differentiate endocytosed nanoparticles from extracellular nanoparticles in background tissue, and is promising for in vivo studies of cellular functionality [394]. Another study demonstrated the potential of core-shell iron oxide nanoparticles with silica coating as PA contrast agents under 1064-nm laser excitation; the increased thermo-elastic response of the silica-coated SPION compared to the bare ones was assumed to be due to enhanced optothermal properties of the core-shell structure [395]. Besides inorganic nanoparticles there are also studies on the use polymeric nanoobjects for PAI.[386, 387, 396, 397]

7 TeraHertz molecular imaging (THMI)

Terahertz (THz, 1 THz = 10^{12}Hz) molecular imaging (THMI) is a new analytic technique that detects changes in surface plasmons (SPs) emerging from nanoparticles following irradiation with an optical laser beam. Due to the high absorption of THz radiation in water, which is the
main component of biological tissues, high contrast between skin, muscle, fat, veins, nerves, etc can be obtained. In particular, this high sensitivity of THz to the concentration of water provides a high contrast between tumor (high water content) and normal tissues. Thus, characterizing the refractive index and absorption of various tissues is the key to the use of THz in the Life Sciences both for spectroscopy and imaging and in the design of biochips. Terahertz (THz) technology has then been advancing rapidly because of these tremendous potential applications. Among them, THz cancer diagnosis is drawing much attention as THz waves can detect the variation of cells caused by cancer, thereby rendering a new modality of medical imaging. Conventional THz imaging for cancer diagnosis assesses the difference in water content or structural changes between tumor and normal tissues. However, use of THMI nanoprobes improved the sensitivity of conventional THz imaging by providing a target-specific THz image and by enabling assessment of molecular and cellular activities via analysis of THz waveforms [398, 399]. The sensitivity of THz electromagnetic (EM) waves to water molecules allows the utilization of the THz technique in diagnosing cancers because in cancerous tumors, diseased tissues contain more interstitial water than healthy tissues. This higher water content, combined with structural changes such as increased cell and protein density, leads to a larger THz absorption and refractive index for tissues with tumors.

7.1 Gold nanoobjects

THz spectroscopy is advantageous in analytical chemistry because it can detect and identify intermolecular interactions in chemical compounds, such as hydrogen bonds and hydrations, and molecular networks. Recent advances in THz components, such as ultrashort pulsed lasers and photoconductive antennas, have improved the sensitivity of THz time-domain (TDS) spectroscopy and have made the THz chemical imaging much efficient. THz chemical imaging can reveal hydrogen bond distributions and will be a very powerful tool in biology, pharmacology, and life sciences. The problem with THz cancer diagnosis is the difficulty in identifying the tumor in tissues at an early stage. Antibody-conjugated contrast agents for THz EM waves, similar to the technique adopted in MRI, may solve the problem. This was first performed using the so called nanoparticle-contrast agent-enabled terahertz imaging (CATHI) technique by targeting metal NPs such as gold nano-rods (GNRs) to cancer cells in tumors. The THz reflection amplitude from the cancer cells with gold nano-rods (GNRs) increased by 20% upon infrared (IR) laser irradiation compared to cancer cells without GNRs. In a differential mode, the difference between the two cases was more evident because the
THz signal from the cancer cells with GNRs was 30 times higher than that from cancer cells without GNRs [398]. Cancer diagnosis by the terahertz molecular imaging (THMI) technique was also demonstrated by *in vivo* imaging A431 cancerous tumors in mice. The change in the THz response is due to the activation of the surface plasmon resonance on the surface of nanoparticle probes when illuminated with NIR beams. The development of a differential measurement technique in which the NIR beam is directly modulated instead of numerical subtraction of two images led to high signal-to-noise ratio (SNR) eliminating the background noise and generating a high sensitivity capable of identifying the miniscule differences at a cellular level [399].

7.2 Metal oxide based Nanoparticles

Very recently, the commercially available suspension of SPIO–dextran composites (Feridex) was also used as not only a MRI probe but also as a THMI one. They were transfected into SKOV3 cancer cells, at various concentrations, and both the magnetic and optical properties of the particles were examined by MR and THz reflection imaging. Mice were inoculated with Feridex-labeled SKOV3 cells, and *in vivo* MR and THz images were taken 1, 3, 7, and 14 days after inoculation. The THz images and T2* -weighted MR images showed similar patterns; the signal intensities of both image sets increased with Feridex concentration and decreased over time [93].

Another MRI contrast agent based on gadolinium oxide (Gd₂O₃) nanoparticles (GONPs) is receiving attention as potential multi-functional contrast agents also active in THMI [400]. The optical constants of GONPs were found concentration-dependent by terahertz time domain spectroscopy THz-TDS. Even a few μM of GONPs could be detected due to their power absorption capacity, which is almost three orders of magnitude larger than that of water. Therefore, GONPs can significantly improve the contrast in THz images. Their encapsulation with biocompatible materials would probably prevent aggregation problem of GONPs.

As opposed to MRI technology, which has difficulty to acquire images from a surface that is not surrounded by water such as human skin or digestive organs, THz medical imaging technology, however, has uniqueness on the surface measurement of biological samples such as epithelial cancers. Therefore, THz imaging along with nanoparticle contrast agents will probably be one of the strongest imaging technique for certain diagnosis.
8 Ion Beam Analysis Techniques

Besides quantum dots and gold NPs, many other inorganic nanoparticles suffer from a lack of fluorescence in the optical regime, and cannot be followed by light microscopy; therefore, there was a need for the development of X-ray fluorescence mapping which is the main way to detect, track and quantify nanoparticles in vitro in biological specimens.

Ion beam analysis techniques have been widely used for the determination of chemical element composition of diverse types of specimens. Particle induced x-ray emission (PIXE) has proven to be a reliable and a highly sensitive technique for the detection and quantification of chemical elements in living organism. The direct analysis of biological samples is particularly convenient when ion beam analysis is performed with high-resolution microbeam, also called nuclear microprobe. The use of high-resolution microbeam offers the opportunity to reveal the in vitro chemical imaging of the whole cell compartments (nucleus, cytoplasm) and to perform trace elements quantification at the single cell level. PIXE could also be performed on multicellular organisms deciphering the whole elemental composition of defined anatomic structures of interest to address the particular questions of bioaccumulation and biopersistence of endogenous/exogenous chemical elements, such as metal oxide nanoparticles. In addition, because in vitro cell culture or microorganisms prepared for PIXE do not require sectioning, they can be investigated close to their natural state using cryogenic preparation methods.

