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Abstract

We investigate the connections between continuous and discrete wavelet transforms
on the basis of algebraic arguments. The discrete approach is formulated abstractly in
terms of the action of a semidirect product A × Γ on ℓ2(Γ), with Γ a lattice and A an
abelian semigroup acting on Γ. We show that several such actions may be considered,
and investigate those which may be written as deformations of the canonical one. The
corresponding deformed dilations (the pseudodilations) turn out to be characterized by
compatibility relations of a cohomological nature. The connection with multiresolution
wavelet analysis is based on families of pseudodilations of a different type.
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1 Introduction

Wavelet analysis and related methods have received considerable attention during the past
ten years, both in theoretical and in applied sciences. In our opinion, the main reason of
such a success is, besides the relative simplicity of the tool, its extreme computational effi-
ciency. The latter is deeply related to the so-called multiresolution structure associated to
wavelets, responsible for the existence of fast and accurate algorithms for computing wavelet
transforms (the so-called pyramid algorithms). The interested reader may refer to [27, 28] for
a detailed discussion of these algorithmic aspects. The main point here is that the wavelet
decompositions considered in such an approach are intrinsically discrete decompositions.

Besides such an algorithmic point of view, wavelets have also received a great attention
in the mathematical physics community [26], especially because of their deep relation with
coherent states (see [1] for a recent review). In that approach, the emphasis is put on the
symmetries, in particular the fact that the wavelet transform, i.e., the transform which maps
a function into the coefficients of its decomposition with respect to a family of wavelets, is
covariant with respect to a group action: the affine group of the real line in the case of
usual wavelets, or bigger groups in more general situations. In all cases, the groups under
consideration are continuous groups. The use of such symmetries is at least implicit in many
applications, for example in signal analysis (see for example the discussions in [7, 22]).

Remarkably enough, little is known about the connections between the two above men-
tioned approaches (see nevertheless [15] for a formulation of Gabor transform on locally com-
pact abelian groups), at least as far as algebraic arguments are concerned. In particular, the
pyramid algorithms, which are obviously attached to rigid algebraic structures, do not seem
to have been considered as such (see nevertheless the discussion of embedding of sampling
spaces in [18]). The goal of this paper is to start developing such a point of view, and to
make a connection with the group theoretical approach. Part of the results presented here
are not new from the wavelet point of view, at least in the case of the usual one-dimensional
multiresolution wavelet theory. However, we believe that our construction gives a different
perspective on the theory, for it makes the connection with different fields (e.g. homological al-
gebra), which may prove useful for concrete problems (for example the complete classification
of perfect reconstruction quadrature mirror filters). It also poses the problem of generalizing
multiresolution analyses, in terms close to those developed by [4, 11].

Making the connection between the group theoretical approach and the multiresolution
approach to wavelets is not an easy task, since no affine group action is available in the discrete
case (unless one limits the analysis to discrete fields such as Z/pZ, with p a prime number,
as was done in [10, 20]). In this paper, we investigate situations where a semigroup A acts on
a lattice Γ, and we consider the possible actions of the corresponding affine semigroup A× Γ
on ℓ2(Γ). We show in Section 2 that besides the natural action of translations and the “dila-
tions with holes” (see e.g. [10, 19, 24]), several such actions may be constructed, based upon
pseudodilations Da, a ∈ A acting on ℓ2(Γ), generalizing the pseudodilations in [10] to the semi-
group context. We introduce two families of pseudodilations (the principal pseudodilations
and the associated pseudodilations), and investigate their properties. Such pseudodilations
turn out to provide the appropriate setting for developing an abstract version of sub-band
coding schemes.

We address in Section 3 the problem of existence of such pseudodilations in a more abstract
setting. More precisely, we show that such a problem may be formulated as a problem
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of representation-valued semigroup cohomology. We develop the corresponding cohomology
theory, and show that among the known multiresolution analyses, some may be obtained from
trivial 1-cocycles, i.e. 1-coboundaries.

Finally, we address in Section 4 the problem of connection between the continuous and
discrete approaches to wavelet analysis. We show that given a pseudodilation, the corre-
sponding sampling of a continuous wavelet transform may be seen as a kind of generalized
intertwiner between the action of the continuous affine group on L2(R) and an action of the
discrete affine semigroup on ℓ2(Z). ¿From our point of view, this approach may be under-
stood as a first step towards a particular aspect of the harmonic analysis of the affine group,
namely the decomposition of an irreducible representation of an affine group as a direct sum
of representations of a discrete affine subsemigroup.

We notice that several different discrete versions of wavelet analysis have been considered.
For the sake of simplicity, we limit the present discussion to the case of the multiresolution
wavelet transforms as developed in I. Daubechies’ book [9]. However, we emphasize that a
similar approach may be developed in the case of the dyadic wavelet transform, as considered
for example by S. Mallat [22], very much in the spirit of the Littlewood-Paley decompositions
used by harmonic analysts since the early 30’s. Notice also that the formalism developed in
this paper does not seem, at the present stage,to yield directly new wavelet bases of sub-band
coding schemes. This paper rather aims at analyzing the algebraic structures associated to
multiresolution, so as to pave the way towards generalizations. The latter may for example
include (separable or non separable) wavelet bases associated with nontrivial dilations in more
than one dimension, or the wavelet bases associated to aperiodic tilings developed for studying
quasicrystals in [5, 12], for which the semigroup to be considered is not a semidirect product
any more.

2 Pseudodilations and associated compatible filters

2.1 Background, notations

Let G be an infinite locally compact abelian (LCA for short) group, Γ ⊂ G be a lattice in G,
and A be an abelian semigroup (see the Appendix for a survey of the main results in this
area). We are interested in studying the possible actions of A on ℓ2(Γ). We first need the
following classical notions.

DEFINITION 1 (Compatible action) 1. Let A be a semigroup and E a nonempty set. An action
(or an operation) of A on E (on the left) is a mapping (a, x) ∈ A × E → ax ∈ E, such
that:

(a) for all a, a′ ∈ A, x ∈ E

a(a′x) = (aa′)x (2.1)

(b) whenever A contains a unit element 1, we have for all x ∈ E:

1x = x . (2.2)

The action of A is one-to-one if for any a ∈ A, the mapping x 7→ ax is one-to-one.
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2. Let E be a group and let A be a semigroup acting on E. We say that the action of A on
E is compatible (with the group law) if for any a ∈ A,

a(xy) = (ax)(ay) , for all (x, y) ∈ E × E . (2.3)

DEFINITION 2 (Divisibility) Let A be a semigroup operating on a lattice Γ by a compatible and
one-to-one action and let a ∈ A. We say that a divides γ ∈ Γ if there exists a (unique) γ′ ∈ Γ
such that γ = aγ′. In such a case we write a|γ, and γ′ = a−1γ.

REMARK 1 Note that a−1γ only denotes an element γ′ of Γ such that aγ′ = γ; this doesno
mean that a is invertible in A.

If A is an abelian semigroup with a one-to-one compatible action on a lattice Γ, then

aa′|γ ⇐⇒ a|γ and a′| a−1γ ⇐⇒ a′|γ and a| a′−1γ

and we have
(aa′)−1γ = a−1(a′−1γ) = a′−1(a−1γ).

Throughout Section 2, we shall always consider a generic situation consisting in a lattice Γ in
an infinite LCA group G and an abelian semigroup A with unit 1 acting on Γ, in such a way
that the action of A on Γ is compatible and one-to-one. In addition we suppose that for each
a ∈ A, a 6= 1, aΓ is a lattice of G and the quotient Qa = Γ/aΓ is a nontrivial finite group, say

Qa = {γ0 = 0, . . . , γd(a)−1} (2.4)

where d(a) = |Qa| denotes the order of Qa (d(a) > 1). It follows from the double coset
theorem (see e.g. [21]) that

d(aa′) ≥ d(a), for all a, a′ ∈ A

The action of A on Γ induces an action on Γ̂, the dual action, in the natural way: for any
γ ∈ Γ, χ ∈ Γ̂, and a ∈ A, 〈aχ, γ〉 = 〈χ, aγ〉. The dual action is compatible but non-necessary
one-to-one.

By a slight abuse of language, we shall call sequences the functions on Γ.

EXAMPLE 1 Let G = R be the real line. The (unitary) characters χθ of R are given by the
pure oscillations

〈χθ, t〉 = eiθt

(see Appendix A for the notations and definitions). Each character of R can, therefore, be

identified with a point θ ∈ R which is interpreted as a frequency, and R̂ is thus identified with
R. We take the Lebesgue measure dx as the Haar measure on R; if dθ denotes the Lebesgue
measure on R̂, then the dual measure of dx is dθ

2π
.

Let Γ = Z; then Γ⊥ = 2πZ. By Theorem A.1 we have Ẑ ≃ R̂/Z⊥ ; the dual of Z can,

therefore, be identified with the unit circle T = R/2πZ. A fundamental domain of Z⊥ in R̂

can be chosen to be Ω = [−π, π) and then s(Z⊥) = 1 = s(Z) . The Haar measure on Z is the
counting measure and its dual measure on T is then dθ

2π
.

5



On the real line, the (continuous) dilation of parameter a ∈ R∗ is the unitary operator Da

on L2(R), defined by

(Daf)(x) =
1√
| a |

f
(x
a

)
(2.5)

For Γ = Z, there is no natural group of dilations acting on ℓ2(Z). However, the multiplicative
semigroup Z∗

+, or any of its subsemigroups, acts naturally on Z, and the action is compatible
and one-to-one. We shall be interested in carrying such actions to ℓ2(Z).

