N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation. Encyclopedia of Mathematics and its Applications, 1989.

M. Broniatowski and A. Fuchs, Tauberian Theorems, Chernoff Inequality, and the Tail Behavior of Finite Convolutions of Distribution Functions, Advances in Mathematics, vol.116, issue.1, pp.12-33, 1995.
DOI : 10.1006/aima.1995.1062

M. Broniatowski and Z. Cao, A conditional limit theorem for random walks under extreme deviation, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00713053

Z. Cao, An Abelian theorem with application to the conditional Gibbs principle, 2013.

L. De-haan and A. Ferreira, Extreme value theory. An introduction. Springer Series in Operations Research and Financial Engineering, 2006.

P. D. Feigin and E. Yashchin, On a strong Tauberian result, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.36, issue.1, pp.35-48, 1983.
DOI : 10.1007/BF00534992

U. Frisch and D. Sornette, Extreme Deviations and Applications, Journal de Physique I, vol.7, issue.9, p.7, 1997.
DOI : 10.1051/jp1:1997114

URL : https://hal.archives-ouvertes.fr/jpa-00247388

D. Sornette, Critical phenomena in natural sciences, Springer series in Synergetics, 2006.

D. Juszczak and A. Nagaev, Local large deviation theorem for sums of I.I.D. random vectors when the Cramér condition holds in the whole space, Probab. Math. Statist. Wratislav. No, vol.24, issue.2732, pp.297-320, 2004.

D. M. Mason, An Extended Version of the Erdos-Renyi Strong Law of Large Numbers, The Annals of Probability, vol.17, issue.1, pp.257-265, 1989.
DOI : 10.1214/aop/1176991507