PIXE provides multi-elemental capability, which allows the simultaneous comparison of distribution of several elements inside the same specimen [401-410].

TiO2 is one of these nanomaterials which were largely examined by PIXE, the main reason being due to its extensive use in cosmetics and sunscreens. Analyses performed on the penetration depth and on pathways of the TiO2 particles into the skin showed a penetration of TiO2 particles through the stratum corneum into the underlying stratum granulosum via intercellular space. The TiO2 particle concentration in the stratum spinosum was below the minimum detection limit of about 1 particle/μm² [411]. The state of aggregation of TiO2 NPs revealed to be crucial with regard to lungs toxicity [412]. The biodistributions of Pt and TiO2 micro- and nano-sized particles in mice were estimated and visualized by X-ray scanning analytical microscopy. The study indicated that the difference in chemical character had a greater effect than did particle size. We predict that X-ray scanning analytical microscopy will be a useful method for studying biodistribution of micro- and nano-sized particles, because
this method requires no labeling or treatment of the target particles [413].

PIXE can even be used as a therapeutic tool because metallic nanoparticles (MNPs) are able to release localized x-rays when activated with a high-energy proton beam. The exploitation of this phenomenon in the therapeutic irradiation of tumors was then investigated. PIXE-based x-ray emission was directed at CT26 tumor cells in vitro, which were administered with either gold (average diameter 2 and 13 nm) or iron (average diameter 14 nm) nanoparticles (GNPs or SNPs). It increased with MNPs solution concentration over the range of 0.1-2 mg ml⁻¹. An in vivo study in CT26 mouse tumor models with tumor regression assay demonstrated significant tumor dose enhancement, thought to be a result of the PIXE effect when compared to conventional proton therapy (PT) without MNP (radiation-only group). Mice which received GNPs or SNPs injection doses of 300 mg kg⁻¹ body weight before proton beam therapy exhibited from 75% to 90% tumor volume reduction (TVR) in 20 days post-PT while the radiation-only group showed only 18% TVR and re-growth of tumor volume after the same timing. This approach may result in new treatment options for infiltrative metastatic tumors and other diffuse inflammatory diseases (Figure 9) [414].

In some situations under investigation, the use of complementary PIXE and RBS facilities allows information to be obtained at high level of detail, yielding new understanding of the affected tissues and the progression of disease [406, 415]. The methods can produce quantitative distributions of the chemical elements obtained by combining PIXE with other ion beam techniques, RBS (Rutherford Backscattering Spectrometry) and STIM (Scanning Transmission Ion Microscopy) even if STIM is also used by itself [416, 417]. RBS is then used for sample mass normalization of PIXE signal as it provides the quantitative determination of the different elements in biological samples. The accurate concentration of the chemical elements requires the determination of the initial mass of the sample done by STIM analysis [411, 418-420]. As an example, visualization of the penetration of sunscreen formulations containing TiO₂ NPs (about 20 nm primary particle size) into hair follicles of both human and porcine skin using these complementary methods of ion microscopy (PIXE, RBS, STIM) showed that the NPs were found as deep as approx. 400 µm in the follicle, obviously introduced mechanically rather than by a diffusive process (Figure 10) [418].

Figure 10 shows a sagittal cut through a hair follicle of porcine skin which was exposed to an
isopropylmyristate gel containing TiO$_2$ NPs and subsequently washed with water. The PIXE-maps for P (red), S (green) and Ti (blue) are superimposed. The Ti is clearly observed on top of the stratum corneum as well as in the follicle surrounding the hair. The left and right images are identical with the Ti color code over-modulated to better visualize the Ti spots.

More recent studies have used high-resolution nuclear microprobe to investigate the interaction of metal oxide nanoparticles with cells and multicellular organisms (Figure 11). Up to now, nuclear microprobe still lacks sufficient spatial resolution to resolve individual nanoparticles, but permit to determine detect, track and quantify metal oxide nanoparticle aggregates, and to assess the effect of nanoparticles on trace element homeostasis, such as calcium [421, 422].

Another promising research area is the study of intracellular localization of functionalized NPs by combining in vivo optical/epifluorescence imaging and high resolution PIXE/RBS/STIM analysis (Figure 12) [423].

We can predict that X-ray scanning analytical microscopy will be a useful method for studying biodistribution of micro- and nano-sized particles, because this method requires no labeling or treatment of the target particles.

9 Multimodal bio-imaging

9.1 Multimodal techniques and instrumentation

Multimodal bio-imaging became possible not only because of multimodal NPs [424] but also because the development of adapted techniques capable of combining two even three types of analysis in a single machine. MRI/PET probes [35] for example are powerful emerging tools, combining the sensitive, metabolically functional PET with the high-resolution, anatomical detail provided by MRI. They had a real expansion with the development of MR/PET scanner [425-427]. This is not the only example and this domain of multiple modality techniques will most likely go on growing in the future [90, 172].
The improvement in instrumentation and detection systems is also a crucial point enhancing the sensitivity of these emerging imaging techniques. Improved image-analysis software and expanded data storage can make existing technologies even more powerful.

9.2 Multimodal nanoprobes

Imaging modalities in the clinic generally include optical imaging, magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US) and positron emission tomography (PET) or single photon emission computed tomography (SPECT). A current popular approach to overcome their specific limitations results in combining two or more CAs into a single NP entity which can then be imaged by these multiple techniques either consecutively or simultaneously depending on the degree of development of the techniques [19, 171, 199-201, 281, 383, 428-438]. Combining the anatomical resolution of MRI with the sensitivity of optical imaging is common and constitutes a powerful technique for finding and quantifying the size of tumors, especially tumors or metastases that are too small for MRI detection alone. These MR/optical imaging agents can be used to monitor enzyme activity, in brain tumor imaging, and to detect and monitor apoptosis and atherosclerosis [439]. Other types of multimodal contrast agents [5, 25, 74, 200, 201, 281, 430, 432, 433, 436, 437, 440-442] such as probes with three modes of imaging are considered, for example MRI/NIRF/PET [439], and even four [425, 439, 443, 444] which are gathered in Table 3. As an example, difficulty in delineating brain tumor margins is a major obstacle for further efficient treatment [445]. Current imaging methods are often limited by inadequate sensitivity, specificity and spatial resolution. To overcome this issue, Kircher et al. recently showed that a unique triple-modality magnetic resonance imaging/photoacoustic imaging/Raman imaging nanoparticle (MPRNP)s could accurately help delineate the margins of brain tumors in living mice both preoperative and intraoperative ways. The probes were detected by all three modalities with a picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to MPRNP accumulation and retention only by the tumors. This provided non-invasive tumor delineation by the three modalities and through the intact skull. Raman imaging helped for guidance of intraoperative tumor resection because it could accurately delineate the tumor margins.

