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Abstract. In this paper we study the bifurcation of branches of non-symmetric

solutions from the symmetric branch of solutions to the Euler-Lagrange equations

satisfied by optimal functions in functional inequalities of Caffarelli-Kohn-Nirenberg

type. We establish the asymptotic behavior of the branches for large values of

the bifurcation parameter. We also perform an expansion in a neighborhood of

the first bifurcation point on the branch of symmetric solutions, that characterizes

the local behavior of the non-symmetric branch. These results are compatible with

earlier numerical and theoretical observations. Further numerical results allow us to

distinguish two global scenarios. This sheds a new light on the symmetry breaking

phenomenon.
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1. Introduction

In this paper we investigate how symmetry can be broken in some variational problems.

Symmetry breaking occurs when antagonistic effects are competing, like weights or

potentials (or coupling with other fields) on the one hand and nonlinearites on the other

hand. An archetypal example for such issues is the question of symmetry of optimal

functions in Caffarelli-Kohn-Nirenberg inequalities. While all terms are invariant under

rotation around the origin, it is known that optimizers are not always radially symmetric.

Caffarelli-Kohn-Nirenberg inequalities, also known as Hardy-Sobolev inequalities, is a

particularly simple setting for the study of symmetry breaking because weights and

nonlinear terms have simple homogeneity properties, so that Euler-Lagrange equations

inherit scaling properties that allow to further simplify the study of the symmetry issues.
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Still, ranges of parameters for which optimizers are radially symmetric have not been

completely determined yet.

Symmetry breaking issues are present in many areas of physics involving partial

differential equations: quantum mechanics, mean field models, equations for phase

transition, ferromagnetism, mechanics, etc. Various mathematical methods are available

either for proving symmetry (uniqueness, comparison techniques based for instance

on moving plane methods, symmetrization: see for instance [1, 2, 3]) or for proving

symmetry breaking (multiplicity and bifurcation, energy, spectral methods). However,

threshold cases are not characterized even in the simplest cases.

A simple mechanism which can break symmetry is the instability of the symmetric

extremals, that is, the case where the extremals among radially symmetric functions are

not local minima in the larger space of functions with no symmetry assumption. In

the case of the Caffarelli-Kohn-Nirenberg inequalities, this instability has been studied

in several papers (see [4, 5, 6]) and the corresponding region of symmetry breaking

is delimited by an explicit curve. However, it has been proved in [3] that symmetry

breaking can occur even in a range of parameters for which the symmetric extremals

are stable, that is, in cases where they are strict local minima. In order to understand

this phenomenon, and symmetry breaking in general, we study the solution set of the

Euler-Lagrange equations corresponding to a minimization problem associated with

the Caffarelli-Kohn-Nirenberg inequalities. For those equations, we investigate the

bifurcation of non-radially symmetric solutions from radially symmetric ones. The two

theoretical contributions of the present paper are an asymptotic analysis of the branches

for large values of the bifurcation parameter, in Section 2, and a detailed expansion of the

non-radial solutions in a neighborhood of the bifurcation point on the branch of radial

extremals, in Section 3. Both results are consistent with known and new numerical

results presented in Section 4 and give a significant insight into the local behaviour of

the solutions, either around the bifurcation point or asymptotically.

We shall consider a family of Caffarelli-Kohn-Nirenberg inequalities which, for a

given dimension d ≥ 3, depend on two exponents, p ∈ (2, 2∗] with 2∗ := 2 d/(d− 2) and

θ ∈ (0, 1], and on a parameter Λ > 0.

For any dimension d ≥ 3, let us consider the set D of all smooth functions which

are compactly supported in Rd. Define the numbers

ϑ(p, d) := d
p− 2

2 p
, ac :=

d− 2

2
, p(a, b) :=

2 d

d− 2 + 2 (b− a)
.

For any a < ac, we consider the following Caffarelli-Kohn-Nirenberg inequalities, which

have been introduced in [7] (also see [6]):

Let d ≥ 3, a < ac, b ∈ [a, a + 1] and assume that p = p(a, b). Then, there exists a
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finite positive constant KCKN depending on θ, a and p such that, for any w ∈ D,

‖|x|−bw‖2
Lp(Rd) ≤ KCKN ‖|x|−a∇w‖2 θ

L2(Rd) ‖|x|
−(a+1) w‖2 (1−θ)

L2(Rd)
. (1)

According to [5], the Caffarelli-Kohn-Nirenberg inequalities on Rd can be rewritten

in cylindrical variables using the Emden-Fowler transformation

s = log |x| , ω =
x

|x|
∈ Sd−1 , u(s, ω) = |x|ac−aw(x) .

The above inequalities are then equivalent to Gagliardo-Nirenberg-Sobolev inequalities

on the cylinder C := R× Sd−1 that can be written as

‖u‖2
Lp(C) ≤ KCKN(θ,Λ, p)

(
‖∇u‖2

L2(C) + Λ ‖u‖2
L2(C)

)θ
‖u‖2 (1−θ)

L2(C) , (2)

for any u ∈ H1(C), where a and Λ are related by Λ = (a − ac)
2. Here we adopt the

convention that the measure on Sd−1 is the uniform probability measure. Let us define

QθΛ[u] :=

(
‖∇u‖2

L2(C) + Λ ‖u‖2
L2(C)

)θ
‖u‖2 (1−θ)

L2(C)

‖u‖2
Lp(C)

. (3)

In the case θ = 1, we shall simply write Qµ instead of Q1
µ. We are interested in the

map Λ 7→ KCKN(θ,Λ, p), what amounts to study the dependence of the minimum of QθΛ
on Λ. The corresponding Euler-Lagrange equation is

− θ∆u+
[
(1− θ) t[u] + Λ

]
u = up−1 , (4)

with

t[u] :=

∫
C |∇u|

2 dy∫
C u

2 dy
.

Let us introduce the parameter µ = ((1 − θ) t[u] + Λ)/θ. Up to multiplication by a

constant, the solutions of (4) are solutions of

−∆u+ µu = up−1 . (5)

If θ = 1, we may notice that Λ = µ. Hence we may solve (5), denote by uµ the

corresponding solution which minimizes Qµ, compute Λ and then parametrize the

solutions of (4) in terms of µ. Let us give some details. With

τ(µ) := t[uµ] and ν(µ) :=
‖uµ‖2

L2(C)
‖uµ‖2

Lp(C)
,
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we can describe the set of solutions to (4) in parametric form as µ 7→ (Λθ(µ), Jθ(µ))

where

Λθ(µ) = θ µ− (1− θ) τ(µ) ,

Jθ(µ) := QθΛ[uµ] = ν(µ) θθ (µ+ τ(µ))θ .

The uniqueness of uµ is not obvious and details will be provided in this paper. We shall

denote by τ∗(µ), ν∗(µ), Λθ
∗(µ) and Jθ∗ (µ) the corresponding quantities for the symmetric

solution uµ,∗ of (5).

With ϑ = ϑ(p, d) = d p−2
2 p

, denote by KGN = KGN(p, d) the optimal constant in the

Gagliardo-Nirenberg-Sobolev inequality

‖u‖2
Lp(Rd) ≤

KGN

|Sd−1|
p−2
p

‖∇u‖2ϑ
L2(Rd)‖u‖

2 (1−ϑ)

L2(Rd)
, ∀u ∈ H1(Rd) . (6)

Our first result is a direct consequence of the above parametrization and deals with the

asymptotics of QθΛ for large values of Λ.

Theorem 1 With the previous notations, for all θ > ϑ = ϑ(p, d), we have

lim
µ→∞

µϑ−θ Jθ(µ) =
θθ

ϑϑ
(1− ϑ)ϑ−θ

1

KGN

.

Moreover, the parametric curve µ 7→ (Λθ(µ), Jθ(µ)) is asymptotic to the curve

Λ 7→ θθ

ϑ(p, d)ϑ(p,d) (θ − ϑ(p, d))θ−ϑ(p,d)

Λθ−ϑ(p,d)

KGN

,

for large values of µ or, equivalently, for large values of Λ = Λθ(µ).

The case θ = 1 has been established in [5, Theorem 1.2] and here we generalize it to the

case θ < 1. The proof will be given in Section 2.

Next we denote by K∗CKN(θ,Λ, p) the optimal constant in (2) when the set of

admissible functions is restricted to all symmetric functions in D, i.e. functions which

depend only on s and achieve their extremum at s = 0. It is achieved by an explicit

function uµ,∗ with µ such that Λθ
∗(µ) = Λ. We recall that K∗CKN(θ,Λ, p) is explicit (see

[6, Lemma 3]). Let us define

ΛFS(p, θ) := 4
d− 1

p2 − 4

(2 θ − 1) p+ 2

p+ 2
. (7)

Symmetry breaking means K∗CKN(θ,Λ, p) < KCKN(θ,Λ, p). It is known that

(i) K∗CKN(θ,Λ, p) = KCKN(θ,Λ, p) for Λ > 0 small (see [8]).
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(ii) K∗CKN(θ,Λ, p) < KCKN(θ,Λ, p) for Λ > ΛFS(p, θ) (see [4, 5]).

(iii) The map Λ 7→ 1/KCKN(θ,Λ, p) is increasing and concave when θ = 1.

The value Λ = ΛFS(p, θ) corresponds to the threshold of instability of the symmetric

minimizers of (3). More estimates will be given in Section 2. Our next purpose is to

study the bifurcation of non-symmetric minimizers from the symmetric ones. Let us

start with θ = 1 and define

µFS := ΛFS(p, 1) .

Theorem 2 Assume that θ = 1, d ≥ 3 and p ∈ (2, 2∗]. Under assumption (H), there

exist a constant cp,d and

u(µ) := uµ,∗ +
√
cp,d (µ− µFS)ϕ+ cp,d (µ− µFS)ψ , (8)

where ϕ and ψ are two smooth functions with exponential decay as |s| → ∞ such that,

for cp,d (µ− µFS) > 0,

Qµ[u(µ)] = Qµ[uµ,∗]

(
1− p2 − 4

8
cp,d (µ− µFS)2 + o

(
(µ− µFS)2

))
.

Moreover, if cp,d is positive, then for µ > µFS, Qµ[u(µ)] minimizes Qµ in a neighborhood

of uµ,∗ among smooth functions with exponential decay as |s| → ∞, up to terms of order

o ((µ− µFS)2).

The assumption (H) is rather technical but explicit and will be stated only in Section 3.4.

For a given d, it is a condition on p, which ensures the existence on cp,d. Notice that the

condition that cp,d is positive is stronger than (H). We are not able to fully characterize

the positivity of cp,d, but at least we will give a sufficient condition in Theorem 7. The

corresponding range of p is not expected to be optimal.

