Improved Area-Time Trade-offs for Field Multiplication using Optimal Normal Bases

Abstract : In this article, we propose new schemes for subquadratic arithmetic complexity multiplication in binary fields using optimal normal bases. The schemes are based on a recently proposed method known as block recombination, which efficiently computes the sum of two products of Toeplitz matrices and vectors. Specifically, here we take advantage of some structural properties of the matrices and vectors involved in the formulation of field multiplication using optimal normal bases. This yields new space and time complexity results for corresponding bit parallel multipliers.
Type de document :
Article dans une revue
IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2013, 62 (1), pp.193-199. 〈10.1109/TC.2011.198〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00813784
Contributeur : Christophe Negre <>
Soumis le : mardi 16 avril 2013 - 11:07:24
Dernière modification le : samedi 25 novembre 2017 - 10:16:11

Identifiants

Collections

Citation

Jithra Adikari, Ayad Barsoum, Anwar Hasan, Ashkan Namin, Christophe Negre. Improved Area-Time Trade-offs for Field Multiplication using Optimal Normal Bases. IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2013, 62 (1), pp.193-199. 〈10.1109/TC.2011.198〉. 〈hal-00813784〉

Partager

Métriques

Consultations de la notice

85