Table 3. List of the different multimodal NPs and the type of techniques they are used for.

<table>
<thead>
<tr>
<th>Number of</th>
<th>Type</th>
<th>Nanoobjects</th>
<th>ref</th>
</tr>
</thead>
</table>

34
<table>
<thead>
<tr>
<th>modality</th>
<th>description</th>
<th>reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI/CT</td>
<td>Gold NPs/ Gd^{3+}</td>
<td>[245]</td>
</tr>
<tr>
<td></td>
<td>Fe_{3}O_{4}@Au nanocomposite particles</td>
<td>[259]</td>
</tr>
<tr>
<td></td>
<td>Au–Fe_{3}O_{4} Janus NPs</td>
<td>[446]</td>
</tr>
<tr>
<td>MRI/Fluorescence</td>
<td>QDs / iron oxide and Gd^{3+} NPs</td>
<td>[447]</td>
</tr>
<tr>
<td></td>
<td>Silica NPs, Gd^{3+} Eu^{3+} and Tb^{3+} complexes</td>
<td>[64, 65]</td>
</tr>
<tr>
<td></td>
<td>Hydroxyapatite Gd^{3+} and Eu^{3+} complexes</td>
<td>[448]</td>
</tr>
<tr>
<td></td>
<td>Iron-doped silicon nanoparticles</td>
<td>[449]</td>
</tr>
<tr>
<td>MRI/NIRF</td>
<td>Fe_{3}O_{4}@Au</td>
<td>[450]</td>
</tr>
<tr>
<td></td>
<td>Iron oxide and Cy5.5 dye</td>
<td>[451]</td>
</tr>
<tr>
<td>MRI/MRI (T_{1}/ T_{2})</td>
<td>SPIO and</td>
<td>[452]</td>
</tr>
<tr>
<td></td>
<td>Carbon dots and Gd^{3+}</td>
<td>[59]</td>
</tr>
<tr>
<td>MRI/PAT</td>
<td>See the reviews</td>
<td>[110, 200]</td>
</tr>
<tr>
<td>MRI/PET</td>
<td>Gd^{3+} ^{64}Cu</td>
<td>[455]</td>
</tr>
<tr>
<td>MRI/SPECT/Fluorescence</td>
<td>Gd_{2}O_{3}@SiO_{2} and Cy 5</td>
<td>[171]</td>
</tr>
<tr>
<td>MRI/THMI</td>
<td>SPIOs</td>
<td>[93]</td>
</tr>
<tr>
<td>MRI/US</td>
<td>Perfluorocarbon NPS and Gd^{3+}</td>
<td>[456]</td>
</tr>
<tr>
<td></td>
<td>Magnetite and PLA microbubbles</td>
<td>[293]</td>
</tr>
<tr>
<td></td>
<td>iron oxide and ^{64}Cu</td>
<td>[36, 173, 175]</td>
</tr>
<tr>
<td>CT/Fluorescence</td>
<td>TaO_{2} NPs and rhodamine-B</td>
<td>[457]</td>
</tr>
<tr>
<td>CT/PAT</td>
<td>Gold@PEG NPs</td>
<td>[239, 343]</td>
</tr>
<tr>
<td>CT/NIRF</td>
<td>NaYbF_{4} and Tm^{3+}</td>
<td>[263]</td>
</tr>
<tr>
<td>PET/NIRF</td>
<td>QDs and ^{64}Cu DOTA</td>
<td>[205]</td>
</tr>
<tr>
<td>PAT/US</td>
<td>Gold nanorods and microbubbles</td>
<td>[32]</td>
</tr>
<tr>
<td></td>
<td>Gold nanorods</td>
<td>[458]</td>
</tr>
<tr>
<td>SPECT/fluorescence</td>
<td>See reviews</td>
<td>[439, 459]</td>
</tr>
<tr>
<td>TAT/PAT</td>
<td>SWNTs</td>
<td>[378]</td>
</tr>
<tr>
<td>US/NIRF</td>
<td>Proteins/Gold NPs, Iron oxide NPs, QD,</td>
<td>[460]</td>
</tr>
<tr>
<td>MRI/NIRF/PET</td>
<td>SPIO and ^{64}Cu and Cy5.5</td>
<td>[439] [171]</td>
</tr>
<tr>
<td>MRI/NIRF/PET</td>
<td>Mesoporous SiO_{2} near-IR dye ZW800 and Gd^{3+}</td>
<td>[124]</td>
</tr>
<tr>
<td></td>
<td>and ^{64}Cu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPIO and ^{18}F</td>
<td>[34]</td>
</tr>
<tr>
<td></td>
<td>SPIO and ^{125}I</td>
<td>[235]</td>
</tr>
<tr>
<td></td>
<td>^{18}F Yb,Er,Tm codoped NaYF_{4}</td>
<td>[137]</td>
</tr>
<tr>
<td>MRI/CT/NIRF</td>
<td>NaY/GdF_{4}:Yb,Er,Tm@SiO_{2}-Au@PEG</td>
<td>[436]</td>
</tr>
<tr>
<td>Combination</td>
<td>Agent Details</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MRI/PAT/Raman</td>
<td>SWNTs@PEG and iron metal NPs and Protamine</td>
<td>[34]</td>
</tr>
<tr>
<td>MRI/PAT/fluorescence</td>
<td>Graphene oxide and iron oxide and dye</td>
<td>[383]</td>
</tr>
<tr>
<td>MRI/CT/NIRF</td>
<td>Perfluoro-NPs, 19F</td>
<td>[462]</td>
</tr>
<tr>
<td>≥ 4 MRI/PET/BRET/fluorescence</td>
<td>Cobalt–ferrite MNP@SiO$_2$(RITC)-PEG/NH$_2$ and Luciferase protein and 68Ga</td>
<td>[176]</td>
</tr>
<tr>
<td>MRI/MM-OCT/US/fluorescence</td>
<td>SPION and RGD peptide and Nile red</td>
<td>[463]</td>
</tr>
<tr>
<td>MRI/Optic</td>
<td>MNPs and QDs</td>
<td>[464]</td>
</tr>
<tr>
<td>PET–CT/MRI/NIRF</td>
<td>64Cu and Iron oxide and NIR dye</td>
<td>[202]</td>
</tr>
</tbody>
</table>

a MM-OCT: magnetomotive optical coherence tomograph.