In Section 3 we shall perform an expansion of the energyQµ in a neighborhood of the

first bifurcation point on the symmetric branch, by minimizing Qµ among a special class

of smooth functions with exponential decay, which is expected to contain all minimizers

in H1(C). However we did not prove that such a regularity result holds order by order in

the expansion. Anyway, our expansion provides us with an approximate, local minimizer

under the condition that cp,d is positive.

The function ϕ in Theorem 2 is explicit, ψ is given by a linear elliptic equation with

an explicit source term and cp,d is given by an identity involving ϕ and ψ. Numerically,

cp,d is positive in all cases considered in Section 4. Our last result is also written for

u(µ). With a slight abuse of notations, we may still use τ and ν for the approximated
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solution, that is

(A) τ(µ) := t[u(µ)] and ν(µ) :=
‖u(µ)‖2

L2(C)
‖u(µ)‖2

Lp(C)
,

and then redefine Λθ(µ) and Jθ(µ) accordingly. Of course it is to be expected that the

new versions of τ and ν differ from the former ones only by higher order terms but

mathematically this is an open question. As we shall see in Section 4 and with the

above definition (A), τ ′(µFS) can be computed in terms of cp,d. Let us define

ϑ2(p, d) :=
τ ′(µFS)

1 + τ ′(µFS)
.

One can expect that the value of ϑ2(p, d) is the same if τ is computed on the basis

of uµ, the solution to the Euler-Lagrange equation (5), or of u(µ), the approximation

defined by (8). The relative values of ϑ2(p, d) and ϑ(p, d) determine the behavior of the

non-symmetric branch close to the bifurcation point on the symmetric branch. More

precisely, we have the following local result.

Theorem 3 Under the assumptions of Theorem 2 and definition (A), if cp,d is positive,

if u(µ) is given by (8) and if µ is taken in a right neighborhood of µFS, then we have the

following alternative.

• Either ϑ2(p, d) ≤ ϑ(p, d) and then for all θ ∈ (ϑ(p, d), 1], the branch (Λθ(µ), Jθ(µ)) is

concave, nondecreasing in µ and it is below the symmetric branch (Λθ
∗(µ), Jθ∗ (µ)).

• Or, on the contrary, ϑ2(p, d) > ϑ(p, d) and then we find two different behaviors:

- if θ ∈ (ϑ2(p, d), 1], the branch is concave, nondecreasing in µ and below the

symmetric branch,

- if θ ∈ (ϑ(p, d), ϑ2(p, d)), then the branch (Λθ(µ), Jθ(µ)) is above the symmetric

branch (Λθ
∗(µ), Jθ∗ (µ)) and d

dµ
Λθ(µFS) < 0.

In the last case, when θ ∈ (ϑ(p, d), ϑ2(p, d)), the branch in the (Λθ, Jθ) representation

is on the left of the bifurcation point and above the curve corresponding to symmetric

solutions. The case θ = ϑ(p, d) is of particular interest and will be discussed in details

from a numerical point of view in Section 4.

2. Preliminaries observations and proof of Theorem 1

2.1. Caffarelli-Kohn-Nirenberg inequalities: more details on symmetry breaking

Recall that the threshold value for the stability of symmetric optimal functions is given

by ΛFS(p, θ) defined in (7): symmetry breaking occurs for any Λ > ΛFS(p, θ) according
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to [4, 6] (also see [5] for previous results and [9] if d = 2 and θ = 1). As shown in [9, 10, 3],

there is a continuous curve p 7→ Λs(p) with limp→2+ Λs(p) = ∞ and Λs(p) > a2
c for any

p ∈ (2, 2∗) such that symmetry holds for any Λ ≤ Λs and there is symmetry breaking if

Λ > Λs. As proved in [8], for all p, d in the considered range, θ = 1,

(d− 1) (6− p)
4 (p− 2)

< Λs(p) ≤ ΛFS(p, 1) .

Despite the fact that the exact shape of Λs is not known, it can be proved that we

have limp→2∗ Λs(p) = a2
c if d ≥ 3 and, if d = 2, limp→∞ Λs(p) = 0, or more precisely,

limp→∞ p2Λs(p) = 4. Moreover, we also know from [11, Theorem 3.1] that symmetry

holds if Λ ≤ d2/p2.

According to [12], it is known that an optimal function exists for any θ ∈
(ϑ(p, d), 1), but only if KCKN(θ,Λ, p) > KGN(p, d) when θ = ϑ(p, d), where KGN(p, d)

is the optimal constant in the Gagliardo-Nirenberg-Sobolev inequality (6). The case

KCKN(ϑ(p, d),Λ, p) = KGN(p, d) has not been studied yet. A sufficient condition for the

existence of extremals can be deduced, by comparison with symmetric functions, namely

K∗CKN(ϑ(p, d),Λ, p) > KGN(p, d), which can be rephrased in terms of Λ as Λ < Λ∗GN(p, d)

for some non-explicit (but easy to compute numerically) function p 7→ Λ∗GN(p, d). When

θ = ϑ(p, d) and Λ > Λ∗GN(p, d), extremal functions (if they exist) cannot be symmetric

and in the asymptotic regime p→ 2+, this condition is weaker than Λ > ΛFS(p, ϑ(p, d)).

One can indeed prove that limp→2+ ΛFS(p, ϑ(p, d)) > limp→2+ Λ∗GN(p, d). Hence, for

θ ∈ (ϑ(p, d), 1], close enough to ϑ(p, d) and p − 2 > 0, small (but numerically not so

small, actually, as shown in [13]; also see [3, Section 5] for estimates and Section 4.3 for

some plots), optimal functions exist and are not symmetric if Λ > Λ∗GN(p, d), which is

again a less restrictive condition than Λ > ΛFS(p, θ). See [3] for proofs and [13] for a

more detailed overview of known results.

In this paper we study perturbatively the non-symmetric solutions lying in the first

branch bifurcating from the branch of symmetric extremals and show that they explain

all phenomena of symmetry breaking known or observed so far, including cases in which

the symmetric extremals are stable. Of course, it is not clear that all extremals for

Caffarelli-Kohn-Nirenberg inequalities lie in those branches, even if probably that is the

case. In Section 3 we will provide a complete description of the branch around the

bifurcation point, based on an asymptotic expansion. This clarifies the local behavior of

the branch and accounts for all phenomena numerically observed in [14]. Before doing

so, let us study the branch of symmetric solutions and the asymptotic behavior of the

branch of optimal functions (proof of Theorem 1).
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2.2. The case of symmetric extremals

We start with the symmetric case for θ = 1 and adapt the computations that can be

found in [6] (also see [8] and the Appendix). Consider the equation

−(p− 2)2w′′ + 4w − 2 p |w|p−2w = 0 in R . (9)

The function w(s) := (cosh s)−
2
p−2 is, up to translations, the unique positive solution

of (9). As a consequence, the function u(s) = (1
2
p µ)1/(p−2)w

(
p−2

2

√
µ s
)

is the unique

solution of

−u′′ + µu = |u|p−2 u in R . (10)

The symmetric optimal function u∗ for θ < 1 can be explicitly computed. Up to

multiplication by a constant, u∗ solves

− θ u′′∗ + η u∗ = up−1
∗ ,

with η = (1− θ) t[u∗] + Λ. After multiplying the above equation by u∗, integrating with

respect to s ∈ R and dividing by
∫
R u

2
∗ ds, we find

t[u∗] + Λ =

∫
R u

p
∗ ds∫

R u
2
∗ ds

,

where u∗(s) = Aw(B s), for all s ∈ R, w solves (9), A =
(
p η
2

) 1
p−2 and B = p−2

2

√
η
θ
.

From this expression, as in [8], we deduce that

t[u∗] = B2 J2

I2
=
p− 2

p+ 2

η

θ
and

∫
R u

p
∗ ds∫

R u
2
∗ ds

= Ap−2 Ip
I2

=
2 p η

p+ 2
,

where for all q ≥ 2, Iq :=
∫
R |w(s)|q ds, and J2 :=

∫
R |w

′(s)|2 ds (see Appendix A.1 for

details). This provides the identity

p− 2

p+ 2

η

θ
+ Λ =

2 p η

p+ 2

and uniquely determines η = (p+2) θ
(2 θ−1) p+2

Λ. As a consequence, we have

t[u∗] =
p− 2

(2 θ − 1) p+ 2
Λ .



Symmetry breaking in PDEs 9

2.3. Gagliardo-Nirenberg inequalities and the corresponding asymptotic regime

Now we investigate the asymptotic regimes corresponding to Λ → ∞ and prove

Theorem 1. Let

Sp(Rd) := inf
u∈H1(Rd)\{0}

∫
Rd |∇u|

2 dx+
∫
Rd |u|

2 dx

|Sd−1|
p−2
p
(∫

Rd |u|p dx
) 2
p

.

An optimization of the quotient in the expression of Sp(Rd) allows to relate this constant

with KGN. Indeed, if we optimize N [u] :=
∫
Rd |∇u|

2 dx+ µ
∫
Rd |u|

2 dx under the scaling

λ 7→ uλ(x) := λ
d
p u(λx), we find that

N [uλ] = λ2 (1−ϑ)

∫
Rd
|∇u|2 dx+ λ−2ϑ µ

∫
Rd
|u|2 dx

achieves its minimum at λ? =
√

ϑµ
1−ϑ

‖u‖
L2(Rd)

‖∇u‖
L2(Rd)

, so that

N [uλ? ] = ϑ−ϑ (1− ϑ)−(1−ϑ) ‖∇u‖2ϑ
L2(Rd)‖u‖

2 (1−ϑ)

L2(Rd)
µ1−ϑ ,

thus proving that, with the choice µ = 1, K−1
GN = ϑϑ (1 − ϑ)1−ϑ Sp(Rd). For any µ > 0,

if uµ is the solution of (5) and if it is a minimizer of 1/KCKN(1,Λ, p), we know from [5,

Theorem 1.2] that as µ→∞,

(τ(µ) + µ) ν(µ) = Qµ[uµ] ∼ Sp(Rd)µ1−ϑ .

If u is an optimal function for Sp(Rd), we also know from the above computations that

λ? = 1, that is,

1 = λ2
? =

ϑµ

1− ϑ
1

τ(µ)
and so ,

τ(µ)

µ
=

ϑ

1− ϑ
.

Hence,

ν(µ) ∼ (1− ϑ) Sp(Rd)µ−ϑ as µ→∞ .

