Skip to Main content Skip to Navigation
Journal articles

Multiplicité du spectre de Steklov sur les surfaces et nombre chromatique

Abstract : We prove several results about the multiplicity of the first Steklov eigenvalues on compact surfaces with boundary. We improve some bounds on the multiplicity, especially for the first eigenvalue, and we prove they are sharp on some surfaces of small genus. In a previous article, we defined a new chromatic invariant of surfaces with boundary and conjectured that this invariant is related to the bound on the first eigenvalue. In the present article, we study this invariant, and prove that the conjecture is true when the known bound is sharp.
Complete list of metadatas

Cited literature [7 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00814176
Contributor : Pierre Jammes <>
Submitted on : Thursday, February 25, 2016 - 10:15:45 PM
Last modification on : Monday, October 12, 2020 - 2:28:06 PM
Long-term archiving on: : Thursday, May 26, 2016 - 11:05:52 AM

Files

chrom.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Identifiers

Collections

Citation

Pierre Jammes. Multiplicité du spectre de Steklov sur les surfaces et nombre chromatique. Pacific Journal of Mathematics, 2016, 282 (1), pp.145-171. ⟨10.2140/pjm.2016.282.145⟩. ⟨hal-00814176v3⟩

Share

Metrics

Record views

181

Files downloads

380