All these combinations are expected to provide very precise and detailed information for clear diagnosis and to be more efficient than a single modality. However, it should be stated that the rational selection of the different imaging modalities to put on a single probe is highly crucial. During the design of these multimodal imaging probes, the enhancement of one modality must not be at the expense of another and researchers should rationally avoid overlapping of advantages and rather compensate for the weak points of each modality so as to maximize the overall synergistic effect. Generally, imaging modalities with high sensitivity (PET, optical, etc.) are combined with others which will exhibit high spatial resolution (MR, CT, etc.) (Table 1).

Furthermore, these bio-imaging techniques require different administered doses, based on the technique’s sensitivity, host biology, route of delivery, and the targeting strategy used. The controlling the ratios of the different types of agents on a single probe, becomes compulsory so as to obtain the perfect SNR for each modality. Additionally, the incorporation of more than one modality may cause interferences between the two, iron-based MRI agents quenching fluorescence agents for example, and complicate the synthetic aspect. Succeeding in this approach would lead to the administration of a single dose of multiple agents to the patient, resulting in a potential reduction of side effects.
10 Functionalization

Most disease processes occur at the molecular and cellular levels, therefore researchers have to face breakthrough in precisely viewing and understanding these processes. The ideal imaging resolution they want to reach is a few nanometers, the length scale of most biological. With this in mind the functionalization of NPs becomes crucial for their use in diagnostic and therapeutic applications. The research on the functionalization of NPs for bio-imaging applications has been reviewed [25, 98, 360, 465-471]. The preparation of NPs for bio-imaging applications can include a variety of steps: synthesis, coating, surface functionalization, and bioconjugation. The most common strategies of engineering NP surfaces involve physical adsorption or chemisorption of the desired ligands onto the surface. Chemisorption or covalent linkages are preferred, and the coated NPs should possess high colloidal stability, biocompatibility, water solubility, as well as functional groups for further bioconjugation. Functionalization techniques reported in the literature suffer from limitations such as complex synthesis steps, poor biocompatibility, low stability, and hydrophobic products. Therefore, coating strategies based on chemisorption and ligand exchange often provide a better way to finely tune the surface properties of NPs. After conjugation with the appropriate targeting ligands, antibodies, or proteins, fluorescent NPs also exhibit highly selective binding, making them useful for targeting and imaging.

Table 4. List of the different functionalization processes of NPs from [465].

<table>
<thead>
<tr>
<th>Reaction type</th>
<th>Functionalized NP</th>
<th>Reactant</th>
<th>Final NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael addition</td>
<td>NP—SH</td>
<td>?</td>
<td>NP—SN</td>
</tr>
<tr>
<td>Epoxide opening</td>
<td>NP—NH₂</td>
<td>?</td>
<td>NP—NH₂</td>
</tr>
<tr>
<td>Addition of amine to cyanates</td>
<td>NP—NH₂</td>
<td>XCN—O₂S</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X=NH —</td>
</tr>
</tbody>
</table>
Synthesis of NPs leads to two major categories: hydrophobic and hydrophilic NPs, respectively. Many NPs, mainly QDs and metal NPs are hydrophobic in nature, causing insolubility in water and preventing further functionalization. Thus, water solubilization and functionalization become key points prior to any applications of the NPs. Their coating chemistry is critical to provide colloidal stability and water-soluble, robust NPs with flexible
surface chemistry. The most common functionalization strategies are (i) direct encapsulation of the hydrophobic NPs by hydrophilic polymers or a silica coating and (ii) ligand exchange of the original surfactant with hydrophilic ligands, such as thiols.

Regardless of composition, surface functionalization of the nanomaterial is required to enable targeting and stealth for long circulation times with minimal nonspecific binding [239]. There is a plethora of entities that can be incorporated onto a NP’s surface, with covalent bonding preferred over electrostatic interactions: DNA, RNA, [472] oligonucleotides (aptamers), [29, 434, 473-476] peptides, [36, 175, 201, 477-482] proteins, [483-487] enzymes, [488-491] antibodies [492]. No matter what the surface moiety, its activity must not be altered once anchored to the NP surface (Figure 13).

Figure 13 here

Routes of delivery and bioavailability are also important concerns in which functionalization is crucial. The most common delivery route is intravenous injection which requires an optimization of NPs circulation time since they must be able to pass through the bloodstream and reach their desired target intact. Their surface functionalization generally results in size increase due to the added shell (silica, PEG, poloxamines, poloxamers, polysaccharides). This size increase may be detrimental for vasculature permeability and may affect bloodstream circulation especially through thin capillaries.

In addition to intravenous (IV) administration, intramuscular injections, oral, transdermal, and inhalation routes are also possible and NPs must be able to survive their particular delivery route. The probe, to be effective must perform the desired function or bind properly to the desired target so that any loss of biological activity of the component conjugated to the NP surface must be determined beforehand.

Functionalization can also help addressing NPs toxicity aspects [12, 354, 358, 465, 468, 493, 494]. Indeed, properly protected NPs conjugated or coated with biocompatible materials can be used for the fabrication of various functional systems with multimodality as well as targeting properties, reduced toxicity and proper removal from the body.

Furthermore, governmental institutions should require a standardization process of NPs characterizations (as particle size, shape, dissolution rate, agglomeration state, and surface area and chemistry) [495] as well as toxicity assays. It has generally been assumed that \textit{in vitro} toxicity tests designed for soluble chemicals are appropriate for nanomaterials. However extrapolation of \textit{in vitro} toxicology findings to humans is not so obvious when the mode of action and/or metabolic conditions in the cell culture model may not be relevant in humans
This is not an easy task, since the standardized established tests should work for multiple particle types, despite the fact that these NPs have different characteristics and behaviors (fluorescence, magnetism, metallic nature...) but it should definitely be undertaken. When such NPs are used in bio-imaging, it is also crucial to have accurate characterization to fully understand (i) their structure–function relationship such as particle number and dose administered so as to make the right balance between safety and good SNRs, (ii) their behavior in the biological environment (e.g., dispersibility or aggregation), and (iii) the interactions between the functionalized surface of the NP and the target of interest (i.e., binding kinetics and thermodynamics).