Consider now the case θ > ϑ(p, d). According to the parametrization of Section 1,

that is, by definition of Jθ and Λθ, we obtain that

Λθ(µ) = θ µ− (1− θ) τ(µ) =
θ − ϑ(p, d)

1− ϑ(p, d)
µ ,

Jθ(µ) = ν(µ) θθ (µ+ τ(µ))θ ∼ θθ (1− ϑ(p, d))1−θ Sp(Rd)µθ−ϑ(p,d) ,
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as µ→∞. Hence the parametric curve µ 7→ (Λθ(µ), Jθ(µ)) is asymptotic to the curve

Λ 7→ θθ (1− ϑ(p, d))1−ϑ(p,d)

(θ − ϑ(p, d))θ−ϑ(p,d)
Sp(Rd) Λθ−ϑ(p,d) ,

for large values of µ. This completes the proof of Theorem 1. See Figs. 1–3 for some

plots of the curves µ 7→ (Λθ(µ), Jθ(µ)) for various values of θ and how these curves

can be compared with the ones corresponding to the asymptotic regime as described in

Theorem 1. �

The limit case θ = ϑ = ϑ(p, d) is of particular interest. Indeed, according to [12],

Gagliardo-Nirenberg inequalities play a special role. See Fig. 6. First of all, since

1/KCKN(ϑ,Λϑ(µ), p) ≤ Jϑ(µ) and using the fact that Λ 7→ KCKN(ϑ,Λ, p) is a non-

increasing function of Λ, we recover the known result that

KGN ≤ KCKN(ϑ(p, d),Λ, p) ∀Λ > 0 .

Such an inequality has deep implications on the existence of an optimal function (see [12]

and in particular [12, Theorem 1.4]): either the inequality is strict and there exists a non-

trivial optimal function for (1), or there is equality and a non-trivial optimal function

may exist only if Λ = inf{λ > 0 : KGN ≥ KCKN(ϑ(p, d), λ, p)}, but certainly not for any

larger value of Λ, if the above infimum is finite.

In our setting, we can define µGN := inf{µ > 0 : Jϑ(µ) ≤ KGN}, with ϑ = ϑ(p, d).

It is granted that µGN > 0. Either µGN =∞ and there is always a minimizer, or

KCKN(ϑ(p, d),Λϑ(µ), p) = Jϑ(µ) ∀µ ∈ (0, µGN]

and there exists a non-trivial optimal function for (1) if µ < µGN, while

KCKN(ϑ(p, d),Λϑ(µ), p) = KGN ∀µ ∈ [µGN,∞)

and there is no optimal function for (1) if µ > µGN.

3. An expansion at the bifurcation point: proof of Theorems 2 and 3

In this section, we determine the behavior of the branch of non-symmetric positive

solutions that bifurcates from the branch of the symmetric ones in a neighborhood of

the first bifurcation point µ = µFS. Consider the case θ = 1 and denote by uµ,∗ the

positive symmetric solution of

−∆u+ µu = up−1 , (11)
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so that Qµ[uµ,∗] = ‖uµ,∗‖p−2
Lp(C) = 1/K∗CKN(1, µ, p). Notice that if u is a solution to (11),

we still have Qµ[u] = ‖u‖p−2
Lp(C) even if u is not symmetric.

We will search for minimizers of Qµ in a restricted class of functions depending only

on the variable s (see Section 2.1) along the axis of the cylinder and on the azimuthal

angle ζ of the sphere because of the result on Schwarz foliated symmetry of [15]. This

guarantees that we are in the right class for minimizers when θ = 1. For θ < 1, no such

result has been established in the literature but we will work in the same framework. It

is indeed straightforward to check that the same result holds.

Let f1 be the first non-constant spherical harmonic function, i.e. the eigenfunction

of the Laplace-Beltrami operator on the sphere Sd−1 corresponding to the eigenvalue

d− 1 and denote by f2 the next one (among the ones depending only on the azimuthal

angle ζ), with corresponding eigenvalue equal to 2 d. See Appendix A.4 for details.

3.1. Expansion of Qµ at order two

Let us consider a solution of (11) that can be written as

uµ = uµ,∗ + ε ϕ+ o(ε)

in a neighborhood of uµ,∗. In the limiting regime corresponding to ε→ 0, an expansion

at order two in ε gives

Qµ[uµ,∗ + ε ϕ]

Qµ[uµ,∗]
− 1 = ε2 q[µ, ϕ]

‖uµ,∗‖pLp(C)
+ ε2 (p− 2)

(∫
C u

p−1
µ,∗ ϕ dy

)2

‖uµ,∗‖2 p
Lp(C)

+ o(ε2) ,

where q[µ, ϕ] :=
∫
C
(
|∇ϕ|2 + µ |ϕ|2 − (p− 1)up−2

µ,∗ |ϕ|2
)
dy. By minimizing the term of

order two, we find that

Qµ[uµ,∗ + ε ϕ]

Qµ[uµ,∗]
− 1 ∼ ε2 (ϕ1,Hµ ϕ1)L2(C)

‖uµ,∗‖pLp(C)
as ε→ 0 ,

where Hµ := − d2

ds2
+ µ + d − 1 − (p − 1)up−2

µ,∗ is a Pöschl-Teller operator whose lowest

eigenvalue is given by λ1(µ) = d − 1 + µ − 1
4
µ p2, and such that ϕ = ϕ1 f1 is the

corresponding eigenfunction (see Appendix A.2 for details). Since ε has not been

specified yet, we can normalize ϕ by the condition

‖ϕ‖2
L2(C) = ‖ϕ1‖2

L2(R) = ‖uµ,∗‖pLp(C) ,

which slightly simplifies some computations below. This shows in particular that

q[µ, ϕ]

‖uµ,∗‖pLp(C)
= λ1(µ) .
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See (A.2) for an expression of ϕ1, which is smooth and decays exponentially as |s| → ∞.

As in [4], let µFS be such that λ1(µFS) = 0, that is

µFS = 4
d− 1

p2 − 4

(see Appendix A.2 for details). For any µ > µFS, we have

λ1(µ) = −1

4
(p2 − 4) (µ− µFS) . (12)

This determines the O(ε2) term. Now we want to investigate the behavior of Qµ in a

neighborhood of µ = µFS and therefore need an expansion at higher order.

3.2. Expansion of Qµ at order four

Our purpose is to build an expansion (uµ)µ>µFS
of the branch of positive solutions

of (11) that bifurcates from the branch µ 7→ uµ,∗ at uFS,∗ =: uFS and satisfies

Qµ[u(µ)] < Qµ[uµ,∗]. For µ in a right-neighborhood of µFS, we look for solutions of (11)

of the form uµ = u(µ), up to higher order terms, where

u(µ) = uµ,∗ + ε ϕ+ η ψ , (13)

with ε > 0 and η = o(ε). The fact that an expansion starting with the above expression

can be built is standard. From now on, we will assume that the solutions are given by

the above expression and that τ , ν, Λθ and Jθ are defined according to definition (A).

Some of our computations are formal, but can be justified by technical estimates that

will be only sketched. Here ϕ = ϕ1 f1 has been determined above. Recall that ϕ1 is a

function depending on s only. For convenience, let us define

kψ :=

∫
C u

p−1
µ,∗ ψ dy∫
C u

p
µ,∗ dy

.

Since we are interested in functions depending only on the azimuthal angle ζ, we

indifferently use ω ∈ Sd−1 or ζ ∈ [0, π] with a slight abuse of notation. We consider

the sequence (fk)k∈N of spherical harmonics depending only on ζ. See Appendix A.4 for

details. We denote by ψk the decomposition of ψ in spherical harmonics:

ψ = kψ uµ,∗ +
∑
k≥0

ψk fk ,

with ψk(r) :=

∫
Sd−1

ψ(r, ω) fk(ω) dν(ω) ∀ r ∈ [0,∞) ,
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where dν(ω) is the uniform probability measure on the sphere. Here we have chosen ψ0

in such a way that
∫
C u

p−1
µ,∗ ψ0 dy = 0 because

kψ =

∫
C u

p−1
µ,∗ (kψ uµ,∗ + ψ0) dy∫

C u
p
µ,∗ dy

= kψ +

∫
C u

p−1
µ,∗ ψ0 dy∫
C u

p
µ,∗ dy

.

We know that q[µ, ψ] =
∑

k≥0 q[µ, ψk fk] , where

q[µ, ψk fk] =

∫
C
|∇(ψk fk)|2 dy + µ

∫
C
ψ2
k dy − (p− 1)

∫
C
up−2
µ,∗ ψ

2
k dy .

With µk := µ+ k (k + d− 2) , for any k ≥ 2, we get that

q[µ, ψk fk] =

∫
C
|ψ′k|2 dy + µk

∫
C
ψ2
k dy − (p− 1)

∫
C
up−2
µ,∗ ψ

2
k dy

is nonnegative for µ− µFS > 0, small enough, and positive unless ψk ≡ 0. Lengthy but

straightforward computations show that

Qµ[u(µ)]

Qµ[uµ,∗]
− 1 = a ε2 + b ε4 + c ε2 η + d η2 + e ε η + o(ε4 + η2 + |a| ε2 + η ε2)

when the function ψ is smooth and has exponential decay as |s| → ∞. The coefficients

in the above expansion are given by

a(µ) =
q[µ, ϕ]∫
C u

p
µ,∗ dy

= λ1(µ) ,

b(µ)

p− 1
= − λ1(µ)

∫
C u

p−2
µ,∗ ϕ

2 dy∫
C u

p
µ,∗ dy

+
1

4
(p− 1) (p− 2)

[∫
C u

p−2
µ,∗ ϕ

2 dy∫
C u

p
µ,∗ dy

]2

− 1

12
(p− 2) (p− 3)

∫
C u

p−4
µ,∗ ϕ

4 dy∫
C u

p
µ,∗ dy

,

c(µ) = − 2λ1(µ) kψ + (p− 1) (p− 2)

∫
C u

p−2
µ,∗ ϕ

2 dy∫
C u

p
µ,∗ dy

kψ

− (p− 1) (p− 2)

∫
C u

p−3
µ,∗ ϕ

2 ψ dy∫
C u

p
µ,∗ dy

,

d(µ) =
q[µ, ψ]∫
C u

p
µ,∗ dy

+ (p− 2) k2
ψ ,

e(µ) = 2λ1(µ)

∫
C ϕψ dy∫
C u

p
µ,∗ dy

.

With no restriction, we may require that ϕ is optimal in the direction f1, that is∫
C
ϕψ dy = 0 . (14)
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In other words, this amounts to require that e(µ) = 0 for any µ > µFS.

According to (12), we get

a(µ) = −1

4
(p2 − 4) (µ− µFS) .

Using
∫ π

0
|f1|4 dν = 3 d

d+2
(see Appendix A.4), we obtain

4 b(µFS)

(p− 1) (p− 2)
= (p− 1)

[∫
R u

p−2
FS ϕ2

1 ds∫
R u

p
FS ds

]2

− d (p− 3)

d+ 2

∫
R u

p−4
FS ϕ4

1 ds∫
R u

p
FS ds

.

