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ABSTRACT

This paper addresses the problem of mapping images between

different vision sensors. Such a mapping could be modeled

as a sampling problem that has to encompass the change of

geometry between the two sensors and the specific discretiza-

tion of the real scene observed by the two different imaging

systems. We formulate the problem in a general framework

that can be cast as a minimization regularized problem with a

linear operator, that applies to any image geometry. We then

focus on the particular problem of the generation of planar

images from omnidirectional images, in any viewing direc-

tion and for any size and resolution. In this regularized ap-

proach, the fidelity term is expressed in the original omnicam

geometry and the regularization is based on Total Variation

(TV) solved here with proximal methods. Experimental re-

sults demonstrate the superiority of this approach with respect

to alternative schemes based on linear interpolation or TV in-

painting.

Index Terms— Sampling, Inverse Problem, Superresolution,

Omnidirectional camera, Total Variation Optimization.

1. INTRODUCTION

With the advent of new imaging systems, it becomes impor-

tant to define appropriate mappings between images from dif-

ferent sensing devices for proper processing and rendering of

the light information. In particular, a variety of omnidirec-

tional imaging systems have emerged recently. They offer

better models in terms of accuracy and efficiency in the repre-

sentation of scenes. Interestingly, recent works have provided

image processing methods adapted to the particular geometry

of these omnidirectional sensors [1, 2, 3]. Most applications

require however high quality rendering of planar images in

well chosen directions in the scene. It therefore becomes cru-

cial to correctly aggregate the information provided by both

omnidirectional and planar sensors. We propose in this paper

a novel framework for mapping full or partial images between

sensors characterized by different geometries and different in-

trinsic parameters.
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2. FRAMEWORK

In this paper, we denote by xc the hypothetical continuous

“vision” that a given camera c (planar or omnidirectional)

perceived from a 3-D scene. It is a function of the spatial con-

tinuous coordinates ~x = (x, y) ∈ R
2 in the image plane, i.e. it

provides the illumination (color or gray scale) xc(~x) ∈ R on

this point. Our basic assumption is that xc belongs to some

subspace X ⊂ L2(R2). For instance, X can be the set of

bandlimited elements of L2(R2) (for some given 2-D cut-

off frequencies), or the set of piecewise continuous functions,

i.e. C0(R2).
The actual image x provided by any camera is a dis-

cretization of the continuous view xc restricted to the camera

Field of View (FOV) on a grid of N points. Mathemati-

cally, a sampling operator E : XF → R
N is applied on xc,

i.e. x = Exc, where XF is the restriction of X to the FOV

F ⊂ R
2. This sampling depends on the characteristics of the

camera (type and parameters) and the N sampling points are

lying on grid G = {~xi = (xi, yi) : 1 ≤ i ≤ N}.

The adjoint operator of E, noted E
∗, performs the recon-

struction of xc from its discrete representation x. For in-

stance, E∗ could be any interpolation method relying on some

a priori information available on xc. In other words,

[E∗
x](~x) =

∑

i

x(~xi) φ~xi
(~x), (1)

for some interpolating functions {φ~xi
∈ X}. For instance, if

X is the set of bandlimited functions, and if the grid G is reg-

ular, then φ~xi
(~x) is the translation on ~xi of a mother function

φ(~x) = φ(x)φ(y), where φ(x) is sinc function. In this paper,

we select a Gaussian kernel φ for reasons that will become

clear in the sequel.

Let us now consider two (discrete) images x1 and x2 pro-

vided by two different cameras, which can be pan-tilt-zoom

(PTZ), catadioptric, fisheye lens camera or any other imaging

system, with two different resolutions N1 and N2 and FOVs

F1 and F2. The operator A allows to deduce the x2 image

from the x1 image such that

x2 = Ax1. (2)

The operator A is in fact a linear operator of R
N2×N1



since it can be expressed as the combination of three succes-

sive operators defined above in the following way:

A = E2 ΠE
∗
1, (3)

where Π : XF1
→ XF2

expresses the change of geometry

between the two sensors. This operators make our approach

flexible and well suited to the processing of images from any

geometry to any other: catadioptric, fisheyed, planar or any

distorded images as soon as the distorsion rules are known.

In Section 3, we tackle the specific problem of generat-

ing planar images from fisheye ones. We apply this model

to an optimization problem in the context of superresolution,

where N1 > N2 typically, and with a prior of sparsity on the

gradients of images which naturally leads to TV-regularized

formulation. Simulation results are then given in Section 4

and compared with those provided by linear interpolation and

inpainting alternative schemes.

3. RECONSTRUCTION OF PLANAR IMAGES FROM

FISHEYE DATA

We focus now on the problem of the generation of perspective

planar images in any direction covered by a fisheye sensor. In

our case, the original data comes from a perfect fisheye lens

SFish. Figure 1 shows an example of a fisheye image (APIDIS

basket ball dataset1).

Fig. 1: Fisheye image. Courtesy APIDIS European Project

The generation of planar images has for inputs either the

conventional parameters of a virtual pan-tilt-zoom camera

SPTZ (line-of-sight, angle-of-view, resolution) or a region of

interest that can be defined by spherical coordinates. Those

parameters could be provided for instance in response to a

tracking or event detection algorithm. They fully determine

the virtual camera lying at the position of the omnicam which

will produce the desired planar image.