11 Perspectives: Multimodal Theranostic NPs

To successfully translate multimodal NPs into clinical treatment, several issues have to be taken into consideration such as (i) reasonable blood half-life; (ii) favorable physiological behavior with minimal off-target; (iii) any possible metabolism to clearable components; (iv) effective clearance of NPs from the human body; and (v) their potential toxicity for living subjects and humans. So when adequately modified multimodal nanoprobes can also become theranostic NPs. They are then essentially found in cancer research where they provide the diagnostic capability using an imaging modality to detect a tumor, while supplying the component for therapy against this specific tumor type, commonly utilizing photothermal ablation (PTA) or photodynamic therapy (PDT). PTA works by exciting a NP with a large absorption cross section (e.g., gold), which causes a localized heating that then kills the tumor cells into which the NPs have been injected [337]. Once more gold-based nanoobjects are numerous: gold nanoshells and nanocages surrounding a silica core have been used in photo-ablative therapies [329, 345-347, 356, 499-503] even if PTA has also been used with SWNTs [504].

PDT uses photosensitizers that, when excited by light, react with molecular oxygen in the biological environment to produce ROS, which are cytotoxic to cells. Multifunctional NPs used for multimodal imaging and theranostic applications have been reviewed [8, 126, 150, 388-391, 416, 481, 505-508]. One material that may prove useful in combining a dual imaging and therapy is mesoporous silica NPs; with their large surface areas and pore
volumes, one or two modalities (optical imaging agent and an anticancer drug) can be incorporated into the silica matrix while loading the other modality into its pores. [509-511] Encapsulating drug payloads in NPs can prevent exposure of healthy cells to the cytotoxic drug and may prove more beneficial (e.g., lower toxicity and fewer side effects) at lower doses than the free drug. However, this can reveal much more complex than the use of simple small-molecule drugs that are easily characterized. In addition, the NP must remain intact until reaching the tumor site and then release the drug controllably through its desired mechanism—issues that will require further research and development.

Due to their nanoscale dimensions and high aspect ratio, single-walled carbon nanotubes (SWCNTs) have been used as a high drug loading transporter for anti-cancer drugs, as they are capable of penetrating mammalian cell membranes. The triple functionalization of oxidized SWCNTs with the anti-cancer drug doxorubicin, a monoclonal antibody, and a fluorescent marker at non-competing binding sites allowed for targeted delivery of drug to cancer cells and visualization of their cellular uptake by confocal microscopy. An intracellular release of doxorubicin (DOX) was observed which then translocated to the nucleus while the nanotubes remain in the cytoplasm [512].

Other important areas in which multimodal NPs can be beneficial include (i) tumor imaging for guided surgery, [323, 513-516] imaging of gene expression in vivo to elucidate disease development, [287, 288, 296, 370, 517-520] drug delivery [471] and efficacy of anti-cancer drugs [234, 337, 429, 498, 521-525].

In the next future, NPs will not only be used as contrast agents not simply to find and delineate tumors, but also aim at elucidating the biological processes and cellular mechanisms so as to understand and hopefully cure other diseases than cancer, such as Alzheimer’s, Parkinson’s, multiple sclerosis, rheumatoid arthritis, and diabetes. Major developments of the future should then concern diagnosis as well as treatment with therapeutic NPs. These new agents to be developed from a societal point of view will have to prove as highly superior to any currently existing system with the same function. Therefore, the development of CAs incorporating an additional functionality (i.e., therapeutic agent, measure of disease progression, or evaluation of treatment effectiveness) with the classical in-vivo imaging modality will most likely be expanded, especially if based on some already-approved material.

Additional types of NP contrast agents may see development in the future. These smart responsive probes that turn “on” or “off” when exposed to the target or given conditions are
being developed. Two fluorochromes (Cy5.5) cleavable by proteases, and (Cy7) which serves as an internal standard were grafted on superparamagnetic iron oxide NPs leading to a dual fluorochrome optical probe which reacted to the presence of protease enzymes in its environment with a change in signal (700% increase in fluorescence) [526].

Tumor cells have a more acidic internal environment compared with normal cells (most cancer tissues have lower extracellular pH values (pH 6.0–7.0) than normal tissues (pH 7.4), and the pH drops further in tumor cells, especially inside endosomes (4.5–5.5), which provides a high possibility to control the drug release behaviors through the use of pH-sensitive vehicles. Many systems exploiting this pH modification are under scrutiny [527].

Well-defined core@shell (MCNC@PAA) nanospheres based on a 100 nm sized magnetic colloid nanocrystal cluster core and across-linked poly(acrylic acid) (PAA) shell were for example loaded with of doxorubicin (DOX). [528] The experimental results showed that (i) the MCNC@PAA NPS could achieve a high drug loading content and entrapment efficiency; (ii) a synergistic pH-responsive effect derived from the entrapped DOX and PAA network was found to effectively manipulate the drug releasing behavior at 37 °C. In fact the premature release was highly restricted at a pH of 7.4, while upon more acidic ones pH (from 7.4 to 5.0 or 4.0), a large amount of the drug was rapidly released. The in vitro cellular cytotoxicity test proved they are highly biocompatible and suitable for use as a drug carrier in CDDS and that MCNC/PAA–DOX show a higher cytotoxicity compared with that of free DOX to HeLa cells. Other pH-sensitive based NPs have been used such as chitosan [529] polymers, [530] core@shell NPs [527], nanogels [531]. Among stimuli sensitive NPs are light sensitive one. For example, light-stimulated remote release of nucleic acid has been attempted by utilizing the tunable optical properties and moderating Au–S bond strength of various gold nanomaterials [532, 533]. For example, temporally and spatially controlled delivery of siRNA using (NIR)-sensitive gold nanoshell-siRNA conjugates was explored [534]. Pulsed NIR laser irradiation, after their easy cellular uptake by TAT-lipid attached on the gold nanoshell, triggered siRNA release and resulted in efficient gene silencing in vitro. A remote optical switch for localized and selective control of RNA interference was also achieved using gold nanorods conjugated with thiol-modified sense strand of double stranded oligonucleotides [535]. Some of these NPs are dual probes with both photo- and pH- responsive properties [536].