All above integrals are computed in Appendix A.3 and allow to express b(µFS) as

b(µFS) =
4 (d− 1)2 p3 (p− 1)2 [ 2 p (5 p− 6)− d (p2 − 16 p+ 12) ]

(d+ 2) (p+ 2)2 (p− 2) (3 p− 2)2 (5 p− 6)
.

As for the terms which depend on η, we observe that they sum as

ε2 η c(µ) + η2 d(µ) + ε η e(µ)

= η2

[
q[µ, ψ]

‖uµ,∗‖pLp(C)
+ (p− 2) k2

ψ

]
− 2λ1(µ) kψ ε

2 η

+ ε2 η (p− 1) (p− 2)

[∫
C u

p−2
µ,∗ ϕ

2 dy

‖uµ,∗‖pLp(C)
kψ −

∫
C u

p−3
µ,∗ ϕ

2 ψ dy

‖uµ,∗‖pLp(C)

]
.

Using the fact that f 2
1 = f0 +κ(d) f2 (see Appendix A.4), it is straightforward to observe

that the optimal function ψ is given by

ψ = kψ uµ,∗ f0 + ψ0 f0 + ψ1 f1 + ψ2 f2 (15)

while ψk ≡ 0 for any k > 2 and solves the Euler-Lagrange equation

−∆ψ + µψ − (p− 1)up−2
µ,∗ ψ + (p− 2) kψ u

p−1
µ,∗ f0

+
ε2

2 η

[(
p2 (p− 1) (p− 2)

3 p− 2
µ− 2λ1(µ)

)
up−1
µ,∗ f0

− (p− 1) (p− 2)up−3
µ,∗ ϕ

2
1 (f0 + κ(d) f2)

]
+ Lϕ1 f1 = 0 .

Here we used the fact that
∫
C u

p−2
µ,∗ ϕ

2 dy/‖uµ,∗‖pLp(C) = p2 µ
3 p−2

(see Appendix A.3 for

details). Constraint (14) is taken into account through the Lagrange multiplier L. Here

higher order terms have been omitted: see Remark 4.

The three components ψ0, ψ1 and ψ2 satisfy the equations

− ψ′′0 + µψ0 −
p (p− 1)µ

2 [cosh(β s)]2
ψ0+

β2A0

[cosh(β s)]2
p−1
p−2

− β2B0

[cosh(β s)]2
2 p−3
p−2

= 0 ,
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− ψ′′1 + µ1 ψ1 −
p (p− 1)µ

2 [cosh(β s)]2
ψ1 + Lϕ1 = 0 ,

− ψ′′2 + µ2 ψ2 −
p (p− 1)µ

2 [cosh(β s)]2
ψ2 −

β2B2

[cosh(β s)]2
2 p−3
p−2

= 0 ,

with µ1 = µ+ d− 1, µ2 = µ+ 2 d and

A0 =
αp−1

β2

ε2

2 η

(
p2 (p− 1) (p− 2)

3 p− 2
µ− 2λ1(µ)

)
,

B0 =
ε2

2 η
(p− 1) (p− 2)

α2 p−3

β2
,

B2 =
ε2

2 η
(p− 1) (p− 2)κ(d)

α2 p−3

β2
= κ(d)B0 ,

Recall that β2 = 1
4

(p− 2)2 µ.

Multiplying the equation for ψ1 by ϕ1 and integrating by parts we get

λ1(µ)

∫
R
ϕ1 ψ1 ds+ L

∫
R
|ϕ1|2 ds = 0 .

Using Assumption (14), this proves that L = 0. This implies that ψ1 is an eigenfunction

of Hµ, with eigenvalue λ1(µ). Since λ1(µ) is simple, we find that ψ1 ≡ 0 by (14).

We may next observe that by taking

ψ0(s) = A0 χ0,p−1(β s) +B0 χ0,2 p−3(β s) and ψ2(s) = B2 χ2,2 p−3(β s) , (16)

the problem is reduced to the set of equations

−χ′′0,p−1 + 4χ0,p−1

(p−2)2
− 2 p (p−1)χ0,p−1

(p−2)2 (cosh s)2
+ wp−1 = 0 ,

−χ′′0,2 p−3 + 4χ0,2 p−3

(p−2)2
− 2 p (p−1)χ0,2 p−3

(p−2)2 (cosh s)2
− w2 p−3 = 0 ,

−χ′′2,2 p−3 + 4µ2 χ2,2 p−3

µ (p−2)2
− 2 p (p−1)χ2,2 p−3

(p−2)2 (cosh s)2
− w2 p−3 = 0 ,

(17)

where w(s) = (cosh s)−
2
p−2 . Since

−w′′ + 4w

(p− 2)2
− 2 p (p− 1)w

(p− 2)2 (cosh s)2
+

2 p

p− 2
wp−1 = 0 ,

it follows that

χ0,p−1 =
p− 2

2 p
w .

We may notice that the equations for χ0,p−1, χ0,2 p−3 and χ2,2 p−3 are all independent

of kψ. Moreover, since
∫
R u

p−1
µ,∗ ψ0 ds = 0, we get∫

R
wp−1 (A0 χ0,p−1 +B0 χ0,2 p−3) ds = 0 ,
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i.e.

0 = A0

∫
R

χ0,p−1

(cosh s)2 p−1
p−2

ds+B0

∫
R

χ0,2 p−3

(cosh s)2 p−1
p−2

ds .

Remark 4 The decomposition (15) of ψ is done up to higher order terms. Hence the

above equality only holds for µ = µFS, as can be checked by computing∫
R
χ0,p−1w

p−1 ds =
p− 2

2 p

∫
R
wp ds =

p− 2

2 p
Ip

and, using (17),

b0,p−1 :=

∫
R
χ0,2 p−3w

p−1 ds = −
∫
R
χ0,p−1w

2 p−3 ds = − p− 2

3 p− 2
Ip .

(also see Appendix A.1). With A0 = αp−1

β2
ε2

2 η

(
p2 (p−1) (p−2)

3 p−2
µ− 2λ1(µ)

)
and B0 =

ε2

2 η
(p− 1) (p− 2) α2 p−3

β2 , we find that

A0
p− 2

2 p
Ip −B0

p− 2

3 p− 2
Ip = 0

holds if and only if λ1(µ) = 0. As we shall see below, this is consistent with our

expansion in terms of powers of ε and η because for µ > µFS, close enough to µFS, λ1(µ)

corresponds to a term of higher order.

The reader is invited to check that

χ0,2 p−3 = − 1

4

p− 2

p− 1

(
2w − wp−1

)
.

As a consequence, one can compute

b0,1 :=

∫
R
χ0,2 p−3w ds = − 1

4

p− 2

p− 1
(2 I2−Ip) = − p (p− 2)

2 (p− 1) (p+ 2)
I2 . (18)

Altogether we have found that

ε2 η c(µ) + η2 d(µ) + ε η e(µ) = η2Q[ψ]− ε2 η L[ψ]

up to higher order terms in ε, η and (µ− µFS), where

Q[ψ] :=
q[µ, ψ]

‖uµ,∗‖pLp(C)
+ (p− 2) k2

ψ

and

L[ψ] := −(p− 1) (p− 2)

[∫
C u

p−2
µ,∗ ϕ

2 dy

‖uµ,∗‖pLp(C)
kψ −

∫
C u

p−3
µ,∗ ϕ

2 ψ dy

‖uµ,∗‖pLp(C)

]
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are respectively quadratic and linear with respect to ψ. Since we can multiply ψ by

any positive constant ν and η by 1/ν simultaneously without changing the value of

η2Q[ψ]− ε2 η L[ψ], the optimal choice of η in terms of ε is

η = ε2 , (19)

thus making the sum of the two terms equal to ε4 (Q[ψ]− L[ψ]) and ψ independent

of ε, at least at leading order. Moreover, if ψ is a minimizer of Q[ψ] − L[ψ], then

it is straightforward to check that 2Q[ψ] − L[ψ] = 0, as follows by multiplying the

Euler-Lagrange equation by ψ and integrating. Altogether, we have found that

ε2 η c(µ) + η2 d(µ) + ε η e(µ) = −1

2
ε4 L[ψ] < 0

up to higher order terms in ε and for µ − µFS small enough, if ψ is a minimizer of

Q[ψ]− L[ψ], that is,

Qµ[u(µ)]

Qµ[uµ,∗]
− 1− λ1(µ) ε2 − b(µ) ε4 = −1

2
L[ψ] ε4 + o(ε4) . (20)

At this point, we may notice that the function u(µ) has not been normalized. Multiplying

it by a constant would not change the value of Qµ[u(µ)]. If we want it to be a solution

of (11) at leading order, then this implies that Qµ[u(µ)] = ‖u(µ)‖p−2
Lp(C) and we may

therefore impose the corresponding constraint, i.e.∫
C
|∇u(µ)|2 dy + µ

∫
C
u2

(µ) dy =

∫
C
up(µ) dy ,

without changing the equations written order by order (in other words, the Lagrange

multiplier associated with this constraint is zero). Written in terms of ϕ and ψ, at

lowest order, that is at order ε2, this constraint amounts to∫
C

(
|∇ϕ|2 + µ |ϕ|2 − p (p− 1)

2
up−2
µ,∗ |ϕ|2

)
dy − (p− 2) kψ

∫
C
upµ,∗ dy = 0 .

Hence by taking the limit as µ → (µFS)+ and observing that λ1(µ) = O(µ − µFS), we

find that, for µ = µFS,

kψ = − 1

2
(p− 1)

∫
C u

p−2
µ,∗ |ϕ|2 dy∫
C u

p
µ,∗ dy

= − 2 p2 (p− 1) (d− 1)

(p− 2) (p+ 2) (3 p− 2)
.

The explicit value of kψ will however not be needed later, because of cancellations that

occur in all subsequent computations.

Next comes the observation that, as long as we are interested in computing L[ψ], we

do not even need to normalize u(µ) nor to compute kψ. Indeed with ψ̃ := ψ − kψ uµ,∗ =
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ψ0 f0 + ψ2 f2, we see that∫
C u

p−2
µ,∗ ϕ

2 dy

‖uµ,∗‖pLp(C)
kψ −

∫
C u

p−3
µ,∗ ϕ

2 ψ dy

‖uµ,∗‖pLp(C)
= −

∫
C u

p−3
µ,∗ ϕ

2 ψ̃ dy

‖uµ,∗‖pLp(C)
,

where ψ̃ is fully determined by the coefficients A0, B0, and B2, and by (17). This also

determines

L[ψ] = (p− 1) (p− 2)

∫
C u

p−3
µ,∗ ϕ

2 ψ̃ dy

‖uµ,∗‖pLp(C)
,

which is not known explicitly but is independent of kψ and can be computed as∫
C u

p−3
µ,∗ ϕ

2 ψ̃ dy

‖uµ,∗‖pLp(C)
=
A0

α

p− 2

2 p
a0 +

B0

α
αp−2 b0,2 p−3

Ip
+
B2

α
αp−2 κ(d)

b2,2 p−3

Ip
,

with

a0 :=

∫
C u

p−2
µ,∗ ϕ

2 dy∫
C u

p
µ,∗ dy

=
p2 µ

3 p− 2
, b0,2 p−3 :=

∫
R
χ0,2 p−3w

2 p−3 ds ,

and b2,2 p−3 :=

∫
R
χ2,2 p−3w

2 p−3 ds .

