Improved Three-Way Split Formulas for Binary Polynomial Multiplication

Murat Cenk 1 Christophe Negre 2, 3 Anwar Hasan 1
3 DALI - Digits, Architectures et Logiciels Informatiques
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, UPVD - Université de Perpignan Via Domitia
Abstract : In this paper we deal with 3-way split formulas for binary field multiplication with five recursive multiplications of smaller sizes. We first recall the formula proposed by Bernstein at CRYPTO 2009 and derive the complexity of a parallel multiplier based on this formula. We then propose a new set of 3-way split formulas with five recursive multiplications based on field extension. We evaluate their complexities and provide a comparison.
Type de document :
Communication dans un congrès
Springer. SAC: Selected Areas in Cryptography, Aug 2011, Toronto, Canada. 18th International Workshop on Selected Areas in Cryptography, LNCS (7118), pp.384-398, 2012, Selected Areas in Cryptography. 〈10.1007/978-3-642-28496-0_23〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00813666
Contributeur : Christophe Negre <>
Soumis le : mardi 16 avril 2013 - 09:51:20
Dernière modification le : jeudi 24 mai 2018 - 15:59:23

Lien texte intégral

Identifiants

Collections

Citation

Murat Cenk, Christophe Negre, Anwar Hasan. Improved Three-Way Split Formulas for Binary Polynomial Multiplication. Springer. SAC: Selected Areas in Cryptography, Aug 2011, Toronto, Canada. 18th International Workshop on Selected Areas in Cryptography, LNCS (7118), pp.384-398, 2012, Selected Areas in Cryptography. 〈10.1007/978-3-642-28496-0_23〉. 〈hal-00813666〉

Partager

Métriques

Consultations de la notice

180