A recent review by Kwon et al. on stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications came out in which they introduces the recent advances in tackling the key challenges in achieving efficient, targeted, and safe non-viral gene delivery
using various nucleic acid-containing nanomaterials that are designed to respond to various extra- and intracellular biological stimuli (pH, redox potential, and enzyme) as well as external artificial triggers (light and ultrasound). Nanomaterials platform for combined imaging and gene therapy, nanotheranostics, using stimuli-responsive materials was also highlighted in this review. It is clear that developing novel multifunctional vectors, which transform their physico-chemical properties in response to various stimuli in a timely and spatially controlled manner, is highly desired to translate the promise of gene therapy for the clinical success. Temperature-sensitive NPs have been identified many of them including heat activable iron oxide and thermo-sensitive polymers, [537-547] silica NPs, [542, 544, 548] liposomes, [548-550] micelles, [551] multifunctional nanoparticles containing both CdTe quantum dots (QDs) and Fe3O4 magnetic particles [552]. These nanomaterials CAs will certainly find more than numerous applications as tunable, remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various other biomedical applications. The basis for the interest lies in their unique properties achieved at the nanoscale that can be accessed via remote stimuli. These properties could then be exploited to simultaneously activate secondary systems that are not remotely actutable [440, 535, 536, 553-561]. Despite all the work already performed, Richard Feynman is still more than right: “There is still Plenty of Room at the Bottom”.

Acknowledgments:

The authors are grateful to the financial support from the CNRS, IN2P3/CNRS, University of Bordeaux, the Région Aquitaine and the French National Research Institution (ANR CES2010, TITANIUMS).

REFERENCES

[120] Clift MJD, Stone V. Quantum Dots: An Insight and Perspective of Their Biological Interaction and How This Relates to Their Relevance for Clinical Use *Theranostics* 2012, 2, 668-680.

Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F. Core-shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. *Biomaterials* 2012, 33, 4618-4627.

[468] Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. *Nanomaterials* 2011, 1, 31-63.

[541] Park S, Kim HS, Kim WJ, Yoo HS. Pluronic@Fe3O4 nanoparticles with robust incorporation of doxorubicin by thermo-responsiveness. Int. J. Pharm. (Amsterdam, Neth.) 2012, 424, 107-114.

Caption to figures:

Figure 1. *In vivo* testing of the (Tf)-SPION conjugate in rats bearing 9L gliosarcoma tumors. Two tumors expressing either a high (9L3.9) or a low (9L4.2) level of the TfR were imaged before injection and 72 hours after injection of Tf-SPION particles. Reprinted with permission from [95]. Copyright (2003) Neoplasia Press.

Figure 2. *In vivo* five-color lymphatic drainage imaging pointing at five distinct lymphatic drainages. (a) *In vivo* and intra-surgical spectral fluorescence imaging of a mouse injected with five carboxyl QDs (565, blue; 605, green; 655, yellow; 705, magenta; 800, red) intra-cutaneously into the middle digits of the bilateral upper extremities, the bilateral ears, and at the median chin, as shown in the right hand side schema. Five primary draining lymph nodes were simultaneously visualized with different colors through the skin in the *in vivo* image and were more clearly seen in the image taken at the surgery. Reprinted, with permission, from Ref. [117], Copyright (2007) American Chemical Society.

Figure 3. a) *In vivo* images of LPSiNPs and Dextran-coated-LPSiNPs. The mice were imaged at multiple time points after intravenous injection of LPSiNPs and Dextran-coated-LPSiNPs (20 mg kg$^{-1}$). Arrowheads and arrows with solid lines indicate liver and bladder, respectively. b) Lateral image of the same mice shown in a), 8 h after LPSiNP or Dextran-coated-LPSiNP injection. Arrows with dashed lines indicate spleen. Reprinted by permission from Macmillan Publishers Ltd from Ref. [160]. Copyright (2009) Nature Publishing Group.

Figure 4: PET/CT images of the 30 nm 64Cu-DOTA-PEG-Au NCs in a mouse bearing an EMT-6 tumor at 1, 4, and 24 h post- injection (3.7 MBq injection/mouse). T, tumor; B, bladder. The increase of tumor-to-muscle ratios was consistent with the biodistribution measurements. Reprinted, with permission, from Ref. [161]. Copyright (2012) American Chemical Society.

Figure 5. Dynamic PET/CT imaging of BALB/C mouse injected with 18F-CLIO. Merged PET/CT coronal images at 2 h (a), 7 h (b), and 16 h (c) post-injection of 18F-CLIO. PET only coronal images at 2 h (d), 7 h (e), and 16 h (f) post-injection of 18F-CLIO. CT only coronal image (g). Three-dimensional merged PET-CT images at 2 h (h) and 16 h (i) post-injection. The *green arrow* indicates blood pool region of interest (ROI) and the *asterisk* indicates liver ROI. Reprinted, with permission, from Ref. [34]. Copyright (2009) American Chemical Society.
Figure 6. In vivo PET–MR imaging studies with $[^{64}\text{Cu}](\text{dtcbp})_2\cdot\text{Fe}_3\text{O}_4$ NPs in mouse. A,B) Coronal (top) and short axis (bottom) MR images of the lower abdominal area and upper hind legs showing the popliteal lymph nodes (solid arrows) before (A) and after (B) footpad injection of $[^{64}\text{Cu}](\text{dtcbp})_2\cdot\text{Fe}_3\text{O}_4$. C) Coronal (top) and short-axis (bottom) Nano PET–CT images of the same mouse as in (B) showing the uptake of the NPs in the popliteal (solid arrow) and iliac lymph nodes (hollow arrow). D) Whole-body NanoPET–CT images showing sole uptake of $[^{64}\text{Cu}](\text{dtcbp})_2\cdot\text{Fe}_3\text{O}_4$ in the popliteal and iliac lymph nodes. No translocation of radioactivity to other tissues was detected. Reprinted, with permission, from Ref. [173]. Copyright (2011) John Wiley and Sons.

Figure 7. Whole-animal SPECT/CT imaging, immediately after tail intravenous injection administration of filled, functionalized SWNTs (left hand side); and radionuclide alone (right hand side). Reprinted, with permission, from Ref. [210]. Copyright (2010) Nature Publishing Group.