Notice that here we have taken advantage of the facts that χ0,p−1(β s) = p−2
2 p

1
α
u(s) and

ϕ2 = ϕ2
1

(
f0 + κ(d) f2

)
. Using the expression of χ0,2 p−3, we can also compute

b0,2 p−3 = − 1

4

p− 2

p− 1

(
2

∫
R
w2 (p−1) ds−

∫
R
w3 p−4 ds

)
= − (p− 2) p (3 p− 4)

(p− 1) (3 p− 2) (5 p− 6)
Ip .

Altogether, with y := b2,2 p−3

Ip
, we have found that

L[ψ] = 4 (d− 1)2 (p− 1) p3

(p+ 2)2

[
(p− 2) p

(3 p− 2)2 (5 p− 6)
+ 2

d− 1

d+ 2

p− 1

(p− 2)2
y

]
.(21)

We have not been able to find an explicit expression for b2,2 p−3, but we can prove

that this is a positive quantity and even give an upper bound. According to [16, p. 74],

the lowest eigenvalue of the Pöschl-Teller operator − d2

ds2
− U0 (cosh s)−2 is given by

λ0 =
1

2

√
1 + 4U0 −

1

2
− U0 ,

if we assume that U0 is positive. Here we have that U0 is given by

U0(p) :=
2 p (p− 1)

(p− 2)2
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and the reader is invited to check that

σ(p, d) := λ0 +
4µ2

µFS (p− 2)2

=
1

2

√
1 + 4U0(p)− 1

2
− U0(p) +

2

(p− 2)2

(
2 +

d (p2 − 4)

d− 1

)
is larger than 1 for any p > 2 and any d ≥ 2. As a straightforward consequence of (17),

we deduce that

σ(p, d) ‖χ2,2 p−3‖2
L2(R) ≤

∫
R
χ2,2 p−3w

2 p−3 ds ≤ ‖χ2,2 p−3‖L2(R) ‖w2 p−3‖L2(R)

and, finally,

b2,2 p−3 ≤
1

σ(p, d)

∫
R
w2 (2 p−3) ds =

16 p (p− 1) (3 p− 4)

(3 p− 2) (5 p− 6) (7 p− 10)

Ip
σ(p, d)

.

3.3. Optimization and a technical statement

Collecting the above estimates and using (20), we get

Qµ[u(µ)]

Qµ[uµ,∗]
= 1− 1

4
(p2 − 4) (µ− µFS) ε2 +

[
b(µ)− 1

2
L[ψ]

]
ε4 + o(ε4) ,

provided µ− µFS = O(ε2). With L[ψ] given by (21), assume that

(H) b(µFS)− 1

2
L[ψ] 6= 0 .

Let

cp,d :=
1

8
(p2 − 4)

[
b(µ)− 1

2
L[ψ]

]−1

|µ=µFS

.

If cp,d is positive, in a neighborhood of µ = µFS,

Qµ[u(µ)]

Qµ[uµ,∗]
= 1− 1

4
(p2 − 4)

(
(µ− µFS) ε2 − ε4

2 cp,d

)
+ o(ε4)

is optimized, up to higher order terms, by taking

ε2 = ε2(µ) ∼ cp,d (µ− µFS) as µ→ µFS+ . (22)

Remark 5 We may also consider the case cp,d < 0, which then requires that µ < µFS.

We will not emphasize it because we are interested in minimizers and cp,d < 0 means

that we deal with local maximizers of Qµ. Moreover, we have no example of such a case

for specific values of p and d.
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Altogether, if cp,d > 0, we have found that

Qµ[u(µ)]

Qµ[uµ,∗]
= 1− p2 − 4

8
cp,d (µ− µFS)2 + o

(
(µ− µFS)2

)
(23)

which ends the proof of Theorem 2. A more detailed statement goes as follows.

Theorem 6 In a neighborhood of µ = µFS, if u(µ) is given by (8),

(i)
Q1
µ[u(µ)]

Q1
µ[uµ,∗]

= 1− 1

4
(p2 − 4)

(
(µ− µFS) ε2 − ε4

2 cp,d

)
+ o(ε4) ,

(ii) τ ′(µFS) =
p− 2

p+ 2
+

16 p2 (d− 1)2

(p− 2) (p+ 2)3
cp,d ,

(iii)
ν ′(µFS)

ν∗(µFS)
= − p− 2

2 p µFS

+cp,d

[
p µFS

(
2

p+ 2
− p (p− 1)

3 p− 2

)
+ 2

B0

α

(
b0,1

I2
+

p− 2

3 p− 2

)]
,

where cp,d, B0 and b0,1 are explicit constants that have been defined above and that can

be computed numerically. For (ii) and (iii), we assume that cp,d is positive.

Property (i) has already been established. Before proving (ii) and (iii), let us discuss

the positivity of cp,d.

3.4. A sufficient condition for the positivity of cp,d

All above computations are valid under the assumption that cp,d is positive, but this is

not a priori guaranteed. With the estimate of b2,2 p−3 that has been found at the end

of Section 3.2, we can a posteriori give a sufficient condition for the consistency of the

method. Since

L[ψ] ≤ Lapprox[ψ]

:= 4 (d− 1)2 (p− 1) p3

(p+ 2)2

[
(p− 2) p

(3 p− 2)2 (5 p− 6)
+ 2

d− 1

d+ 2

p− 1

(p− 2)2
y

]
.

with y := 16 p (p−1) (3 p−4)
(3 p−2) (5 p−6) (7 p−10)σ(p,d)

, we know that cp,d is well defined and positive if

Lapprox[ψ] < 2 b(µFS). Moreover, we have

cp,d ≤ capprox
p,d :=

1

8
(p2 − 4)

[
b(µ)− 1

2
Lapprox[ψ]

]−1

|µ=µFS

,

at least as long as Lapprox[ψ] ≤ 2 b(µFS). Hence we have shown the following result.

Theorem 7 The constant cp,d is positive if p is contained in a non empty interval

(2, papprox) ⊂ (2, 2∗), where papprox is defined as the largest root of the fourth order

polynomial p 7→ 1
5

(54 − 227 d + 103 d2) p4 − 4 (18 − 37 d + 25 d2) p3 + 8
3

(63 − 67 d +

46 d2) p2 + 16 (d+ 3) (5 d− 3) p− 240 d (d+ 1).
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In practice, for all d ≥ 3, papprox(d) is close to 2 d/(d− 2) and converges to 2 as d→∞.

See Fig. 11 for an illustration.

3.5. Expansion of τ(µ) around µFS

Let τ(µ) = t[u(µ)] =
∫
C |∇u(µ)|2 dy∫
C u

2
(µ)

dy
and

τ∗(µ) := t[uµ,∗] =
p− 2

p+ 2
µ . (24)

We can notice that τ(µFS) = β2 J2/I2 (see Appendix A.1 and Appendix A.2) so that

τ(µFS) =
p− 2

p+ 2
µFS =

4 (d− 1)

(p+ 2)2
.

With the above expressions in hand, we can now compute the derivative

τ ′(µFS) =
d

dµ
t[u(µ)]|µ=µFS

.

From (24) we know that t[uµ,∗] − t[uFS] = p−2
p+2

(µ − µFS). By expanding the expression

τ(µ) − τ(µFS) = t[u(µ)] − t[uFS] = t[uµ,∗] − t[uFS] + t[u(µ)] − t[uµ,∗] in powers of ε with

u(µ) = uµ,∗ + ε ϕ1 f1 + ε2ψ + o(ε2) where ϕ, ψ have been chosen in Section 3.2, we get,

up to higher order terms,

t[u(µ)]−t[uµ,∗] ∼ ε2

[
(λ1(µ)−µ−t[uµ,∗])

∫
C ϕ

2 dy∫
C u

2
µ,∗ dy

+ (p−1)

∫
C u

p−2
µ,∗ ϕ

2 dy∫
C u

2
µ,∗ dy

− 2 (µ+ t[uµ,∗])

∫
C uµ,∗ ψ dy∫
C u

2
µ,∗ dy

+ 2

∫
C u

p−1
µ,∗ ψ dy∫
C u

2
µ,∗ dy

]
,

and, by computing as above, we find that

τ ′(µFS) =
p− 2

p+ 2
+ cp,d

[
− 2 p µFS

p+ 2

∫
C ϕ

2
1 dy∫

C u
2
FS dy

+ (p− 1)

∫
C u

p−2
FS ϕ2

1 dy∫
C u

2
FS dy

− 4 p µFS

p+ 2

∫
C uFS ψ0 dy∫
C u

2
FS dy

]
,

because we notice that the terms involving kψ cancel. Hence, using (15) and (16), we

have found that

τ ′(µFS) =
p− 2

p+ 2
+ cp,d

[
− 4 p2 µ2

FS

(p+ 2)2
+

2 (p− 1) p3 µ2
FS

(p+ 2) (3 p− 2)

− 2 (p− 2)

p+ 2
µFS

A0

α
− 4 p µFS

p+ 2

B0

α

b0,1

I2

]
=
p− 2

p+ 2
− cp,d

[
8 p (d− 1)

(p− 2) (p+ 2)2

]2 [
1 +

(p− 1) p (p+ 2)

2 (p− 2)

b0,1

I2

]
.

Here the coefficient b0,1 is given by b0,1 :=
∫
R χ0,2 p−3w ds. Using (18), this proves

part (ii) of Theorem 6.
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3.6. Expansion of ν(µ) around µFS

Let us consider ν(µ) := ‖u(µ)‖2
L2(C)/‖u(µ)‖2

Lp(C). Again we can write

ν(µ)− ν(µFS) =

(
‖uµ,∗‖2

L2(C)
‖uµ,∗‖2

Lp(C)
−
‖uFS‖2

L2(C)
‖uFS‖2

Lp(C)

)
+

(
ν(µ)−

‖uµ,∗‖2
L2(C)

‖uµ,∗‖2
Lp(C)

)
.