1http://www.apidis.org/Dataset/

3.1. The Forward Model

The discrete fisheye image (our source of information) is

noted x2, and the planar image (the one we wish to recon-

struct) is noted x1.

In this study, we consider that both source and target im-

ages are sampled on regular grids, i.e. x1 and x2 are de-

fined on the grids G1 = {(iδ, jδ) : i ∈ Np, j ∈ Nq} and

G2 = {(iν, jν) : i ∈ Nm, j ∈ Nn} respectively with Nk =
{0, · · · , k − 1}. The resolutions are thus N1 = pq and N2 =
mn with N1 > N2 with pixel widths δ, ν > 0.

Therefore, without loss of generality, we can assume that

x1 (x2) is linked to the continuous function xc1
∈ XF1

(resp.

xc2
∈ XF2

) of FOV F1 = [0, (p − 1)δ] × [0, (q − 1)δ] (resp.

F2 = [0, (m − 1)ν] × [0, (n − 1)ν]).
Let us define the ’backprojection’ operator A such that

x2 = Ax1 with A = E2 ΠE
∗
1. (4)

This backprojection is composed of three operators that

are described as follows. First, E∗
1 is a reconstruction operator

such that
xc1

= E
∗
1x1.

In this study, we assume that the functional space X is well

represented by discrete translation of Gaussians. Therefore,

E
∗
1 reads

xc1
(~x) =

p∑

i=1

q∑

j=1

x1(i, j)φ(x − i)φ(y − j).

with φ(x) = 1√
2σ

exp− x2

2σ2 and with σ set to the pixel size.

Other combination of spaces X and kernels φ may be inves-

tigated to perform interpolation and ongoing studies concern

functions with a compact support, in order to significantly re-

duce the computation time.

Second, Π drives the change of geometry between the

spaces of SFish and SPTZ, knowing that they are observing

the same 3-D world. Therefore, this operator applies a change

of variables π, i.e.

xc2
= Πxc1

= xc1
◦ π,

defined by the following three transformations: (i) an inverse

central projection centered on the line of sight that remaps the

planar image onto the sphere of directions, (ii) a particular

spherical projection function of the fisheye camera parame-

ters that maps the spherical domain onto the fisheye geome-

try.

Since we can reasonably assume the required FOV of the

planar image amounts to an Angle of View (AOV) smaller

than 180◦, the final change of variables π : XF1
⊂ R

2 →
XF2

⊂ R
2 is invertible. Separating its effect on the two coor-

dinates of XF1
, we have π(x, y) = (πx(x, y), πy(x, y)), and

π−1(x′, y′) = (π−1
x (x′, y′), π−1

y (x′, y′)).
Finally, E2 is a sampling operator that evaluates the val-

ues of the function xc2
on the fisheye grid such that



x2 = E2xc2
.

As the image x2 is defined on the regular grid G2, assuming

ν = 1, we obtain x2(i, j) = xc2
(i, j) for 0 ≤ i ≤ m− 1 and

0 ≤ j ≤ n − 1.

Given these notations, the main operator A acts on the

planar image x1 as x2(i′) = (Ax1)i′ with

(Ax1)i′ =

p∑

i=1

q∑

j=1

x1(i) φ(πx
−1(i′)−i)φ(πy

−1(i′)−j),

with i = (i, j) and i
′ = (i′, j′). Each entry Ai′i of the matrix

A ∈ R
N2×N1 is thus given by φ(πx

−1(i′)−i)φ(πy
−1(i′)−j).

3.2. Inverse Problem and Image Reconstruction

Reconstructing the perspective image x1 of a virtual planar

camera from the observed fisheye image x2 = Ax1 when

N1 > N2 is a typical inverse problem. We regularized this

ill-posed reconstruction by assuming that the initial image x1

has a small Total Variation (TV) norm. In other words, we

solve the Direct Regularized Problem (DRP)

arg min
x1

1
2‖x2 − Ax1‖

2
2 + λ ‖x1‖TV , (DRP)

where the regularization parameter λ controls the weight of

the penalty term, i.e. the TV (pseudo) norm of the solution,

compared to the first term measuring the fidelity of the solu-

tion.

The fidelity term is expressed in the space of the fish-

eye plane. At each iteration of the minimization algorithm

(described in Section 4.1), the current estimate of x1 is then

compared to the original fisheye image.

The TV penalty, which measures roughly the ℓ1 norm of

the gradient of the image, promotes smooth areas separated

by sharp C2 curve transitions [4], which is a reasonable model

for our images. The numerical implementation of ‖·‖TV that

we selected is the finite differences method [5].

In DRP, the penalty term has to smooth enough the re-

constructed function in order to eliminate the artefacts due to

the change of geometry and to the deviation between the ac-

tual functional space of xc1
and xc2

and the selected one X .

For instance, images are not truly bandlimited signals since

they are composed of sharp object edges, and they cannot be

considered as exactly piecewise smooth functions since they

may contain textures.