Figure 8. Photo-acoustic detection of SWNT-ICG in living mice. (a) Mice were injected subcutaneously with SWNT-ICG at various concentrations - 0.82–200 nmol L$^{-1}$. The images represent ultrasound (gray) and photoacoustic (green) vertical slices through the subcutaneous injections (dotted black line). The skin is visualized in the ultrasound images, and the photoacoustic images show the SWNT-ICG distribution. The nanobeacons on the images illustrate the approximate edges of each inclusion. (b) The photoacoustic signal from each inclusion was calculated using 3D regions of interest and the “background” represents the endogenous signal measured from tissues. Linear regression ($R^2 = 0.97$) of the photoacoustic signal curve indicates that 170 pmol L$^{-1}$ SWNT-ICG will give the equivalent background signal of tissues. Reprinted, with permission, from Ref. [371], Copyright (2010) American Chemical Society.

Figure 9. Description of proton beam irradiation on tumor tissue in the presence of metallic NPs. Tumor-associated macrophage, distributed in tumor periphery, uptakes metallic nanoparticles, which produces a therapeutic effect potentially on TAM and infiltrated tumor cell by proton-induced X-ray emission (PIXE) effect. Reprinted, with permission, from Ref. [414]. Copyright (2010) IOP Publishing Ltd.

Figure 10. Sagittal cut through a hair follicle of porcine skin exposed to a formulation containing nanosized TiO$_2$. PIXE-data were taken with 2.25 MeV protons at 100 pA and a charge of 0.5 µC. The scan size is 400 µm×400 µm, on 256×256 pixels and a lateral resolution around 1 µm. The formulation with NPs (blue) is deeply pushed into the follicle. Reprinted, with permission, from Ref. [418]. Copyright (2007) Elsevier.

Figure 11. a) Density map (STIM) and in situ 2D chemical imaging (PIXE) of HaCat cells exposed to titanium oxide NPs. Control HaCat cells (left panel) and HaCat cells exposed to titanium oxide NPs (right panel) have been investigated using phase contrast imaging and STIM/PIXE analysis. The simultaneous combination of STIM and PIXE reveals the specific in situ chemical distribution in the whole cellular body. A specific pattern is observed for the phosphorus distribution which is mainly located in the cell nucleus. Titanium is only detected in exposed cells with disperse but punctuated distribution in the cellular body. Scale bar, 10 µm. b) High resolution confocal image of paraformaldehyde-fixed PHFK cells treated with Fluorecein-TiO$_2$-NPs (green) at a final concentration of 2 mg/cm2 for 24 h and treated for immunofluorescence with propidium iodide (PI) (cytoplasm and nucleolus, red) and Hoechst33342 (nucleus, blue): top Fluorescence image, bottom 3D reconstruction.
Figure 12. Density map (STIM) and *in situ* chemical imaging (PIXE) of a lyophilized adult *C. elegans* exposed to titanium oxide nanoparticles. (top) STIM rendition of the whole *C. elegans* body. Regions of interest corresponding to buccal cavity, pharynx corpus (metacorpus), pharyngeal posterior part with terminal bulb and anterior part of the intestine (GUT) are shown. Intestinal cells can be also seen between gut and uterus which is full of fertilized eggs. (bottom) 2D maps of phosphorus (green), sulfur (red) and titanium (blue) in the whole *C. elegans* body. Co-localization map reveals a highly specific distribution of element in organs suggesting a link between chemical anatomical structure and their functions. The titanium oxide nanoparticles ingestion is demonstrated by the presence of titanium in the pharyngeal metacarpus and in the rectum. Phosphorus (green), sulfur (red) and titanium (blue). Scale bar, 20 µm.

Figure 13. Different types of surface functionalization and morphologies of inorganic NPs. Reprinted with permission from [12] Copyright (2012) John Wiley and Sons.

Figure 14. *In vivo* testing of the (Tf)-SPION conjugate in rats bearing 9L gliosarcoma tumors. Two tumors expressing either a high (9L3.9) or a low (9L4.2) level of the TfR were imaged before injection and 72 hours after injection of Tf-SPION particles. Reprinted with permission from [95]. Copyright (2003) Neoplasia Press.
Figure 15. *In vivo* five-color lymphatic drainage imaging pointing at five distinct lymphatic drainages. (a) *In vivo* and intra-surgical spectral fluorescence imaging of a mouse injected with five carboxyl QDs (565, blue; 605, green; 655, yellow; 705, magenta; 800, red) intra-cutaneously into the middle digits of the bilateral upper extremities, the bilateral ears, and at the median chin, as shown in the right hand side schema. Five primary draining lymph nodes were simultaneously visualized with different colors through the skin in the *in vivo* image and were more clearly seen in the image taken at the surgery. (Reprinted, with permission, from Ref. [117], Copyright (2007) American Chemical Society)

Figure 16. a) *In vivo* images of LPSiNPs and Dextran-coated-LPSiNPs. The mice were imaged at multiple time points after intravenous injection of LPSiNPs and Dextran-coated-LPSiNPs (20 mg kg$^{-1}$). Arrowheads and arrows with solid lines indicate liver and bladder, respectively. b) Lateral image of the same mice shown in a), 8 h after LPSiNP or Dextran-coated-LPSiNP injection. Arrows with dashed lines indicate spleen. Reprinted by permission from Macmillan Publishers Ltd from Ref. [160]. Nature Materials. Copyright 2009.
Figure 17: PET/CT images of the 30 nm 64Cu-DOTA-PEG-Au NCs in a mouse bearing an EMT-6 tumor at 1, 4, and 24 h post-injection (3.7 MBq injection/mouse). T, tumor; B, bladder. The increase of tumor-to-muscle ratios was consistent with the biodistribution measurements. Reprinted, with permission, from Ref. [161], Copyright (2012) American Chemical Society.

Figure 18. Dynamic PET/CT imaging of BALB/C mouse injected with 18F-CLIO. Merged PET/CT coronal images at 2 h (a), 7 h (b), and 16 h (c) post-injection of 18F-CLIO. PET only coronal images at 2 h (d), 7 h (e), and 16 h (f) post-injection of 18F-CLIO. CT only coronal image (g). Three-dimensional merged PET-CT images at 2 h (h) and 16 h (i) post-injection. The green arrow indicates blood pool region of interest (ROI) and the asterisk indicates liver ROI. Reprinted, with permission, from Ref. [34], Copyright (2009) American Chemical Society.
Figure 19. *In vivo* PET–MR imaging studies with \[^{64}\text{Cu}(\text{dtcbp})_2\]-Fe\(_3\)O\(_4\) NPs in mouse. A,B) Coronal (top) and short axis (bottom) MR images of the lower abdominal area and upper hind legs showing the popliteal lymph nodes (solid arrows) before (A) and after (B) footpad injection of \[^{64}\text{Cu}(\text{dtcbp})_2\]-Fe\(_3\)O\(_4\). C) Coronal (top) and short-axis (bottom) Nano PET–CT images of the same mouse as in (B) showing the uptake of the NPs in the popliteal (solid arrow) and iliac lymph nodes (hollow arrow). D) Whole-body NanoPET–CT images showing sole uptake of \[^{64}\text{Cu}(\text{dtcbp})_2\]-Fe\(_3\)O\(_4\) in the popliteal and iliac lymph nodes. No translocation of radioactivity to other tissues was detected. Reprinted, with permission, from Ref. [173]. Copyright (2011) John Wiley and Sons.