EXAMPLE 2 Let G = Rn, and consider the representation of GL(n,R) on L2(Rn) defined by

π(h)f(x) =
1√

| deth|
f(h−1x) (2.6)

Take Γ = Zn. Let A be any abelian subsemigroup of GL(n,R) consisting of matrices with
integer entries (examples have been considered by [4, 11] in the group case). Suitable choices
for A are, for instance, the semigroup of diagonal n × n invertible matrices with integer
coefficients, or any abelian subsemigroup of Z∗

+ × O(n, Z), where O(n,Z) is the group of
orthogonal n×n matrices with integral coefficients, the so-called hyperoctahedral group [3]. A

acts on Γ in a natural way, and it is easily verified that the action is one-to-one and compatible.
Another example is provided by A = {Aj, j = 0, 1, 2, . . .}, where A is any nonsingular matrix
preserving Zn whose (possibly complex) eigenvalues have modulus strictly greater than 1.

The need to construct discrete analogs of dilation operators has led the authors of [10] to intro-
duce “pseudodilations” for sequences on Z/pZ, with p a prime number. Such pseudodilations
are all constructed from systems of so-called compatible filters. However, the construction is
tied to the fact that the dilations on Z/pZ form a group, which is not the case we consider
here. Our goal is to construct on ℓ2(Γ) an adapted version of the pseudodilation operators
of [10]. We first set up the general framework.

2.2 Principal pseudodilations

A first candidate for dilations on ℓ2(Γ) is provided in the following definition (we denote by
B(ℓ2(Γ)) the set of bounded operators on ℓ2(Γ)).

DEFINITION 3 (Natural dilation) Let a ∈ A. The natural dilation, (or dilation with holes) on
ℓ2(Γ) is the mapping ∆ : a ∈ A 7→ ∆a ∈ B(ℓ2(Γ)), where ∆a is defined as follows: for any
sequence {uγ, γ ∈ Γ} ∈ ℓ2(Γ),

(∆au)γ =

{
ua−1γ if a|γ

0 otherwise.
(2.7)

For each a ∈ A we thus obtain a map ∆a defined on the set of all sequence u = (uγ)γ∈Γ which
dilates them by inserting zeros. We shall denote again by ∆a every restriction of this map.
The maps ∆a (a ∈ A) satisfy the following properties; the proof of each of them is obvious
and is left to the reader.

• For all a, a′ ∈ A ,
∆a∆a′ = ∆aa′ . (2.8)
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• Let Tγ be the translation of parameter γ ∈ Γ; we have

Tγ∆a = ∆aTa−1γ if a|γ. (2.9)

• If u and v are two sequences such that their convolution product exists then

∆a(u ∗ v) = (∆au) ∗ (∆av). (2.10)

• ∆a is a non-surjective isometry on ℓ2(Γ) and its adjoint is defined by:

(∆a
∗u)γ = uaγ , for all u ∈ ℓ2(Γ). (2.11)

The action of ∆a in the Fourier domain is as follows: for all u ∈ ℓ2(Γ),

∆̂au(χ) = û(aχ), ∀χ ∈ Γ̂ . (2.12)

The properties of ∆a listed above are reminiscent of the main properties encountered when
considering the affine group of the real line and the associated dilation. However, we shall
see that the natural dilation is not the only candidate for a dilation on ℓ2(Γ); in addition, the
natural dilation is often not satisfactory for practical purposes, as will be clear from the next
example.

EXAMPLE 1 (continued) Consider for instance the natural dilation by a factor 2, ∆2, on ℓ2(Z).
The main difference between ∆2 and the continuously defined D2 lies in the fact that, by
construction, half of the coefficients of a sequence dilated using ∆2 vanish: (∆2f)2k+1 =
0∀ k ∈ Z. Therefore, a sequence dilated with ∆2 can hardly be interpreted as a sampling
(perfect or imperfect) of a continuously defined function, dilated with D2.

More generally, the fundamental difference between these Da and ∆a is as follows: given a
finite sequence {uγ}, the measure of the support of a dilated sequence ∆au, does not change,
since the measure we use on Γ is the counting measure. Therefore, it makes sense to look for
alternative solutions. One of these is provided by the pseudodilations, defined as follows.

DEFINITION 4 (Pseudodilation) Let A be an abelian semigroup with unity, acting on a lattice
Γ ⊂ G, in such a way that the action is compatible and one-to-one. A pseudodilation (or
principal pseudodilation) on ℓ2(Γ) is a mapping

D : a ∈ A 7→ Da = Ka∆a ∈ B
(
ℓ2(Γ)

)
(2.13)

where Ka is a bounded linear operator acting on ℓ2(Γ), in such a way that

DaTγ = TaγDa, a ∈ A, γ ∈ Γ (2.14)

DaDa′ = Daa′ , a, a′ ∈ A . (2.15)

Notice that D1 = 1. To characterize the pseudodilations, we first need the following result.
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LEMMA 1 Let A be of the form A = K∆a, with a ∈ A and K a bounded linear operator on
ℓ2(Γ), such that

ATγ = TaγA, for all γ ∈ Γ. (2.16)

Then there exists a sequence {kγ, γ ∈ Γ} such that for all u ∈ ℓ2(Γ),

(Au)γ =
∑

γ′∈Γ

kγ−aγ′uγ′ . (2.17)

Proof: Equation (2.16) reads
[K,Taγ] ∆a = 0 . (2.18)

Writing, for any sequence u = (uγ)γ∈Γ ∈ ℓ2(Γ), Kuγ =
∑
kγ,γ′uγ′ we see that (2.18) is

equivalent to ∑
kγ,aγ′uγ′ =

∑
kγ−aγ′,0uγ′ , γ ∈ Γ

which implies, for all γ, γ′ ∈ Γ

kγ,aγ′ = kγ−aγ′,0 := kγ−aγ′ (2.19)

for some sequence {kγ, γ ∈ Γ}. Therefore, K is the convolution by k. �

Returning to the pseudodilation D, we conclude that, for each a ∈ A, there exists a
sequence {h(a)

γ , γ ∈ Γ} such that, for all u ∈ ℓ2(Γ),

(Dau)γ =
∑

γ′∈Γ

h
(a)
γ−aγ′uγ′ =

(
h(a) ∗ (∆au)

)
γ
, (2.20)

and we shall write:
Da = h(a) ∗ ∆a , a ∈ A . (2.21)

REMARK 2 If, instead of (2.13), we look for operators Da of the form

Da = ∆aMa , a ∈ A ,

then the relation (2.14) yields

∆a [Ma, Tγ] = 0 ∀ a ∈ A, ∀ γ ∈ Γ,

which implies that Ma commutes with every translation of parameter γ ∈ Γ. A result of [6]
then asserts that Ma is a convolution operator on ℓ2(Γ). Let µ(a) be a sequence such that

Mav = µ(a) ∗ v , for all v ∈ ℓ2(Γ).

In this case,
Dav =

(
∆aµ

(a)
)
∗ (∆av) , v ∈ ℓ2(Γ)

and if we set h(a) = ∆aµ
(a) and denote by Ka the convolution by h(a) , we find again (2.13)

and (2.21).
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Let us consider the (group) Fourier transform of the sequences h(a) and set

Ha = ĥ(a) . (2.22)

According to the discussion in Appendix A, Ha is a function on the dual Γ̂ of Γ. Under
Fourier transform the relations (2.21) read

D̂au(χ) = Ha(χ)û(aχ) . (2.23)

Using (2.8) and (2.10), it is easy to check that (2.15) can be rewritten as follows: for all
a, a′ ∈ A

h(aa′)
γ =

(
h(a) ∗ ∆ah

(a′)
)
γ

=
∑

γ′

h
(a)
γ−aγ′h

(a′)
γ′ , (2.24)

or equivalently in Fourier space: for all χ ∈ Γ̂

Haa′(χ) = Ha(χ)Ha′(aχ) . (2.25)

We shall generically call filters operators of the form (2.21); the corresponding sequence

{h(a)
γ , γ ∈ Γ} is the impulse response of the filter, and its Fourier transform Ha is the transfer

function of the filter. By abuse of language, we shall sometimes call the function Ha a filter.

EXAMPLE 3 We start here the discussion of an example that we shall revisit several times in
what follows. Let a ∈ A. We have in the dual space Γ⊥ ⊂ (aΓ)⊥. As a result of the discussion
at the end of Appendix A, and more precisely Eq. (A.101), we can choose fundamental
domains Ω and Ωa of Γ⊥ and (aΓ)⊥ in such a way that Ωa ⊂ Ω and

Ω =

d(a)−1⋃

ǫ=0

(Ωa + χǫ) , (2.26)

where the sets Ωa + χǫ intersect each other at most on sets of measure zero. In addition, Ωa

is a pre-image of Ω by a, in the sense that χ ∈ Ωa implies that aχ ∈ Ω.
Now, define the sequence {h(a)

γ : γ ∈ Γ} by its Fourier transform:

Ha(χ) = 1Ωa
(χ) , χ ∈ Ĝ , (2.27)

where 1E denotes the indicator function of the set E. Then the functions Ha, a ∈ A sat-
isfy (2.25) by construction, and therefore the family {h(a) : a ∈ A} satisfies (2.24). By
analogy with the signal processing terminology, we shall call Ωa a sub-band of Ω.