With β = p−2
2

√
µ, using expressions that can be found in Appendix A.1, we see that

ν∗(µ) :=
‖uµ,∗‖2

L2(C)
‖uµ,∗‖2

Lp(C)
= β−

p−2
p

I2

I
2/p
p

= κp µ
− p−2

2 p , (25)

with κp =
(
p+2

4

) 2
p

(
2
√
π

p−2

Γ( 2
p−2)

Γ( 2
p−2

+ 1
2)

) p−2
p

, and hence

ν ′∗(µFS) = lim
µ→µFS

1

µ− µFS

(
‖uµ,∗‖2

L2(C)
‖uµ,∗‖2

Lp(C)
−
‖uFS‖2

L2(C)
‖uFS‖2

Lp(C)

)
= −p− 2

2 p

ν∗(µFS)

µFS

.

If u(µ) = uµ,∗ + ε ϕ + ε2 ψ, where ϕ, ψ have been chosen in Section 3.2, after a Taylor

expansion we find that

ν(µ) = ν∗(µ)

[
1 + ε2

( ∫
C ϕ

2 dy∫
C u

2
µ,∗ dy

− (p− 1)

∫
C u

p−2
µ,∗ ϕ

2 dy∫
C u

p
µ,∗ dy

)
+ 2 ε2

∫
C uµ,∗ ψ dy∫
C u

2
µ,∗ dy

− 2 ε2

∫
C u

p−1
µ,∗ ψ dy∫
C u

p
µ,∗ dy

+ o(ε2)

]
.

Again we may notice that the terms involving kψ cancel and, based on (15) and (16),

we arrive at

ν ′(µFS)

ν∗(µFS)
= − p− 2

2 p µFS

+ cp,d

[
p µFS

(
2

p+ 2
− p (p− 1)

3 p− 2

)
+ 2

(
B0

α

b0,1

I2
− B0

α

b0,p−1

Ip

)]
= − p− 2

2 p µFS

+ cp,d

[
p µFS

(
2

p+ 2
− p (p− 1)

3 p− 2

)
+ 2

B0

α

(
b0,1

I2
+

p− 2

3 p− 2

)]
.

Lemma 8 At the bifurcation point µ = µFS we get the following.

ν ′∗(µFS)

ν∗(µFS)
+

τ ′∗(µFS)

µFS + τ∗(µFS)
=
ν ′(µFS)

ν∗(µFS)
+

τ ′(µFS)

µFS + τ∗(µFS)
= 0 .
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Proof. Recall that Qµ[uµ,∗] = ν∗(µ) (τ∗(µ) + µ) and Qµ[u(µ)] = ν(µ) (τ(µ) + µ), so that

1

QµFS
[uFS]

d

dµ
Qµ[uµ,∗]|µ=µFS

=
ν ′∗(µFS)

ν∗(µFS)
+

1 + τ ′∗(µFS)

µFS + τ∗(µFS)
= 0

according to (24) and (25), and

1

QµFS
[uFS]

d

dµ
Qµ[u(µ)]|µ=µFS

=
ν ′(µFS)

ν(µFS)
+

1 + τ ′(µFS)

µFS + τ(µFS)
.

According to (23), these two quantities are equal, thus proving the result. Alternatively,

the identity can be proved directly using the expressions of τ ′ and ν ′ established in

Sections 3.5 and 3.6. This ends the proof of Lemma 8 and of Theorem 6, (iii). �

3.7. Reparametrization of the branch for θ < 1 and proof of Theorem 3

Now we are in position to study the local behavior of the branch of the solutions to (4)

parametrized by µ close to the bifurcation point, that is, for µ in a neighborhood of µFS.

More precisely, we are interested in the monotonicity of µ 7→ Λθ(µ) and the behavior of

µ 7→ (Λθ(µ), Jθ(µ)) in a neighborhood of µ = µFS. According to the parametrization of

Section 1, we know that Λθ(µ) = θ µ− (1− θ) τ(µ), so that

(Λθ)′ = θ − (1− θ) τ ′

can be computed at µ = µFS using the expression of τ ′(µFS), that has been computed

in Section 3.5. Hence we find that

(Λθ)′(µFS) = θ (1 + τ ′(µFS))− τ ′(µFS) .

Lemma 9 If τ ′(µFS) is positive, then we have that d
dµ

Λθ(µFS) < 0 if and only

θ < ϑ2(p, d) :=
τ ′(µFS)

1 + τ ′(µFS)
.

Notice that with this definition, ϑ2(p, d) is defined for any p ∈ (2, 2∗) and any d ≥ 2.

As long as ϑ(p, d) < ϑ2(p, d), (Λθ)′(µFS) is negative if θ ∈ (ϑ(p, d), ϑ2(p, d)). In all

numerical examples that are under consideration in this paper, we find that τ ′(µFS) is

positive. This is of course automatically the case if cp,d itself is positive, because of (ii)

in Theorem 6.

We recall that Jθ(µ) := θθ (µ+ τ(µ))θ ν(µ) and Λθ(µ) = θ µ− (1− θ) τ(µ). Hence

(log Jθ)′ =
ν ′

ν
+ θ

1 + τ ′

µ+ τ
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and a similar formula holds for Jθ∗ . At µ = µFS, we can use Lemma 8 and get

(log Jθ)′(µFS) =
θ (1 + τ ′(µFS))− τ ′(µFS)

µFS + τ(µFS)
=

(Λθ)′(µFS)

µFS + τ(µFS)
.

Let us define

δθ :=
(Jθ)′

(Λθ)′
− (Jθ∗ )

′

(Λθ
∗)
′ .

Lemma 10 Assuming that cp,d is positive, we have

δθ(µFS) = 0 .

In other words, the parametric curves µ 7→ (Λθ(µ), Jθ(µ)) and µ 7→ (Λθ
∗(µ), Jθ∗ (µ)) are

tangent at µ = µFS. It remains to decide the relative position of the two branches in a

neighborhood of the bifurcation point. In order to do so, let us define the function

ξθ :=
((Λθ)′)2

Jθ

[
1

(Λθ)′
d

dµ

(
(Jθ)′

(Λθ)′

)
− 1

(Λθ
∗)
′
d

dµ

(
(Jθ∗ )

′

(Λθ
∗)
′

)]
and discuss the range of positivity of ξθ. An elementary computation shows that

ξθ =
(Jθ)′′

Jθ
− (Jθ)′

(Λθ)′
(Λθ)′′

Jθ
− (Jθ∗ )

′′

Jθ∗

(
(Λθ)′

(Λθ
∗)
′

)2

because (Λθ
∗)
′′ = 0. By definition of Λθ(µ) = θ µ − (1 − θ) τ(µ) and ϑ2(p, d), we

get that (Λθ)′′(µFS) = − (1 − θ) τ ′′(µFS) and (Λθ)′(µFS) = θ−ϑ2(p,d)
1−ϑ2(p,d)

. From (24) and

Λθ
∗(µ) = θ µ − (1 − θ) τ∗(µ), we get that (Λθ

∗)
′ = 2 p θ−(p−2)

p+2
. From (24) and (25),

we know also that Jθ∗ (µ) = κp (2 p θ/(p+ 2))θ µθ−
p−2
2 p , so that (Jθ∗ )′

Jθ∗
= 2 p θ−(p−2)

2 p µ
and

(log Jθ∗ )
′′ = −2 p θ−(p−2)

2 p µ2
. As a consequence of Lemma 10, we can write that

(Jθ)′(µFS)

Jθ(µFS)
=

(Jθ∗ )
′(µFS)

Jθ∗ (µFS)

(Λθ)′(µFS)

(Λθ
∗)
′(µFS)

.

According to (23), we have the identity

−1

4
(p2 − 4) cp,d =

(
log

Jθ

Jθ∗

)′′
(µFS) + (1− θ)

(
log

µ+ τ(µ)

µ+ τ∗(µ)

)′′
|µ=µFS

,

which allows us to compute

(Jθ)′′(µFS)

Jθ(µFS)

= − 1

4
(p2 − 4) cp,d +

(
(Jθ)′(µFS)

Jθ(µFS)

)2

+ (log Jθ∗ )
′′(µFS)
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− (1− θ)

[
p+ 2

2 p µFS

τ ′′(µFS)−
(
p+ 2

2 p µFS

(1 + τ ′(µFS))

)2

+
1

µ2
FS

]

= − 1

4
(p2 − 4) cp,d +

(
(Jθ∗ )

′(µFS)

Jθ∗ (µFS)

)2(
(Λθ)′(µFS)

(Λθ
∗)
′(µFS)

)2

+ (log Jθ∗ )
′′(µFS)

− (1− θ)

[
p+ 2

2 p µFS

τ ′′(µFS)−
(
p+ 2

2 p µFS

(1 + τ ′(µFS))

)2

+
1

µ2
FS

]
.

Because of Lemma 10, we also have

− (Jθ)′(µFS)

(Λθ)′(µFS)

(Λθ)′′(µFS)

Jθ(µFS)
= − (Jθ∗ )

′(µFS)

Jθ∗ (µFS)

(Λθ)′′(µFS)

(Λθ
∗)
′(µFS)

=
p+ 2

2 p µFS

(1− θ) τ ′′(µFS) .

Collecting the above identities, we can compute the value of ξθ(µFS) as

ξθ(µFS) = − 1

4
(p2 − 4) cp,d

+ (log Jθ∗ )
′′(µFS)

[
1−

(
(Λθ)′(µFS)

(Λθ
∗)
′(µFS)

)2
]

− 1− θ
µ2

FS

[
1−

(
p+ 2

2 p
(1 + τ ′(µFS))

)2
]
.

The cancellation of the terms involving τ ′′(µFS) is a remarkable fact. By definition of

ϑ2(p, d), we get

ξθ(µFS) = − 1

4
(p2 − 4) cp,d

− 2 p θ − (p− 2)

2 p µ2
FS

[
1−

(
p+ 2

2 p θ − (p− 2)

θ − ϑ2(p, d)

1− ϑ2(p, d)

)2
]

− 1− θ
µ2

FS

[
1−

(
p+ 2

2 p

1

1− ϑ2(p, d)

)2
]

and finally arrive at

ξθ(µFS) = −1

4
(p2 − 4) cp,d +

p+ 2

4 p2 µ2
FS

(1− θ) (2 p ϑ2(p, d)− (p− 2))2

(1− ϑ2(p, d))2 (2 p θ − (p− 2))
.

At this point, we can observe that ϑ(p, d) ≥ p−2
2 p

. The reader is then invited to check

that the function θ 7→ ξθ(µFS) is nonincreasing on [ϑ(p, d), 1] and

ξϑ2(p,d)(µFS) = −1

4
(p2 − 4) cp,d +

p+ 2

4 p2 µ2
FS

2 p ϑ2(p, d)− (p− 2)

1− ϑ2(p, d)
= 0

because of (ii) in Theorem 6. Recall that the positivity of cp,d is required in (22).
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We have then proved that if ϑ2(p, d) ≤ ϑ(p, d), ξθ(µFS) is negative for any

θ ∈ (ϑ(p, d), 1]. Otherwise, if cp,d is positive, ξθ(µFS) is positive if θ ∈ [ϑ(p, d), ϑ2(p, d))

and negative if θ ∈ (ϑ2(p, d), 1].