Another significant artefact may consist in a ringing ef-

fect observed in regions of x1 that correspond to regions of

x2 where the change of geometry triggers off strong discrep-

ancies between the regular grid in the planar geometry and

the grid resulting of the projection of the regular grid from

the fisheye geometry to the planar one.

4. EXPERIMENTAL RESULTS

4.1. Proximal methods

The DRP minization is a convex optimization program of

shape

arg min
x1

f(x1) + g(x1),

where f is convex and differentiable, and g is convex and has

a β-Lipschitz gradient. In our case, f(·) = 1
2‖x2−A·‖2

2, and

g(·) = ‖·‖1.

This optimization is practically solved by monotone op-

erator splitting and proximal methods [6, 7]. More precisely,

as the ℓ1-norm is non-differentiable, the Forward-Backward

splitting is used [8]. Forward-backward (FB) splitting is es-

sentially a generalization of the classical gradient projection

method for constrained convex optimization. It can be written

in the compact form

x(t+1) = Sµt
◦ (Id − µt∇f2) (x(t)), (5)

where 0 < inft µt ≤ supt µt < 2/β for the iteration to

converge (weakly in general), Sγ is the component-wise soft-

thresholding operator with threshold γ, and ∇ the gradient

operator.

4.2. Experimental Setup

We evaluate the above planar image generation method with

a 600 × 800 fisheye image2 (see Fig. 1). In particular, we

reconstruct a 300×272 planar image with an horizontal angle-

of-view equal to 35◦. The part of the fisheye image exploited

is of size 265 × 208, so that N1

N2

= 1.5. Results are shown on

Figure 2. We compare the performance of the DRP algorithm

with the two methods described below. In this example, we

use color processing by handling the channels independently.

Linear interpolation: The value assigned to each pixel of

x1 depends on all the pixel values of x2 with the rule

x1(i, j) =

m−1∑

i′=0

n−1∑

j′=0

wi′,j′x2(i′, j′).

In the Inverse Distance Weighted approach 3, the weight func-

tion wi′,j′ is a function of the euclidian distance between a

pixel (i, j) of G1 and a pixel (i′, j′) of G2 projected onto the

planar geometry.

TV Inpainting: This method reconstructs x1 by inpainting

using the TV flow [9]. We first compute x1 on a subset Ω.

Each pixel of G1 which is the nearest neighbour, in the planar

geometry, of a pixel of the grid G2 projected on the planar

geometry by π−1 will belong to Ω. Its value will be equal

to its nearest neighbour value. We obtain a partial image x
Ω
1

2This image was acquired during an acquisition campaign in the context

of the european APIDIS project
3The full interpolation scheme is described at http://www.ems-i.

com/smshelp/Data_Module/Interpolation/Inverse_

Distance_Weighted.htm



(a) Interpolation (b) Inpainting (c) DRP

Fig. 2: Results of reconstruction of planar image from fisheye lens image for each method.

defined on Ω and with missing values on G1\Ω. Typically, if
N1

N2

increases, the size of Ω decreases. The complete image

x1 is reconstructed by solving the problem expressed as

arg min
x

1
2‖x

Ω
1 − x1‖

2
Ω + λ ‖x1‖TV , (TVI)

where the fidelity term is only calculated on the subset Ω
whereas the regularization term is calculated on the whole

grid G1. The minimization problem is solved by the proxi-

mal methods described above.

4.3. Reconstruction of planar images

The experimental results are shown on Figure 2 for the three

methods described below. No PSNR is available since no

ground truth is available in that case, but the relevance of our

approach is evidenced by a clear visual improvement. Un-

surprisingly, a better reconstruction is achieved with methods

incorporating a TV regularization, which results in sharper

edges when comparing with the linear interpolation approach

(see the blue area at bottom or the arms and hands of the

player with the basket).

It can be seen also that DRP, which includes an appropri-

ate geometry mapping, is superior to the TVI solution. This

is mostly evidenced in the sensitive areas : straight lines that

are strongly distorded in the original fisheye image, digits of

players or edges of players are very sharp and accurate and

suffer from less artifacts than with the two other methods.

This gain of quality can be explained by the fact that for

DRP, the Π operator provides information, even poor, from

the omnidirectional image in these areas, whereas for TVI,

there is a lack of information since these pixels have miss-

ing values. Overall, the regularization parameter λ, which

realizes the tradeoff between the regularization term and the

fidelity term, appear to be an important point of the algorithm.

5. CONCLUSIONS

We have addressed the problem of mapping images between

different sensors. The proposed framework incorporates the

change of geometry, size and resolution between the images

of different sensors (real or virtual). The discretization of the

light information is seen as a geometry driven sampling prob-

lem. The corresponding inverse reconstruction problem is

solved by a TV-regularization approach. Experimental results

for the generation of planar images from fisheye image show

the benefit of the proposed reconstruction methods compared

to interpolation or inpainting strategies.

A study of the influence of the planar camera parameters

(direction of view, resolution, FOV) is ongoing. In addition,

we are working on improving the performance of the recon-

struction algorithms with other kernels φ and with improved

TV norm computation adapted to band limited functions [10].
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