2.3 Associated pseudodilation

Let A be an abelian semigroup with unit 1, acting on a lattice Γ ⊂ G, in such a way that the
action is compatible and one-to-one, and for each a ∈ A, let Qa be defined as in (2.4). As
before, we assume that, for all a 6= 1, Qa is finite and nontrivial, so that d(a) > 1. We now
introduce the following
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DEFINITION 5 (Associated pseudodilation) Given a principal pseudodilation D, an associated pseu-
dodilation on ℓ2(Γ) is a mapping D̃ which assigns to any pair (a, a′) ∈ A2, a′ 6= 1, the family

of linear operators D̃a,a′;ǫ, ǫ = 1, . . . , d(a′) − 1, of the form

D̃a,a′;ǫ = K̃a,a′;ǫ∆aa′ , (2.28)

where K̃a,a′;ǫ is a bounded linear operator acting on ℓ2(Γ), such that

D̃a,a′;ǫTγ = T(aa′)γD̃a,a′;ǫ , a, a′ ∈ A, γ ∈ Γ (2.29)

Da0D̃a1,a′;ǫ = D̃a0a1,a′;ǫ , a0, a1, a
′ ∈ A . (2.30)

REMARK 3 We emphasize the fact that an associated pseudodilation is not a pseudodilation in
the sense of Definition 4. By a pseudodilation, we shall always mean a principal pseudodilation.
Notice also that an associated pseudodilation D̃ is completely determined by the operators

D̃a;ǫ := D̃1,a;ǫ , a ∈ A, a 6= 1, ǫ = 1, . . . d(a) − 1

and the relation (2.30).

Using Lemma 1, we observe that for all (a, a′) ∈ A2, a′ 6= 1 and ǫ = 1, . . . d(a′) − 1, there

exists a sequence {g(a,a′;ǫ)
γ , γ ∈ Γ}, such that the associated pseudodilation reads

(D̃a,a′;ǫu)γ =
∑

γ′∈Γ

g
(a,a′;ǫ)
γ−(aa′)γ′uγ′ =

(
g(a,a′;ǫ) ∗ (∆aa′u)

)
γ
. (2.31)

In addition, it follows directly from Definition 5 and Remark 3 that the sequences {g(a,a′;ǫ)
γ ,

γ ∈ Γ} must satisfy (and may actually be generated by) the following compatibility equations:

g(a0a1,a′;ǫ) = h(a0) ∗ ∆a0g
(a1,a′;ǫ) . (2.32)

Let G(a,a′;ǫ) denote the Fourier transform of the sequence g(a,a′;ǫ). In the Fourier domain, the
compatibility relations (2.32) read

Ga0a1,a′;ǫ(χ) = Ha0(χ)Ga1,a′;ǫ(a0χ) . (2.33)

In particular, setting for simplicity Ga,ǫ = G1,a;ǫ, we have

Ga,a′;ǫ(χ) = Ha(χ)Ga′;ǫ(aχ) . (2.34)

The arguments of this section and the previous one motivate the following definition:

DEFINITION 6 (Compatible filters) A family {(Ha, Ga,a′;ǫ), a, a
′ ∈ A, a′ 6= 1 , ǫ = 1, . . . , d(a′)−1}

of bounded functions on Γ̂ satisfying the conditions (2.25) and (2.33) is called a family of
compatible filters.

Therefore, we can summarize the results of this section as follows:
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THEOREM 1 Let D be a principal pseudodilation, and D̃ be an associated pseudodilation. Then
they are necessarily filters of the form (2.21) and (2.31), and the corresponding transfer func-

tions {(Ha, Ga,a′;ǫ), a, a
′ ∈ A, ǫ = 1, . . . , d(a′) − 1} (functions on Γ̂) is a family of compatible

filters.

REMARK 4 A sufficient condition for the pseudodilation Da to be bounded is that the filters
Ha ∈ L∞(Γ̂). In such cases we have ||Dau||ℓ2(Γ) ≤ ||Ha||L∞(bΓ)||u||ℓ2(Γ). Similar bounds hold

for D̃.
Since h(a) can be recovered from Ha, the complete description of the Da is obtained if one

can completely classify the solutions of (2.25).

EXAMPLE 4 (Natural pseudodilations) Let a ∈ A, a 6= 1, and let us consider Qa = Γ/aΓ =
{0, . . . , γd(a)−1}. The impulse response of the natural dilation is clearly

h(a)
γ = δγ,0 , (2.35)

Let the sequences g(a;ǫ), ǫ = 1, . . . d(a) − 1, be defined according to

g(a;ǫ)
γ = δγ,γǫ

, (2.36)

and define the other sequences g(a,a′;ǫ) using Eq. (2.32). It is readily verified that the corre-
sponding family of functions Ga,a′;ǫ, together with the functions Ha = 1 occuring in the case
of natural dilations (see Definition 3), yield a family of compatible filters.

EXAMPLE 3 (continued) Let us come back to the example described above in Eq. (2.27). With
Eq. (2.26) in mind, we define, for all a, a′ ∈ A, a′ 6= 1 and ǫ = 1, . . . d(a′) − 1, the functions

Ga,a′;ǫ(χ) = 1Ωaa′
(χ− χǫ) , χ ∈ Γ̂ . (2.37)

Then it follows from the decomposition Ωa =
⋃d(a′)−1
ǫ=0 (Ωaa′ + χǫ) that Ga,a′;ǫ(χ) = Ga′;ǫ(aχ).

Since both functions are supported in Ωa, and since Ha(χ) = 1 identically on Ωa, this in

turn implies that the compatibility relation (2.34) is fulfilled. Therefore, the operators D̃a,a′;ǫ

defined by such filters Ga,a′;ǫ form a pseudodilation associated to D.

2.4 Adjoint pseudodilations and inversion

Let us now consider the adjoint operators of the principal and associated pseudodilations
defined in the previous sections. For u ∈ ℓ2(Γ), we have

(D∗
au)γ =

∑

γ′

h
(a)

γ′−aγuγ′ (2.38)

(D̃∗
a,a′;ǫu)γ =

∑

γ′

g
(a,a′;ǫ)
γ′−(aa′)γuγ′ (2.39)

Let us introduce at this point the synthesis operators, defined by

Sa,a′ = Daa′D
∗
aa′ +

d(a′)−1∑

ǫ=1

D̃a,a′;ǫD̃
∗
a,a′;ǫ , (2.40)
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and in particular

Sa ≡ S1,a = DaD
∗
a +

d(a)−1∑

ǫ=1

D̃a;ǫD̃
∗
a;ǫ . (2.41)

The following result is readily verified:

LEMMA 2 The synthesis operators satisfy

Sa,a′ = DaSa′D
∗
a , ∀a, a′ ∈ A . (2.42)

Therefore, the synthesis operators are completely characterized by the operators Sa = S1,a, a ∈
A.

DEFINITION 7 (Sub-band coding scheme) A family of compatible filters define a sub-band coding
scheme if for all a ∈ A, Sa = 1.

Hence, given such a sub-band coding scheme, one may decompose any s ∈ ℓ2(Γ) as follows.
Let s1 = s, and define the sequences sa, a ∈ A and da,a

′;ǫ inductively by

sa = D∗
as , da,a

′;ǫ = D̃∗
a′;ǫs

a (2.43)

Then, we have the “wavelet-like” decomposition:

s = Das
a +

d(a)−1∑

ǫ=1

D̃a;ǫd
a,1;ǫ

= Da2sa
2

+

d(a)−1∑

ǫ=1

D̃a,a;ǫd
a,a;ǫ +

d(a)−1∑

ǫ=1

D̃a;ǫd
1,a;ǫ

= . . .

However, we can also write directly, for example,

s = Da2sa
2

+

d(a2)−1∑

ǫ=1

D̃1,a2;ǫd
1,a2;ǫ .

These two decompositions are of a different nature, for they make use of different operators
D̃u;ǫ. We shall see more precisely the difference between these two types of decompositions
when discussing examples in the case ℓ2(Z).

EXAMPLE 3 (continued) Return to the example of the principal and associated pseudodilations
defined by Eqs. (2.27) and (2.37). Then it is a direct consequence of Eq. (2.26) that, for all
a ∈ A, a 6= 1,

|Ha(χ)|2 +

d(a)−1∑

ǫ=1

|Ga;ǫ(χ)|2 = 1 for all χ ∈ Γ̂ .

This implies that for all a ∈ A, Sa = 1. Therefore, we have constructed a first example of
sub-band coding scheme.
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EXAMPLE 4 (continued) Coming back to the case of natural pseudodilations, we easily verify
that with the impulse responses given in (2.35) and (2.36), we have

(DaD
∗
as)γ =

{
sγ if a|γ
0 otherwise

and

(D̃a;ǫD̃
∗
a;ǫs)γ =

{
sγ if a|(γ + γǫ)
0 otherwise

In such a case, it is clear that Sa = 1, which yields again a sub-band coding scheme. We
notice that this example is the abstract version of the scheme used in [17] to generate families
of perfect reconstruction quadrature mirror filters.