The expansion (13) and the subsequent computations are valid, and make sense

for the approximation of a local minimizer of QθΛ, as soon as the coefficient cp,d,

whose expression is established in Section 3.3, is positive. Then for any θ ∈
(max{ϑ(p, d), ϑ2(p, d)}, 1), the curve of the energies of the non-symmetric solutions of the

Euler-Lagrange equations is concave, nondecreasing as a function of Λ in a neighborhood

of the bifurcation point, and below the energies of the symmetric functions. If

ϑ2(p, d) > ϑ(p, d), then the curve of the energies of the non-symmetric solutions is

above the energies of symmetric functions in a neighborhood of the bifurcation point

if θ ∈ [ϑ(p, d), ϑ2(p, d)). Practically, whether cp,d is positive or not relies either on the

sufficient condition given in Theorem 7 or on numerical computations. However, the

estimate of Section 3.4 shows that this occurs at least in a large subinterval of (2, 2∗).

This completes the proof of Theorem 3.

�

4. Numerical results and the two scenarios

4.1. Symmetric and non-symmetric branches, and their asymptotic behavior

In [14] the branches of solutions which bifurcate from the branches of symmetric

solutions at the smallest possible value of Λ have been computed numerically. For

completeness, we start by presenting some of these numerical results, which are the

main motivation of the present paper. The branch of symmetric solutions is explicit.

The branch µ 7→ (Λθ(µ), Jθ(µ)) bifurcates from the symmetric ones at µ = µFS and

is computed numerically. The algorithm is based on descent techniques and on an

iteration scheme which allows us to compute the branches of solutions by continuation.

We carried out the computations for dimension d = 5 and various values of p and θ. We

have of course no guarantee that the solutions that we have computed are the optimal

ones, but at least the values that we have found are fully compatible with what is

expected for theoretical reasons. In particular, the curve of the computed estimates

of the best constant is an increasing function of Λ with the right convexity properties,

which can reasonably be expected to coincide with Λ 7→ KCKN(θ,Λ, p). Moreover,

when θ approaches ϑ(p, d) from above, the curve Λ 7→ KCKN(θ,Λ, p) approaches

Λ 7→ max{K∗CKN(θ,Λ, p),KGN} when KGN > K∗CKN(ϑ(p, d),ΛFS(p, ϑ(p, d)), p). Last but

not least, the asymptotics predicted in Theorem 1 are not only correct (dotted lines in

Figs 1–3) but provide a good upper estimate of the curve in the whole range Λ > 0.
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Figure 1. Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5, θ = 1. Non-

symmetric solutions bifurcate from symmetric ones at a bifurcation point µ = µFS

computed by V. Felli and M. Schneider. The branch behaves for large values of Λ as

predicted by F. Catrina and Z.-Q. Wang.
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Figure 2. Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5, θ = 0.8. The

behavior is similar to the case θ = 1 up to the reparametrization described in Section 1,

while the asymptotic behavior of the branch for large values of Λ is in agreement with

the results of Section 2.3.

4.2. Two scenarios

The branch of symmetric minimal solutions, (Λ, u∗Λ), is known explicitly and is monotone

in energy, that is, the function Λ 7→ QθΛ(u∗Λ) is monotone increasing in (0,+∞). In the

computations described in [14] we observe that the branch of non-symmetric solutions,

(Λθ(µ),Qθµ[uµ]), is monotone for some values of θ (for instance for θ = 1), but not

always. More concretely, for certain values of p and d, the numerical results show

that there exists an exponent ϑ1 = ϑ1(p, d) ∈ (ϑ(p, d), 1) such that for any θ ∈ [ϑ1, 1]

the branch (Λθ(µ),Qθµ[uµ]) is monotone increasing. But when ϑ(p, d) < θ < ϑ1(p, d),

a dramatic change occurs: see Figs. 5 and 6. For the values of p and d that have

been considered numerically in those figures, the branch is not monotone anymore for

µ > µFS, thus producing non-symmetric solutions and candidates for optimal functions
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Figure 3. Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5, θ = 0.72 >

ϑ(2.8, 5) ≈ 0.7143. The asymptotic behavior of the branch for large values of Λ is in

agreement with the results of Section 2.3. We may however notice that the bifurcation

seems not to occur where expected. A more detailed computation in the Section 4.3

sheds light on this phenomenon.

in the inequalities for values of Λ < Λθ(µFS). This phenomenon provides an explanation

for the results proved in [3] using rigorous a priori estimates.

The limiting case θ = ϑ(p, d) is very interesting: see Figs. 6 and 9. Let us define

Λ∗GN(p, d) and µGN such that

KGN = K∗CKN(ϑ(p, d),Λ∗GN(p, d), p) and Λϑ(p,d)
∗ (µGN) = Λ∗GN(p, d) .

Whether KGN is larger or smaller than K∗CKN(ϑ(p, d),ΛFS(p, ϑ(p, d)), p) determines, at

least in the framework of our computations, whether θ is smaller than ϑ1(p, d) or not.

This has been observed in [13] and theoretical consequences have been established in [3],

in the limit regime p → 2. Before going further, let us observe that ϑ1(p, d) is an

exponent associated with a global property of the branch.

Based on our numerical computations, we are now in position to formulate the

following alternative.

Scenario 1. If KGN ≤ K∗CKN(ϑ(p, d),ΛFS(p, ϑ(p, d)), p), then for all θ ≥ ϑ(p, d), the

optimal functions are symmetric for any Λ ∈ (0,ΛFS(p, θ)] and the branch of non-

symmetric solutions is optimal for any Λ > ΛFS(p, θ). Such solutions exist for arbitrarily

large values of Λ if θ > ϑ(p, d): see Figs. 7 and 8, but may exist only for a finite range

of Λ if θ = ϑ(p, d) and KGN < K∗CKN(ϑ(p, d),ΛFS(p, ϑ(p, d)), p): see Fig. 9.

Scenario 2. If KGN > K∗CKN(ϑ(p, d),ΛFS(p, ϑ(p, d)), p), there exists ϑ1 = ϑ1(p, d) ∈
(ϑ(p, d), 1) such that for any θ ∈ [ϑ1, 1] the branch is monotone increasing. We further

observe numerically that ϑ1 = ϑ2 (see Fig. 12), where ϑ2 has been defined in Section 3.7:

for any θ ∈ [ϑ(p, d), ϑ2(p, d)), we know that the branch of non-symmetric functions is

decreasing in a neighborhood of the bifurcation point, but also has a larger energy than

the symmetric solutions of the Euler-Lagrange equation (for the same value of Λ). Hence,
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in the critical case θ = ϑ(p, d) we have Λ∗GN(p, d) < ΛFS(p, ϑ(p, d)) and for any Λ in the

range (0,Λ∗GN] := {Λϑ(p,d)
∗ (µ) : µ ∈ (0, µGN]}, the optimal functions are symmetric

and KCKN(ϑ(p, d),Λ, p) = K∗CKN(ϑ(p, d),Λ, p). See Fig. 6. Moreover, in the language

of the concentration-compactness method, according to [12], for any Λ > Λ∗GN(p, d) the

optimal constant is determined by the problem at infinity and KCKN(ϑ(p, d),Λ, p) = KGN.

From the viewpoint of the reparametrized branch, we numerically observe that both

µ 7→ Λϑ(p,d)(µ) and µ 7→ Jϑ(p,d)(µ) are decreasing for µ > µFS, at least for the values

of p for which computations have been done. In the subcritical case corresponding to

ϑ(p, d) < θ < ϑ2(p, d), the reparametrized branch (Λθ, Jθ) is not monotone. Numerically

we observe that it is monotone for θ > ϑ2(p, d), hence supporting the observed fact that

ϑ1(p, d) = ϑ2(p, d) (see Fig. 12).

Altogether, based on our numerical observations, what decides between Scenario 1

and Scenario 2 is the relative value of KGN and K∗CKN(ϑ(p, d),ΛFS(p, ϑ(p, d)), p). Equality

of these two optimal constants determines a value of p = p?(d). Numerically we find

that p?(5) ≈ 3.001 and ϑ(p?(5), 5) = ϑ1(p?(5), 5) ≈ 0.834. For p ∈ [p?(d), 2∗), only

Scenario 1 occurs (numerical observation). For p ∈ (2, p?(d)) we have ϑ(p, d) > ϑ1(p, d)

and Scenario 2 occurs. More precisely, the fact that the branch cannot be globally

monotone increasing if θ < ϑ2(p, d) is a consequence of Section 3.7 while the fact that

the branch is monotone increasing if θ > ϑ2(p, d) is a numerical observation. These

results are fully consistent with the ones of [3] and [13]. Now let us give some details.

4.3. Bifurcations and qualitative dependence in θ

In Fig. 3, a careful inspection shows that the symmetric and the non-symmetric branches

of solutions differ for values of Λ strictly less than Λθ(µFS). This is not the case for θ

close enough to 1: see Fig. 4, but very clear on Fig. 5. When θ approaches ϑ(p, d), the

3 4 5 6 7
10

12

14

16

18

non-symmetric

symmetric

bifurcation

Jθ(µ)

Λθ(µ)

Figure 4. Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5, θ = 0.95

close to the bifurcation point. For Λ ≤ Λθ(µFS), all solutions are symmetric, while for

Λ > Λθ(µFS), non-symmetric solutions provide a better constant in the interpolation

inequalities, exactly as for the case θ = 1.



Symmetry breaking in PDEs 30
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Λθ(µ)

Jθ(µ)

symmetric

non-symmetric

bifurcation

Figure 5. Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5, θ = 0.72 close to

the bifurcation point. Non-symmetric solutions exist for Λ < Λθ(µFS). There exists a

value Λ∗
GN < Λθ(µFS) such that optimal functions are symmetric for any Λ ∈ (0,Λ∗

GN)

and are non-symmetric for Λ > Λ∗
GN. When Λ = Λ∗

GN, symmetric and non-symmetric

optimal functions co-exist.

branch (locally) converges to its limit: see Fig. 6. The figures 5 and 6 correspond to
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Jθ(µ)

bifurcation

symmetric

non-symmetric

symmetric

Λθ(µ)

KGN

KCKN(ϑ(p,d), ΛFS(p,θ),p)1/

1/

∗

Figure 6. Critical case θ = ϑ(p, d). Parametric plot of µ 7→ (Λθ(µ), Jθ(µ))

for p = 2.8, d = 5, θ = ϑ(2.8, 5) ≈ 0.7143 close to the bifurcation point. Non-

symmetric solutions exist for Λ < Λθ(µFS) but, at least for the chosen values of p

and d, are never optimal functions for the interpolation inequalities. There exists a

value Λ∗
GN < Λθ(µFS) such that optimal functions exists and are symmetric for any

Λ ∈ (0,Λ∗
GN] and do not exist for Λ > Λ∗

GN. Moreover, Λ∗
GN = Λθ(µGN) with the

notations of Section 2.3 and KCKN(ϑ(p, d),Λ, p) = KGN for any Λ > Λ∗
GN.