Figure 20. Whole-animal SPECT/CT imaging, immediately after tail intravenous injection administration of filled, functionalized SWNTs (left hand side); and radionuclide alone (right hand side). Reprinted, with permission, from Ref. [210]. Copyright (2010) Nature Publishing Group.
Figure 21. Photo-acoustic detection of SWNT-ICG in living mice. (a) Mice were injected subcutaneously with SWNT-ICG at various concentrations - 0.82–200 nmol L\(^{-1}\)). The images represent ultrasound (gray) and photoacoustic (green) vertical slices through the subcutaneous injections (dotted black line). The skin is visualized in the ultrasound images, and the photoacoustic images show the SWNT-ICG distribution. The nanobeacons on the images illustrate the approximate edges of each inclusion. (b) The photoacoustic signal from each inclusion was calculated using 3D regions of interest and the “background” represents the endogenous signal measured from tissues. Linear regression \((R^2 = 0.97)\) of the photoacoustic signal curve indicates that 170 pmol.L\(^{-1}\) SWNT-ICG will give the equivalent background signal of tissues. Reprinted, with permission, from Ref. [371], Copyright (2010) American Chemical Society.
Figure 22. Description of proton beam irradiation on tumor tissue in the presence of metallic NPs. Tumor-associated macrophage, distributed in tumor periphery, uptakes metallic nanoparticles, which produces a therapeutic effect potentially on TAM and infiltrated tumor cell by proton-induced X-ray emission (PIXE) effect. Reprinted, with permission, from Ref. [414]. Copyright 2010 IOP Publishing Ltd.

Figure 23. Sagittal cut through a hair follicle of porcine skin exposed to a formulation containing nanosized TiO$_2$. PIXE-data were taken with 2.25 MeV protons at 100 pA and a charge of 0.5 µC. The scan size is 400 µm×400 µm, on 256×256 pixels and a lateral resolution around 1 µm. The formulation with NPs (blue) is deeply pushed into the follicle. Reprinted, with permission, from Ref. [418]. Copyright 2007 Elsevier.
Figure 24. a) Density map (STIM) and in situ 2D chemical imaging (PIXE) of HaCat cells exposed to titanium oxide NPs. Control HaCat cells (left panel) and HaCat cells exposed to titanium oxide NPs (right panel) have been investigated using phase contrast imaging and STIM/PIXE analysis. The simultaneous combination of STIM and PIXE reveals the specific in situ chemical distribution in the whole cellular body. A specific pattern is observed for the phosphorus distribution which is mainly located in the cell nucleus. Titanium is only detected in exposed cells with disperse but punctuated distribution in the cellular body. Scale bar, 10 μm. b) High resolution confocal image of paraformaldehyde-fixed PHFK cells treated with Fluorecein-TiO₂-NPs (green) at a final concentration of 2 mg/cm² for 24 h and treated for
immunofluorescence with propidium iodide (PI) (cytoplasm and nucleolus, red) and Hoechst₃₃₃₄₂ (nucleus, blue): top Fluorescence image, bottom 3D reconstruction.

Figure 25. – Density map (STIM) and in situ chemical imaging (PIXE) of a lyophilized adult C. elegans exposed to titanium oxide nanoparticles. (top) STIM rendition of the whole C. elegans body. Regions of interest corresponding to buccal cavity, pharynx corpus (metacorpus), pharyngeal posterior part with terminal bulb and anterior part of the intestine (GUT) are shown. Intestinal cells can be also seen between gut and uterus which is full of fertilized eggs. (bottom) 2D maps of phosphorus (green), sulfur (red) and titanium (blue) in the whole C. elegans body. Co-localization map reveals a highly specific distribution of element in organs suggesting a link between chemical anatomical structure and their functions. The titanium oxide nanoparticles ingestion is demonstrated by the presence of titanium in the pharyngeal metacarpus and in the rectum. Phosphorus (green), sulfur (red) and titanium (blue). Scale bar, 20 µm.
Figure 26. Different types of surface functionalization and morphologies of inorganic NPs. Reprinted with permission from [12] Copyright 2012 John Wiley and Sons.
Quentin Le Trequesser is a PhD student sharing his time between the Institute for Solid State Chemistry Bordeaux (ICMCB, France) and the center of nuclear studies of Bordeaux-Gradignan (CENBG, France). His current research involves synthesis and characterization of TiO$_2$ nanoparticles with highly controlled morphologies in order to study their mechanisms of internalization and toxicity in biological systems.

Hervé Seznec is research associate CNRS/IN2P3/University of Bordeaux at the Centre Etudes Nucléaires de Bordeaux Grandignan, UMR 5797) in Gradignan, France. He received his doctorate (PhD) in Human Molecular Genetics from the University of Paris, France in 2001. His area of research includes biology/genetics, biophysics and biochemistry. His current research interests focus on the development of cell irradiation and correlative cell imaging methodologies based on charged particle microbeam for studying the cellular physiology of \textit{in vitro} and \textit{in vivo} biological systems. One of the major objectives of his research is to address the toxicology of metal oxide nanoparticles using human cell culture or as nematode \textit{C. elegans}.

Marie-Hélène DELVILLE is a Senior Researcher at French National Centre for Scientific Research CNRS since 1985. She had been working for 10 years in organometallic chemistry before moving to the Institute of Condensed Matter of Bordeaux in 1996, where she is currently working. Her research interests are focused on the fundamental and practical aspects involved in the synthesis of organic–inorganic colloidal nanoobjects with special emphasis on the synthesis, control of shape, surface functionalization of mineral oxide particles and sol–gel chemistry. Her research also includes, at the interface between chemistry and biology, their use in biomedical applications, focusing on the synthesis of multimodal nanoparticles for imaging and therapy purposes with some insight in toxicity approaches.