REMARK 5 The definition of sub-band coding scheme we have given turns out to be too
restrictive in many practical situations. A simple extension, which leads to biorthogonal
multiresolution decompositions of sequences (and functions), consists in decoupling the de-
composition and reconstruction steps, by using different families of compatible filters in those
two steps. For example, let (D, D̃) and (C, C̃) be two pairs (pseudodilation, associated pseu-

dodilation). Choosing, say, the pair (D, D̃) for the decomposition and the pair (C, C̃) for the
reconstruction, the corresponding synthesis operators read

Sa,a′ = Ca,a′D
∗
a,a′ +

d(a′)−1∑

ǫ=1

C̃a,a′;ǫD̃
∗
a,a′;ǫ ,

and the pseudodilations form a biorthogonal sub-band coding scheme if for all a ∈ A, we have
Sa = 1. We shall not enter into the details of the biorthogonal sub-band coding schemes,
which are (at least from the algebraic point of view) the direct generalizations of the classical
ones. We simply notice that they offer extra freedom in the design of compatible perfect
reconstruction filters.

2.5 Compatible filters in the case G = R, A ⊂ Z+

Let us now specialize to the case of interest in classical one-dimensional wavelet theory, namely
the case G = R and Γ = Z. Our goal here is twofold. We first want to make the connection
with the classical multiresolution theory. We also take the opportunity to describe a few
simple situations which will help understanding the next section.

Let A be any subsemigroup of the multiplicative semigroup Z∗; let {(Ha, Ga), a ∈ A} be
a system of compatible filters. After identifying the dual T of Z with the interval [−π, π), the
functions Ha and Ga on the dual T of Z are now considered as 2π-periodic functions.

We first notice that, given a 2π-periodic function Φ, and setting, for all a ∈ A,

Ha(θ) =
Φ(aθ)

Φ(θ)
, (2.44)

we immediatly obtain a solution of (2.25), provided that the quotients are well-defined and
define bounded 2π-periodic functions for all a ∈ A. We call such families trivial, for reasons
which will become clear in Section 3 below. We notice that Eq. (2.44) is reminiscent of the
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relationship between the Fourier transform of the scaling function and the low-pass filter in
classical multiresolution theory. However, the identification is not completely adequate, for
Φ(θ)is 2π-periodic, unlike the Fourier transform of the scaling function.

More generally, any bounded function Φ ∈ L∞(R) such that the ratio (2.44) defines a
2π-periodic function for all a ∈ A also yields a solution of the compatibility relation (2.25).
We shall come back to that point in Remark 7 below.

Let us also remark that besides the simple solutions of the form (2.44), we can also consider
functions Ha(θ) of the form

Ha(θ) = aα
Φ(aθ)

Φ(θ)
, (2.45)

(for some real number α), which also satisfy the compatibility relations (2.25). This comes
from the fact that (aa′)α = aαa′α, in other words that a 7→ aα is a character of the semigroup
A.

It is obvious that the specific choice discussed in Example 3 is applicable to the present case
without major difficulty. Identifying again the circle group Γ̂ = T with the fundamental do-
main Ω = [−π, π), we set for all a ∈ A, Ωa = [−π/a, π/a) ⊂ Ω and d(a) = a. Equation (2.26)
is trivially satisfied by setting

Ωa + χǫ = [−(ǫ+ 1)
π

a
,−ǫπ

a
] ∪ [ǫ

π

a
, (ǫ+ 1)

π

a
]

Hence,

Ha(θ) =
∑

n∈Z

1[−π
a
,π
a
](θ − 2πn)

and
Ga;ǫ(θ) =

∑

n∈Z

1Ωa+χǫ
(θ − 2πn)

generate families of compatible filters. In addition, for all a ∈ A, we have that

|Ha(θ)|2 +

d(a)−1∑

ǫ=1

|Ga;ǫ(θ)|2 = 1, (2.46)

which tells us that we are in the situation of a sub-band coding scheme. This particular case
corresponds to the so-called Shannon multiresolution analyses of MRA theory, namely the
multiresolution analysis associated to the classical sampling theorem (see [16] for a review).

EXAMPLE 5 (Haar) Another simple example of such a “trivial” family of compatible filters is
provided by the theory of spline functions. Let us again consider any subsemigroup A ⊂ Z+,
and define for all a ∈ A

h
(a)
k =

{
a−1 if 0 ≤ k ≤ a− 1
0 otherwise.

(2.47)

A direct calculation yields

Ha(θ) =
1

a

1 − e−iaθ

1 − e−iθ
. (2.48)
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It is easily verified that such a function satisfies Eq. (2.25). Notice that this is a solution of
the form (2.45), with Φ(θ) = 1 − e−iθ. Now, for each ǫ = 1, . . . , a− 1, let

Ga;ǫ(θ) = Ha

(
θ − ǫ

2π

a

)
(2.49)

Using the trigonometric identity
∑a−1

ǫ=0 sin (θ + ǫπ/a)−2 = a2 sin(aθ)−2 valid for all a ∈ Z+

and θ ∈ R, we easily see that Eq. (2.46) is satisfied. This tells us that we have constructed
a sub-band coding scheme. In the classical wavelet literature, such a scheme goes under the
name of the Haar MRA.

EXAMPLE 6 (splines) The Haar MRA is the simplest instance of the so-called spline multires-
olution analyses (see e.g. [8] or [13] for reviews; see also [25] for spline constructions in more
general situations). The previous example suggests to study higher order spline filters. This
may be done by defining the Ha filters by

Ha(θ) =
1

aN

(
1 − e−iaθ

1 − e−iθ

)N
, (2.50)

and the Ga;ǫ filters by Eq. (2.49). Since the filters Ha again assume the form (2.45), the
compatibility condition (2.25) is verified by construction. However, the perfect reconstruction
condition (2.46) is not satisfied any more. Such a problem is usually addressed in two different
ways: either by modifying the filter Ha and Ga;ǫ by multiplying them by a convenient periodic
function, without destroying the compatibility relation (nor the form (2.45) in fact), or by
going to a biorthogonal scheme, as alluded to in Remark 5 above.

By now, many more sub-band coding schemes have been proposed in the wavelet literature
(see e.g [9, 27] for a non-exhaustive account; see also [18] for a generic method for generating
such sub-band coding schemes). To our knowledge, most of them don’t assume the simple
forms (2.44) or (2.45). Understanding more precisely that point is the motivation of the next
section.

3 Cohomological interpretation

The condition (2.25) satisfied by the transfer functions defining principal pseudodilations may
be given an interesting cohomological interpretation, which we detail below. Our presentation
follows the lines indicated in [2]. The reader who is only interested in the issues related to
discrete and continuous wavelet and multiresolution analysis may skip the present section and
proceed directly to Section 4.

3.1 Generalities

Let us start by the following definition.

DEFINITION 8 M is a module over a semigroup A or an A-module if M is an abelian group
such that A acts on M by a compatible action.
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We shall be mostly interested in the following situation. Let Γ be a lattice in a locally compact
abelian group G, and let A be an abelian semigroup acting on Γ. In this section we assume
that the semigroup A operates on Γ̂ in such a way that the Haar measure µbΓ on Γ̂ is quasi-
invariant by A. In other words, we assume that for all a ∈ A, the mapping E 7→ µbΓ(aE)

defines a positive measure on Γ̂, which is absolutely continuous with respect to µbΓ.

Let R be the commutative ring of all mappings of Γ̂ into C

R = Map(Γ̂,C) , (3.51)

with the composition laws:

− Addition : (Φ,Ψ) 7−→ Φ + Ψ, (Φ + Ψ)(χ) = Φ(χ) + Ψ(χ)

− Multiplication : (Φ,Ψ) 7−→ ΦΨ, (ΦΨ)(χ) = Φ(χ)Ψ(χ)

The subset I of R consisting of all mappings of Φ ∈ R such that Φ(χ) = 0 almost everywhere

on Γ̂ is an ideal in R and we consider the factor ring R/I. Now, let M be the group of units of
R/I, that is the multiplicative group of all invertible elements of R/I. Clearly, M is the set of
all the residue classes modulo I of the elements Φ ∈ R such that Φ(χ) 6= 0 almost everywhere

on Γ̂; we shall write again Φ ∈ M without loss of generality.
We denote by 1 the unit element of M and by −1Φ the inverse of an element Φ ∈ M. We

identify

−1( −1Φ) ≡ 1Φ ≡ Φ

and we draw the reader’s attention on the fact that in a product of the type Φ−1Ψ with
Φ,Ψ ∈ M, the “−1” indicates the inverse of Ψ. If Φ1, . . . ,Φn are elements of M, we denote
their product by

n∏

j=1

Φj ≡ Φ1 · · ·Φn.

The mapping

(a,Φ) 7−→ aΦ , a ∈ A , Φ ∈ M with (aΦ)(χ) = Φ(aχ) for all χ ∈ Γ̂ (3.52)

defines a compatible action of A on M. M is therefore a module over the semigroup A.

3.2 The module of n-cochains

For each integer n ≥ 1, let Hn be a function which maps ordered n-tuples of elements of A

into M, that is

Hn : A × · · · × A︸ ︷︷ ︸
n

−→ M

(a1, . . . , an) 7−→ Hn(a1, . . . , an) := Hn(a1, . . . , an)???????

≡ Hn
(a1,...,an)

Such a function Hn is called a n-cochain. We denote by Cn(A,M) ≡ Cn the set of all n-
cochains; for n = 0, we define

C0(A,M) := M
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i.e., the 0-cochains are elements the of M.
The A-module structure of M is transferred to Cn in a natural way; indeed, Cn is an

abelian group under the composition law

(Un, V n) 7−→ UnV n

where

(UnV n)(a1, . . . , an) := Un
(a1,...,an)V

n
(a1,...,an)

As a matter of notation, we write again 1 for the unit element of Cn and −1Hn for the inverse
of a given n-cochain Hn. Hence, −1Hn is defined by:

−1Hn(a1, . . . , an) =−1Hn
(a1,...,an)

As we have done for the elements of M, we identify

−1
( −1Hn

)
≡ 1Hn ≡ Hn.

The semigroup A acts on Cn by

[a(Hn)] (a1, . . . , an) := a
(
Hn

(a1,...,an)

)

and one can easily check that this action is compatible with the group law of Cn ; thus,
Cn(A,M) is an A-module for all n ≥ 0.

3.3 Differentials and cohomology groups

Let n ≥ 0 be an integer and i ∈ {0, . . . , n + 1}. Consider the map pin+1 : Cn(A,M) −→
Cn+1(A,M) given by pin+1(H

n) = Hn+1, where Hn+1 is defined by

Hn+1(a1, . . . , an+1) =





(a1H
n)(a2, . . . , an+1) if i = 0

Hn(a1, . . . , aiai+1, . . . , an+1) if 0 < i < n+ 1
Hn(a1, . . . , an) if i = n+ 1

(3.53)

PROPOSITION 1 pin+1 is a group homomorphism, for each integer n ≥ 0 and each i ∈ {0, . . . , n+
1}

Proof: This follows immediately from the definition of the composition law of Cn(A,M) and
the compatibility of the action of A on Cn(A,M) �

We now use the maps pin+1 to define the so-called differentials ∂n : Cn(A,M) −→ Cn+1(A,M)
(n ≥ 0) by

∂n(H
n) :=

n+1∏

i=0

ε(n+i)[
pin+1(H

n)
]

(3.54)

where ε(k) = (−1)k, with k an integer. We have the following fundamental result:
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PROPOSITION 2 ∂n is a group homomorphism for each integer n ≥ 0, and

Im (∂n ◦ ∂n−1) = {1},

where Im denotes the image.

Proof: The fact that ∂n is a homomorphism follows from a straightforward verification which
we leave to the reader. To prove that

Im (∂n ◦ ∂n−1) = {1},

we write, for the sake of simplicity,

∂n =
n+1∏

i=0

ε(n+i)[
pin+1

]
, for all n ≥ 0

hence, for n ≥ 1,

∂n ◦ ∂n−1 =

(
n+1∏

i=0

ε(n+i)[
pin+1

]
)

◦
(

n∏

j=0

ε(n+j−1) [
pjn
]
)

=
n+1∏

i=1

n∏

j=1

ε(i+j−1)
[
pin+1 ◦ pjn

]

=
∏

0≤i≤j≤n

ε(i+j−1)[
pin+1 ◦ pjn

] ∏

0≤j<i≤n+1

ε(i+j−1)[
pin+1 ◦ pjn

]
.

After rearranging terms, we obtain the following product

∂n ◦ ∂n−1 =
∏

0≤i≤j≤n

ε(i+j) [−1
(
pin+1 ◦ pjn

) (
pj+1
n+1 ◦ pin

)]
,

which splits into seven types of factors, namely: (1) i = j = 0; (2) i = 0 and j = n; (3)
i = j = n; (4) 0 < i = j < n; (5) i = 0 and 0 < j < n; (6) 0 < i < j < n; and (7)
0 < i < j = n. For each factor, an explicit computation yields

[−1
(
pin+1 ◦ pjn

) (
pj+1
n+1 ◦ pin

)]
(Hn−1) = 1, for all Hn−1 ∈ Cn−1(A,M).

We only show as an example the computation of one of these factors, namely the type 6; the
others are obtained in the same way. For 0 < i < j < n, the corresponding factors are

ε(i+j)[−1
(
pin+1 ◦ pjn

) (
pj+1
n+1 ◦ pin

)]
(0 < i < j < n).

On the one hand, we have

(
pj+1
n+1 ◦ pin

)
(Hn−1)(a1, . . . , an+1) = (pinH

n−1)(a1, . . . , ajaj+1, . . . , an)

= (Hn−1)(a1, . . . , aiai+1, . . . , ajaj+1 . . . , an),
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and on the other hand

(
pin+1 ◦ pjn

)
(Hn−1)(a1, . . . , an+1) = pjn(H

n−1)(a1, . . . , aiai+1, . . . , an+1)

= (Hn−1)(a1, . . . , aiai+1, . . . , ajaj+1, . . . , an)

and the result follows; this concludes the proof. �

We set

Zn(A,M) := Ker (∂n),

Bn(A,M) := Im (∂n−1).

Following the usual terminology, the elements of Zn(A,M) are called n-cocycles and those of
Bn(A,M), n-coboundaries. For each n ≥ 1, the quotient group

Hn(A,M) := Zn(A,M)/Bn(A,M)

is the nth cohomology group of A in M, and it measures the deviation from exactness of the
complex

C0 ∂0−→ C1 ∂1−→ C2 −→ . . . −→ Cn−1 ∂n−1−→ Cn
∂n−→ Cn+1 −→ . . .

For characteriing the compatible filters, we only need the first cohomology group.

3.4 Cohomological solution of the pseudodilation filters equations

Let us start by first exhibiting the explicit form of ∂0 and ∂1 by means of (3.54). For n = 0,
the differential ∂0 : M −→ C1(A,M) is defined as follows. For all Φ ∈ M and a ∈ A,

[∂0(Φ)] (a) = −1
[
p1

1(Φ)(a)
] [
p0

1(Φ)(a)
]

=
[−1Φ

]
[a(Φ)] =

(−1Φ
)
(aΦ) ,

that is, for all Φ ∈ M and a ∈ A,

[∂0 (Φ)] (a)(χ) =
Φ(aχ)

Φ(χ)
, for all χ ∈ Γ̂. (3.55)

For n = 1, the differential ∂1 : C1 −→ C2 reads: for all H ∈ C1(A,M) and (a, a′) ∈ A × A,

[∂1 (H)] (a, a′)(χ) =
Haa′(χ)

Ha(χ)Ha′(aχ)
, χ ∈ Γ̂. (3.56)

It is clear that each family {Ha : a ∈ A} of elements of M is uniquely identified with an
element H ∈ C1(A,M) and vice versa.

We say that an element H ∈ C1 belongs to L∞(A, Γ̂) if and only if Ha belongs to L∞(Γ̂)
for all a ∈ A. It then follows from Eqs. (2.25) and (3.56) that an element H ∈ C1(A,M)

generates a pseudodilation if and only if H ∈ L∞(A, Γ̂) and

[∂1(H)] (a, a′)(χ) = 1 , for all (a, a′) ∈ A2 and χ ∈ Γ̂,
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i.e.,
{

[∂1(H)] (a, a′) = 1, ∀ (a, a′) ∈ A2

H ∈ L∞(A, Γ̂).
(3.57)

Thus, we have proved that

PROPOSITION 3 The set of all families of compatible filters indexed by A is Ker (∂1)∩L∞(A, Γ̂),
where Ker denotes the kernel.

REMARK 6 Let H be an element of C1 satisfying (3.57); it is easy to verify that (aH) also

satisfies (3.57), for all a ∈ A. Thus, Ker (∂1)∩L∞(A, Γ̂) is globally invariant under the action
of the semigroup A on C1.

Let H be an element of C1 which defines a family of compatible filters; it is interesting to
know how to define explicitly the functions Ha for a given a ∈ A. In fact the answer is known
for a particular class of solutions and is contained in Proposition 2. Indeed, by Proposition
2, we have B1(A,M) ⊂ Ker (∂1); the relation (3.55) then shows that the family of functions
{Ha, a ∈ A} defined by

Ha(χ) =
Φ(aχ)

Φ(χ)
(3.58)

is a system of compatible filters, where Φ is some element of M such that Ha belongs to
L∞(Γ̂). Notice that the compatible filters defined in Example 3 trivially belong to this class
of solutions: in that case we even have that Ha(χ) = Φ(aχ). More generally, the classification
of compatible filters would require to compute H1(A,M). This problem, which is still an
open problem in wavelet analysis even in the simple case G = R, A = {2j, j = 0, 1 . . .}, is also
interesting by itself from the point of view of cohomology theory. Conversely, one may also
hope that the tools of cohomology theory will help to classify the wavelet filters.

solutions

REMARK 7 Instead of considering the ring R as defined in (3.51), we could also have con-

sidered the ring R′ = Map(Ĝ,C) of mappings from Ĝ to C and develop the corresponding
cohomology theory. In such a case, the differentials assume the same form. In particular,

[∂0 (φ)] (a)(χ) =
φ(aχ)

φ(χ)
, χ ∈ Ĝ , (3.59)

and

[∂1H(a, a′)] (χ) =
Haa′(χ)

Ha(χ)Ha′(aχ)
, χ ∈ Ĝ . (3.60)

The connection with compatible filters in this case may be obtained by restricting to the 1-
cochains which may be defined on Γ̂. The corresponding cohomology problem is different from
the preceding one. Notice that Eq. (3.59) is very suggestive from the wavelet point of view,
since it is exactly the two-scale equation satisfied by the scaling function, expressed in the
Fourier domain. However, let us stress again that an arbitrary coboundary of the cohomology
constructed on Ĝ need not be well defined on Γ̂, thus is not a cochain for the cohomology
constructed on Γ̂. The precise relationship between these two cohomology theories is another
interesting open problem.
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4 Discretized wavelet transform and generalized pyra-

mid algorithms

In the present section we show how the pseudodilation operators and compatible filters de-
fined in Definition 4 introduce themselves naturally in the context of discretization of the
continuous wavelet transform. For the sake of simplicity, we limit the present discussion to
the one-dimensional situation. We shall see that discretization appears as a sort of general-
ized intertwining operator between the canonical action of the affine group on L2(R) and the
action of some affine-type semigroups on ℓ2(Z). As a by-product, this approach also provides
a geometrical interpretation of the pyramid algorithms which have been developed for the
computation of the wavelet coefficients, and a generalization for arbitrary integral scale.

Before going to more wavelet-related issues, let us start by specifying the action of the
pseudodilations on continuously defined functions in the abstract setting.

4.1 Action of the filters on functions

Up to now, we have only worked at the level of sequences defined on a lattice Γ. To proceed
further, our first step will be to transport the action of the filters on L2(G). In order to do that,
we need additional assumptions. From now on, we will assume that the semigroup A under
consideration also acts on G, and that the action is compatible and one-to-one. Furthermore,
we assume also that the action of A on G is such that for all g ∈ G and a ∈ A, there is
some g′ ∈ G such that g = ag′. Finally, we assume that the Haar measure µ = µG on G

is A-quasi-invariant, i.e., that, for all a ∈ A, the map E 7→ µ(aE) defines a measure on G,
absolutely continuous with respect to µ. Let us denote by

ρa(g) =
dµ(ag)

dµ(g)
(4.61)

the corresponding Radon-Nikodym derivative which satisfies the cocycle condition: for all
a, a′ ∈ A and g ∈ G,

ρaa′(g) = ρa(g)ρa′(ag) . (4.62)

Notice that the translation invariance of the Haar measure µ implies that for all γ ∈ Γ,

dµ(ag − γ)

dµ(g)
= ρa(g) .

Then we also have ρa′(ag − γ) = ρa′(ag) for all a, a′ ∈ A, g ∈ G, γ ∈ Γ.

REMARK 8 Note the similarity of Eq. (4.62) with the compatibility condition (2.25) we already
encountered. Both are of a similar nature, namely they describe deformations of the action
of G (or Γ) by A. However, the cocycles are defined on different spaces.

Let now D and D̃ be a principal and associated pseudodilations, and let Ha and Ga,a′;ǫ be
the corresponding filters, assumed to be bounded. Let us introduce the following operators,
acting on L2(G):

Uaf(g) = ρa(g)
∑

γ

h(a)
γ f(ag − γ) (4.63)

Va,a′;ǫf(g) = ρaa′(g)
∑

γ

g(a,a′;ǫ)
γ f(aa′g − γ) (4.64)
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These operators are the L2(G) analogues of the discrete operators Da and D̃a;ǫ, and enable us to
transport the action of the pseudodilations onto L2(G). The following is a direct consequence
of the compatibility relations and the cocycle condition (4.62):

COROLLARY 1 The operators Ua and Va;ǫ satisfy

Uaa′ = UaUa′ (4.65)

Va,a′;ǫ = UaV1,a′;ǫ (4.66)

In the Fourier domain, the operators Ua and Va;ǫ read

Ûaf(aχ) = Ha(χ)f̂(χ) (4.67)

V̂a;ǫf(aχ) = Ga;ǫ(χ)f̂(χ) . (4.68)

Finally, the counterpart of the perfect reconstruction property is given by the following

COROLLARY 2 Assume that the filters Ha and Ga;ǫ generate a sub-band coding scheme, in the
sense of Definition 7. Then we have the equality

U∗
aUa +

d(a)−1∑

ǫ=1

V∗
a;ǫVa;ǫ = 1

These properties motivate the following definition.

DEFINITION 9 Let {Ha, a ∈ A} be a family of filters satisfying the compatibility condition (2.25).
A scaling function associated to the family {Ha, a ∈ A} is a square integrable function
φ ∈ L2(G) which is a fixed point of the operators Ua for all a ∈ A.

Given a scaling function φ(g) and an associated pseudodilation D̃, one can then construct the
associated generalized wavelets, defined by

ψa;ǫ(g) = Va;ǫψ(g) , (4.69)

and develop an abstract theory of wavelets. We refrain from doing so in this paper, and rather
come back to the usual situation.

4.2 The case G = R, Γ = Z and A ⊂ Z+

Let us come back to the case G = R, Γ = Z. We denote by 〈 · | · 〉 (resp. (· | ·)) the inner
product of L2(G) (resp. ℓ2(Γ)).

Let A ⊂ Z∗
+ be a multiplicative semigroup. The Lebesgue measure (which is also the Haar

measure) on R is A-quasi-invariant, and the corresponding Radon-Nikodym derivative is

ρa(t) = a , a ∈ A, t ∈ R .

Let {(Ha, Ga,a′;ǫ) : a, a′ ∈ A, ǫ = 1, . . . d(a′) − 1} be a system of compatible filters labelled by
A. Let us assume that there exists a scaling function φ ∈ L1(R) ∩ L2(R), with

∫
φ(t)dt = 1,
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satisfying the following two requirements:
• Stability: the functions φ(t− k), k ∈ Z form a frame of their closed linear span V . In other
words, there exist two constants 0 < A ≤ B <∞ such that for all f ∈ V , we have

A||f ||2 ≤
∑

k

|〈f, φ(· − k)〉|2 ≤ B||f ||2 (4.70)

• Refinability:1 for all a ∈ A,

φ(t) = a
∑

ℓ

h
(a)
ℓ φ(at− ℓ). (4.71)

Then it follows from (4.71) that for all ω,

φ̂(aθ) = Ha(θ)φ̂(θ) , ∀ a ∈ A , θ ∈ R. (4.72)

REMARK 9 Notice that formally, Equation (4.72) and the normalization condition define the
function φ: for all a ∈ A, a 6= 1 we may write

φ̂(θ) = Ha

(
θ

a

)
Ha

(
θ

a2

)
Ha

(
θ

a3

)
. . .

However, the convergence of such infinite products to “nice” L2 functions is often problematic.
We shall not discuss such issues here.

Let us now consider an associated pseudodilation D̃, and denote as before by {g(a,a′;ǫ)} the
impulse responses of the corresponding filters. According to (4.69), we introduce the family
of (square integrable) functions {ψa;ǫ(t)}, defined by

ψa;ǫ(t) = (Va;ǫφ) (t) = a
∑

ℓ

g
(a;ǫ)
ℓ φ(at− ℓ) (4.73)

In the Fourier domain, we have

ψ̂a;ǫ(ω) = Ga;ǫ

(ω
a

)
φ̂
(ω
a

)
, (4.74)

where we have set as before
Ga;ǫ(θ) =

∑

k∈Z

g
(a;ǫ)
k e−ikθ .

However, taking (4.72) into account, we also have for all a′ ∈ A

ψ̂a;ǫ(ω) = Ga′;ǫ

(ω
a′

)
Ha′

( ω

aa′

)
φ̂
( ω

aa′

)
= Ga′,a;ǫ

( ω

aa′

)
φ̂
( ω

aa′

)
(4.75)

which reads in the t space

ψa;ǫ(t) = aa′
∑

ℓ

g
(a′,a;ǫ)
ℓ φ(aa′t− ℓ). (4.76)

We shall see later on the consequences of this identity on the algorithms for discrete wavelet
transform.
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Figure 1: The case of Shannon’s MRA, in the Fourier domain. (a): Fourier transform of the
scaling function. (b) and (c): two possible partitions of the Fourier domain at scale 1/2. (d),
(e) and (f): three possible partitions at scale 1/4.
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The graphs of some of the functions corresponding to the filters described in Example 3
(Shannon’s MRA) are given in FIG. 1. There, the Fourier transform of the scaling function

φ̂(ω) is the characteristic function of [−π, π], and the different wavelets ψ̂a;ǫ(ω) are character-
istic functions too. This figure illustrates the differences between the different wavelets.

REMARK 10 Observe that if one replaces φ by Da0φ, a0 ∈ A, in (4.72) and (4.74), then the
family of compatible filters {Ha : a ∈ A} is replaced by its image under the action of a0, that
is H is replaced by a0H. Explicitly,

D̂a0φ(aθ) = Ha(a0θ)D̂a0φ(θ) = (a0Ha)(θ)D̂a0φ(θ) (4.77)

and by (2.12) the discrete filters associated to (a0Ha) are ∆a0h
(a).

4.3 Discrete wavelet transforms

We now turn to discretized continuous transforms.
Let us first recall that the continuous wavelet transform Wψ associated to some analyzing

wavelet ψ is defined on L2(R) by

(Wψf)(b, a) = 〈TbDaψ | f〉

=
1√
| a |

∫

R

ψ

(
x− b

a

)
f(x)dx , ∀ (b, a) ∈ R × R∗ , f ∈ L2(R) (4.78)

Several approaches to the discretization of such transforms have been proposed (see e.g. [9,
22]). We shall limit ourselves to the multiresolution-type discretization, in which the con-
tinuous parameters a and b are replaced with discrete parameters of the form aj = aj0 and
bjk = kb0a

j
0, where j and k are integers. The situation we face here is slightly different, for we

have to consider a scaling function φ(t) and several wavelets ψa;ǫ(t), associated with different
scalings. Given a lattice Γ ⊂ R and a discrete semigroup A ⊂ Z∗

+, we shall therefore be
interested in coefficients of the form

(Tu;ǫf) (b, a) =
1√
a

∫
ψu;ǫ

(
t− b

a

)
f(t)dt , (4.79)

where b ∈ Γ and a ∈ A is any multiple of u ∈ A, and ǫ = 1 . . . d(u)−1. We are also interested
in

(Sf) (b, a) =
1√
a

∫
φ

(
t− b

a

)
f(t)dt , (4.80)

where a ∈ A and b ∈ Γ. We shall see how the theory of compatible filters developed in the
previous sections provide a direct access to such coefficients.

The connection to the discussion of the previous section is the following. Let s ∈ ℓ2(Z)
be any (finite energy) sequence. Equation (4.70) tells us that one can always find f ∈ L2(R)
such that sk =

∫
f(t)φ(t − k)dt. In other words, using the terminology of [17], the sequence

1That property may also be called self-similarity, since it expresses the fact that the scaling function φ is
invariant under the rescaling Ua for all a ∈ A.
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s = {sk, k ∈ Z} may be obtained by sampling imperfectly some f with respect to the lattice
Z and the function φ, that is

s = ΞZ(φ̃ ∗ f) = Ξφ
Z
f . (4.81)

Let us consider the Fourier transform of s, given by ŝ(θ) =
∑

k∈Z
ske

−ikθ. With the consider-
ations stated in Example 1 the Poisson summation formula (C.106) yields:

ŝ(θ) =
∑

χ∈Z⊥

̂̃φ ∗ f(θ + χ) =
∑

ℓ∈Z

φ̂(θ + 2πℓ)f̂(θ + 2πℓ) (4.82)

Let us now set

sak = (D∗
as)k (4.83)

da;ǫk =
(
D̃∗
a;ǫs
)
k
, (4.84)

and more generally, for a, u ∈ A, and ǫ = 1, . . . d(u) − 1,

da,u;ǫk =
(
D̃∗
a,u;ǫs

)
k

=
(
D̃∗
u;ǫD

∗
as
)
k
. (4.85)

The last equality is a consequence of Equation (2.30). We notice that the action of the adjoint
pseudodilation D∗

a in the Fourier domain reads

D̂∗
as(θ) =

1

a

a−1∑

ℓ=0

Ha

(
θ + 2πℓ

a

)
ŝ

(
θ + 2πℓ

a

)
. (4.86)

Then we have

sak =
1

2π

1

a

∫ π

−π
eikθ

a−1∑

ℓ=0

Ha

(
θ + 2πℓ

a

)
ŝ

(
θ + 2πℓ

a

)
dθ

=
1

2π

∫
eikaθf̂(θ)Ha(θ)φ̂(θ)dθ

=
1

2π

∫
eikaθf(θ)φ(aθ)dθ .

In other words

sak =
1

a

∫
f(t)φ

(
t

a
− k

)
dt =

1√
a

(Sf)(ak, a) . (4.87)

Similarly, we obtain

da;ǫk =
1

2π

∫

R

eiakθf̂(θ)Ga;ǫ(θ)φ̂(θ) dθ =
1

a

∫
f(t)ψa;ǫ

(
t

a
− k

)
dt =

1√
a
(Ta;ǫf)(ak, a) . (4.88)

More generally, we are interested in computing coefficients of the form given in (4.79). An
immediate calculation shows that

(Tu;ǫf) (auk, au) =
1√
au

∫
ψu;ǫ

(
t

au
− k

)
f(t)dt

=
√
au
∑

ℓ

g
(u;ǫ)
ℓ

∫
f(t)φ

(
t

a
− uk − ℓ

)
dt

=
√
au
∑

ℓ

g
(u;ǫ)
ℓ−uks

a
ℓ

=
√
au du,a;ǫk .
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However, using (4.85), we also obtain an alternate expression for the coefficients (Tu;ǫf) (kau, au):

(Tu;ǫf) (kau, au) =
√
au
(
D̃∗
u;ǫs

a
)
k
. (4.89)

We have then obtained an equivalence between continuous and discrete wavelet coefficients.
Taking into account the relations satisfied by the scaling function φ and the wavelets ψa;ǫ, we
obtain

sak = D∗
ask =

1√
a
〈TakDaφ|f〉 , (4.90)

da;ǫk = D̃∗
a;ǫsk =

1√
a
〈TakDaψ

a;ǫ|f〉 =
1√
a
〈TakDaVa;ǫφ|f〉 . (4.91)

and

da,u;ǫk = D̃∗
a,u;ǫsk =

1√
au

〈TaukDauψ
u;ǫ|f〉 =

1√
au

〈TaukDauVu;ǫφ|f〉 (4.92)

Therefore, we end up with two equivalent methods for computing the generalized wavelet co-
efficients (Tuf) (b, a, ǫ), via the associated pseudodilation. This makes the connection between
compatible filters and continuously defined wavelets.

We summarize the results in the following theorem:

THEOREM 2 Let {(Ha, Ga,u;ǫ) : a,∈ A, u 6= 1, ǫ = 1, . . . d(u) − 1} be a family of compatible
filters such that there exists a function φ ∈ L1(R) ∩ L2(R) such that

φ̂(aθ) = Ha(θ)φ̂(θ) , ∀ a ∈ A, ∀ θ ∈ R (4.93)

Let ψa;ǫ be defined by

ψ̂a;ǫ(aθ) = Ga;ǫ(θ)φ̂(θ) , ∀ θ ∈ R . (4.94)

Let ΞΓ be the sampling operator acting on functions on R, and ΞφΓ be defined as in (4.81).
Then for all a, u ∈ A, u 6= 1, and ǫ = 1, . . . d(u) − 1, the following diagram is commutative

?
��

?

$'

& %6� 
? ? ? ?

-

- -

f ∈ L2(R)

s ∈ ℓ2(Z)
D∗
u

D̃∗
a,u;ǫ

D̃∗
u;ǫ

S(u, ·) ∈ L2(R) S(au, ·) ∈ L2(R) Tu;ǫ(au, ·) ∈ L2(R)

da,u;ǫ ∈ ℓ2(Z)sau ∈ ℓ2(Z)su ∈ ℓ2(Z)

T

S

S

1√
u

ΞuZ
1√
au

ΞauZΞφ
Z

1√
au

ΞauZ

D∗
a

27



REMARK 11 We notice that the commutative diagram above suggests that the (normalized)
sampling operators 1√

a
Ξa act as generalized intertwining operators between the representation

of the affine group on L2(R) and the representation of the affine semigroup A × Z on ℓ2(Z).
This may offer a different point of view on the harmonic analysis of the affine group.

REMARK 12 One can check, using the right Haar measure on the full affine group of the line,
that the admissibility condition on ψ yields:

∑

a∈A

d(a)−1∑

ǫ=1

∑

k∈Z

| da;ǫk |2 <∞ (4.95)

5 Conclusion

We have introduced and studied a general setting for multiresolutions associated to the action
of a semigroup A on a lattice Γ. Special attention has been given to the case where the
semigroup is the semidirect product of the group of translations of the lattice with an abelian
(dilation) semigroup. The possible actions of such semigroups on ℓ2(Γ) turn out to be highly
constrained. In particular, the (pseudo)dilations are necessarily products of a natural dilation
∆a by a convolution operator Kas = s ∗ h(a). In addition, the sequences h(a), a ∈ A must
satisfy certain compatibility relations. Families of sequences satisfying such compatibility
relations are called compatible filters.

The existence of such sequences h(a) turns out to be a difficult problem. Besides the
cases covered by classical multiresolution analysis, we only know a few examples of these for
bigger semigroups A. We express this existence problem as a cohomology problem, for an
appropriate semigroup cohomology. The classification of compatible filters is still an open
problem, even in the classical multiresolution case. However, our approach suggests that one
may hope to achieve such a classification by means of algebraic topology methods.

The need of constructing families of dilations on sequences which ensure perfect recon-
struction of an original sequence from the dilated ones naturally leads to introduce a second
family of pseudodilations, called associated pseudodilations. The latter are associated to dis-
crete filters as well, and the corresponding filters also satisfy compatibility relations.

Transporting the action of the pseudodilations to the case of continuously defined func-
tions yields structures which are extremely close to multiresolution analyses. In particular, the
pseudodilations provide the algebraic setting for the pyramid algorithms familiar to wavelet
specialists. The pyramid algorithm for computing recursively scaling function coefficients
is nothing but a recursive use of a pseudodilation (more precisely the adjoint of a pseu-
dodilation). The corresponding wavelet coefficients are obtained via the (adjoint) associated
pseudodilations.

Let us close this paper by a few speculative remarks. Even though the proofs of many of
the results presented in this paper owe a lot to the classical results of multiresolution analysis,
we believe that the approach we developed is original in many respects. First, it expresses a
general algebraic setting which covers most of the known multiresolution theories, and as such
could offer interesting perspectives for generalizations. Second, it makes a connection with the
group theoretical approach to wavelets, which was up to now essentially limited to continuous
wavelet transforms. Third, it identifies the problem of existence of filters with a problem
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of cohomological nature, which could provide new hints for the problem of classification of
quadrature mirror filters.

Also, we believe that the approach developed here is a first step towards an algebraic
formulation of multiresolution analysis, in which the corresponding wavelets could be realized
from some semigroup representation, possessing some square-summability property.
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Appendix: Background Material, Notations

We give in this appendix a summary of some basic concepts and useful results on locally
compact abelian (LCA for short) groups. We assume that the fundamental results about
Fourier transform and Pontrjagin duality on LCA groups are known. However, the reader not
familiar with these results can refer to [23] or any textbook on harmonic analysis (e.g. [14]).
Given a LCA group G (whose group operation shall be written additively), we denote generi-
cally by µG the Haar measure on G. When G is discrete µG is naturally the counting measure
and the discrete versions of the relations that we have defined on the whole group G in a
continuous formulation hold again.

A . Notions of harmonic analysis on locally compact

abelian groups

Let G be a locally compact abelian group with Haar measure µ = µG, and let Ĝ be its unitary
dual, that is the set of all unitary characters of G. We use the notation

ω(x) = 〈ω, x〉 (x ∈ G, ω ∈ Ĝ)

to express the duality pairing between G and Ĝ. We denote additively the group law on Ĝ:
for any χ, χ′ ∈ Ĝ, we have 〈χ+ χ′, x〉 = 〈χ, x〉〈χ′, x〉, x ∈ G.

The Fourier transform is defined as usual: given f ∈ L1(G), its Fourier transform is the

function Ff = f̂ ∈ L∞(Ĝ) defined by

f̂(ω) =

∫

G

f(x)〈ω, x〉 dµ(x) . (A.96)

It is a standard result (see e.g. [23] for more details) that the so-defined Fourier transform

extends to an isometry between L2(G) and L2(Ĝ). More precisely, there exists a measure

µbG
on Ĝ (the dual Haar measure) such that the following Plancherel formula holds: for all

f ∈ L2(G), f̂ ∈ L2(Ĝ) and

∫

bG

∣∣∣f̂(ω)
∣∣∣
2

µbG
(ω) =

∫

G

|f(x)|2dµ(x) . (A.97)

Let Γ ⊂ G be any subgroup of G, and let Γ⊥ ⊂ Ĝ be its annihilator, defined as

Γ⊥ = {ω ∈ Ĝ : 〈ω, x〉 = 1 for all x ∈ Γ} (A.98)

Γ⊥ is a closed subgroup of Ĝ. We always have Γ ⊂ (Γ⊥)⊥ and the reverse inclusion is true if
Γ is itself a closed subgroup of G.

There is a neat duality between subgroups and quotient groups of a locally compact abelian
group as stated in the following theorem; the proof uses the Pontrjagin duality theorem and
is given in [23, Theorem 2.1.2] and also in [14, Theorem 4.39].
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THEOREM A.1 Let Γ be a closed subgroup of G and define

Φ : Ĝ/Γ → Γ⊥ and Ψ : Ĝ/Γ⊥ → Γ̂

by Φ(η) = η ◦ q , Ψ(ωΓ⊥) = ω |Γ, where q : G −→ G/Γ is the canonical projection. Then
Φ and Ψ are isomorphisms of topological groups.

Note that the quotient groups G/Γ and Ĝ/Γ⊥ are both locally compact abelian groups. The
main idea of Theorem A.1 is that, on the one hand, the characters of G/Γ can be identified

with the subset Γ⊥ of Ĝ and, on the other hand, Γ̂ can be identified with the quotient Ĝ/Γ⊥.
Note also that the surjectivity of Ψ yields a sort of Hahn-Banach theorem for locally compact
abelian groups, in the sense that every character on Γ extends to a character of G.

Let us now suppose that Γ is a lattice in G, that is Γ is a discrete subgroup of G and the
quotient G/Γ is compact. By a fundamental domain of Γ in G, we mean a µ-measurable set
Ω ⊂ G such that for each x ∈ G, Ω∩(x+Γ) consists of a single point. An equivalent definition
is given in [15]. Given a lattice Γ ⊂ G, it can be shown that there always exists a fundamental
domain Ω of Γ in G. It is standard to take Ω = G/Γ, but many other choices are possible
(see for instance [16] for various choices of fundamental domains). The lattice size, which we
denote by s(Γ), is defined as the measure of a fundamental domain, that is, s(Γ) = µ(Ω), and
it is independent of the particular choice of Ω. The quantity s(Γ)−1 then serves as a measure
of the density of Γ. Taking Ω = G/Γ allows us to take the measure naturally inherited from
G as the measure of G/Γ; we normalize it to be a probability measure such that the Weyl
formula (see e.g. [14] for details) holds: for all f ∈ L1(G),

∫

G

f(x)dµ(x) =

∫

G/Γ

∑

γ∈Γ

f(x+ γ)dµG/Γ(x). (A.99)

If Γ is a lattice in G, then its annihilator Γ⊥ is a lattice in Ĝ and s(Γ)s(Γ⊥) = 1 (see, for
instance, [15, Lemma 6.2.3]). If Γi ( i = 1, 2) are two lattices in G, such that Γ2 ⊂ Γ1, then in
the dual space we have Γ⊥

1 ⊂ Γ⊥
2 ; furthermore, in all practical situations we know, it is always

possible to choose a fundamental domain Ωi of Γi, i = 1, 2, in such a way that, as subsets of
G, they satisfy Ω1 ⊂ Ω2 (see for example [16]).

The whole discussion on the existence and choices of fundamental domains may be repeated
in the dual space. In particular, we have the following version of the Weyl formula: for all
f ∈ L1(Ĝ), ∫

bG

f(χ)dµbG
(χ) =

∫

bG/Γ⊥

∑

λ∈Γ⊥

f(χ+ λ)dµG/Γ⊥(χ) . (A.100)

If Γ2 ⊂ Γ1 ⊂ G are two nested lattices in G such that the quotient group Q = Γ1/Γ2 is finite
of order d = |Q|, then it is always possible to choose fundamental domains Ω1 and Ω2 for Γ⊥

1

and Γ⊥
2 in Ĝ such that Ω2 ⊂ Ω1, and

Ω1 =
d−1⋃

ǫ=0

(Ω2 + χǫ) , (A.101)

where χǫ ∈ Ĝ, ǫ = 0, . . . d − 1, and the sets Ω2 + χǫ intersect each other at most on a µbG
-

negligible set.
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B . Basic operations

The basic operators are introduced in the following way.
The translation of parameter b ∈ G is the unitary operator Tb defined on L2(G) by

(Tbf)(x) = f(x− b) .

The modulation of parameter b ∈ G is the unitary operator Eb defined on L2(Ĝ) by

(Ebf̂)(ω) = 〈ω, b〉f̂(ω) .

The maps b
T7−→ Tb and b

E7−→ Eb provide two unitarily equivalent representations of G (with

respective carrier spaces L2(G) and L2(Ĝ)) and the associated interwining operator is the
Fourier transform. Explicitly we have

FTb = EbF for all b ∈ G .

If f and g are two functions over G , their convolution product is defined as

(f ∗ g)(x) =

∫

G

f(x− y)g(y)dµ(y), (B.102)

if the integral in the r.h.s. converges. The convolution product is associative and since G is
abelian, it is also commutative, that is,

(f ∗ g) ∗ h = f ∗ (g ∗ h) , f ∗ g = g ∗ f.

In the Fourier space, the convolution is given by pointwise multiplication:

f̂ ∗ g = f̂ ĝ .

C . Sampling

A natural map from functions defined over the whole group G to functions over the lattice Γ
is given by the sampling operator (perfect sampling in the terminology of [18]) ΞΓ associated
to Γ, defined as

ΞΓf = f|Γ ,

where f is a function with suitable properties (i.e. for which point values make sense).
A function f over G is said to be Γ-periodic if for all x ∈ G,

f(x+ γ) = f(x), for all γ ∈ Γ .

Such a function can be identified with a function over G/Γ in the usual way.
The periodization operator is defined as

P : L1(G) → L1(G/Γ), (Pf)(x) =
∑

γ∈Γ

f(x+ γ) .
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By the Weyl formula (see e.g. [14, Eq. (2.50)]), we have

〈φ | f〉L2(G) = 〈φ | Pf〉L2(G/Γ) , for any Γ-periodic function φ. (C.103)

In other words, the periodization operator allows us to write the scalar product of a Γ-periodic
function φ with an arbitrary function f over G as a scalar product over G/Γ. In the particular
case where G = R and Γ = Z, the Fourier transform of a sequence is a Z⊥-periodic function,
i.e a 2π-periodic function.

We close this section by giving the useful Poisson Summation formula, which links sampling
to periodization via the Fourier transform. The proof can be found in most treatises on
harmonic analysis (see for instance [14, Theorem 4.42], [15, Lemma 6.2.2], and also [18]) .

THEOREM C.1 (Poisson Summation Formula) Let Γ ⊂ G be a lattice. If f ∈ L1(G) ∩ F−1L1(Ĝ),
then

i) The Γ-periodized φ(ẋ) =
∑

γ∈Γ f(x + γ) of f is in L1(G/Γ) (where ẋ = x + Γ) and for

η ∈ Ĝ/Γ ≃ Γ⊥,

φ̂(η) =
1

s(Γ)
f̂(η) (C.104)

ii) We have ∑

γ∈Γ

f(x+ γ) =
1

s(Γ)

∑

η∈Γ⊥

f̂(η)〈η, x〉 a. e. (C.105)

∑

χ∈Γ⊥

f̂(ω + χ) = s(Γ)
∑

x∈Γ

f(x)〈ω, x〉 a. e. (C.106)

iii) If, in addition,
∑

η∈Γ⊥ | f̂(η) |2 < ∞ , then φ ∈ L2(G/Γ) and the relations (C.105) and

(C.106) hold in the L2- sense.
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