Scenario 2 (for ϑ ≤ θ < ϑ1), that is, to the case

KGN > K∗CKN(ϑ(p, d),ΛFS(p, ϑ(p, d)), p) .

In other words, this means that p < p?(d).
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The case p > p?(d), i.e., Scenario 1, also occurs and corresponding plots are shown

in Figs. 7–9. There we take d = 5, p = 3.15 ≥ p?(5) ≈ 3.001.
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bifurcation

Jθ(µ)

Λθ(µ)

Figure 7. Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 3.15, d = 5, θ = 1. The

behavior of the non-symmetric branch is similar to the one found in Fig. 1.
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bifurcation

Figure 8. Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 3.15, d = 5, θ = 0.95. The

behavior of the non-symmetric branch is still similar to the one found in Fig. 4.
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Figure 9. Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 3.15, d = 5,

θ = ϑ(3.15, 5) ≈ 0.9127, that is for the critical value of θ.
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In Section 3 we proved that the symmetric and the non-symmetric branches of

solutions are always tangent at ΛFS. What happens in a neighborhood of the bifurcation

point is therefore difficult to decide in view of the plots of the branches, especially when θ

is in a neighborhood of ϑ1(p, d). To illustrate this difficulty, we may for instance observe

that figure Fig. 5 is an enlargement of Fig. 3. Hence we have to discard the possibility

of other scenarios than the ones described in Section 4.2 at least in a neighborhood of

the bifurcation point.

The computations of Section 3 have been done for the approximation u(µ) of the

solution uµ. We expect that the estimates converge as µ → (µFS)+ and this is what is

observed numerically. Whether cp,d is positive has been discussed in Section 3.4, but

can be checked numerically: we know that cp,d is positive and finite as long as capprox
p,d is

positive (see Fig. 10, and Fig. 11 for a discussion of the sign of capprox
p,d ), and numerically

we find that cp,d is always positive.

2.6 2.8 3.0 3.2

0.2

0.4

0.6

0.8

1.0

1.2

cp,d

capproxp,d

p

Figure 10. Computation of cp,d with d = 5 as a function of p. We observe that the

numerical solution is positive for any p ∈ (2, 10/3) where 10/3 is the critical exponent

(corresponding to the plain vertical line). The estimate of Section 3.4 corresponds to

the dotted line and holds for p . 3.2323 (corresponding to the dotted vertical line).

4 6 8

1

2

3

4

5

p

d

Figure 11. The plain curves are the zeros of capproxp,d as d varies in the interval (2, 10),

except p = 2 which is a singularity. The dotted curve is given by d 7→ 2 d/(d−2) = 2∗.

For a given d, capproxp,d is therefore positive for a large subinterval in p of (2, 2∗).
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Under the above precautions, we know from Section 3 that there exists a number

ϑ2(p, d) such that the behavior of the branch in a neighborhood of the bifurcation

point µ = µFS discriminates between two regimes corresponding to θ > ϑ2(p, d) and

θ < ϑ2(p, d). When θ < ϑ2(p, d), we have (Λθ)′(µFS) < 0 and the contrary happens when

θ > ϑ2(p, d). So, locally, the reparametrized branch is on the right of the bifurcation

point and Jθ is a monotone increasing function of Λ (at least when µ is in a right

neighborhood of µFS) if and only if θ > ϑ2(p, d). Since global monotonicity implies local

monotonicity near the bifurcation point, if the numerical computations of the branches

are consistent with the study of the bifurcation carried out in Section 3, then we should

have that ϑ1(p, d) = ϑ2(p, d). It is not easy to establish a qualitative property such as

the monotonicity, but at least we observe in Fig. 12 that for θ = ϑ(p, d) the range in p for

which ϑ2(p, d) ≥ ϑ(p, d) corresponds to the range in p for which the Gagliardo-Nirenberg

constant compares well with the energy at the bifurcation point.

2.9 3.0 3.1 3.2 3.3

-0.10

-0.05

0.05

0.10

0.15

Figure 12. Comparison of the local and asymptotic criteria in the critical

case θ = ϑ(p, d) when d = 5. The dotted curve corresponds to the function

p 7→ 1/KGN(p, d) − Jϑ(p,d)(µFS), that is, the difference of the asymptotic energy of

the branch and the energy at the bifurcation point: when it is negative, this means

that ϑ1(p, d) is defined and larger than ϑ(p, d), so that Scenario 2 takes place. When

it is positive, this means that Scenario 1 can be expected. The exponent ϑ2(p, d) can

be defined for any p ∈ (2, 2∗). The plain curve represents p 7→ 5 (ϑ2(p, d)−ϑ(p, d)) and

positivity indicates that, at least locally around the bifurcation point, Scenario 2 takes

place. Hence the local (around the bifurcation point) and asymptotic (as Λ → +∞)

criteria coincide.

5. Concluding remarks

In this paper we have established the asymptotic behavior of the branches for all

θ ∈ (ϑ(p, d), 1]. There is a good agreement between this behavior and that of the

numerical branches, which reinforces the conjecture that the computed branches contain

the extremals for the Caffarelli-Kohn-Nirenberg inequalities.
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We have also studied the precise behavior of the branches of non-symmetric

solutions near the first possible bifurcation point on the symmetric branch within the

framework of a particular Ansatz defined by (13). By doing so, we have obtained the

existence of a critical exponent ϑ2(p, d) above which the branch is monotone, increasing

and potentially optimal, and below which it is certainly not optimal in a neighborhood

of the bifurcation point.

The final result of this paper is the comparison of the above criterion based on

the local behavior of the branch near the bifurcation point and the criterion based on

the asymptotic energy of the branch in the critical case θ = ϑ(p, d), using numerical

methods. They coincide, which gives solid grounds to the alternative that has been

numerically observed:

Scenario 1. The non-symmetric branch is monotone increasing for any θ ∈ [ϑ(p, d), 1].

Scenario 2. The non-symmetric branch is monotone increasing for any θ ∈ (ϑ2(p, d), 1]

but it is not optimal near the bifurcation point if θ ∈ [ϑ(p, d), ϑ2(p, d)).

This also suggests that no other scenario can take place, consistently with our

numerical computations. Hence we arrive at the conclusion that Scenario 1 takes place

when ϑ2(p, d) < ϑ(p, d) and Scenario 2 holds if ϑ2(p, d) > ϑ(p, d). The branches

of solutions that we have computed are likely to be optimal for the Caffarelli-Kohn-

Nirenberg inequalities.

Appendix A. Some useful quantities

Appendix A.1. Computing integrals

We recall that f(q) :=
∫
R

ds
(cosh s)q

can be explicitly computed: f(q) =
√
π Γ( q

2
)

Γ( q+1
2

)
. An

integration by parts shows that f(q + 2) = q
q+1

f(q). The following formulae are

reproduced with no change from [6] (also see [8]). As in [6], with w(s) = (cosh s)−
2
p−2 ,

we can define

Iq :=

∫
R
|w(s)|q ds and J2 :=

∫
R
|w′(s)|2 ds .

Using the function f , we can compute I2 = f( 4
p−2

), Ip = f( 2 p
p−2

) = f( 4
p−2

+ 2) and get

the relations

I2 =

√
π Γ( 2

p−2
)

Γ( p+2
2 (p−2)

)
, Ip =

4 I2
p+ 2

, J2 =
4 I2

(p+ 2) (p− 2)
.
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As a special case, we have

Ip :=

∫
R
(cosh s)−

2 p
p−2 ds =

4
√
π Γ
(

2
p−2

)
(p+ 2) Γ

(
p+2

2 (p−2)

) .
Appendix A.2. Symmetric extremals and linearization

Consider w(s) = (cosh s)−
2
p−2 , which is the unique positive solution of

−(p− 2)2w′′ + 4w − 2 pwp−1 = 0

on R, up to translations. The function u(s) := αw(β s) solves

−u′′ + 4 β2

(p− 2)2
u− 2 p β2

(p− 2)2
α2−p up−1 = 0 . (A.1)

With β = p−2
2

√
µ and α = (p

2
µ)

1
p−2 , u = uµ,∗ is given by

uµ,∗(s) =
(p

2
µ
) 1
p−2

[
cosh

(
p− 2

2

√
µ s

)]− 2
p−2

∀ s ∈ R

and solves (10).

Next we are interested in computing the ground state energy of the Pöschl-Teller

operator Hµ = − d2

ds2
+ d − 1 + µ − (p − 1)up−2

µ,∗ , that is the lowest eigenvalue λ1(µ) in

the eigenvalue problem

Hµ ϕ1 = λ1(µ)ϕ1 .

See [16, 17] for further references. The function

ϕ1(s) := α
p
2 (cosh(β s))−

p
p−2 = up/2µ,∗ (A.2)

solves

−ϕ′′1 +
1

4
µ p2 ϕ1 − (p− 1)up−2

µ,∗ ϕ1 = 0

and provides a solution with

λ1(µ) = d− 1 + µ− 1

4
µ p2 .
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The Sturm-Liouville theory guarantees that ϕ1 generates the ground state and

inf
ϕ ∈ H1(Rd)

‖ϕ‖2
L2(C) = ‖uµ,∗‖pLp(C)

q[µ, ϕ]

‖uµ,∗‖pLp(C)
= λ1(µ) =

∫
C ϕ1Hµ ϕ1 dy

‖ϕ‖2
L2(C)

.

Notice that the condition λ1(µFS) = 0 determines

µFS = 4
d− 1

p2 − 4
.

Moreover, this shows that

λ1(µ) = −p
2 − 4

4
(µ− µFS) .

Other eigenvalues ofHµ can also be computed using classical transformations and special

functions: see [16, p. 74]. Notice that in Section 3, we normalize the function ϕ = ϕ1 f1

in the expansion (13) by the condition ‖ϕ‖L2(C) = ‖uµ,∗‖Lp(C) consistently with (A.2).

Appendix A.3. Useful quantities

Collecting results of Sections Appendix A.1 and Appendix A.2, with αp−2 = p
2
µ, we

find that ∫
C ϕ

2 dy∫
C u

p
µ,∗ dy

= 1 ,∫
C u

p−2
µ,∗ ϕ

2 dy∫
C u

p
µ,∗ dy

=
f(q + 2)

f(q) |q= 2 p
p−2

αp−2 =
p2 µ

3 p− 2
,∫

C u
p−4
µ,∗ ϕ

4 dy∫
C u

p
µ,∗ dy

=
f(q + 4)

f(q) |q= 2 p
p−2

α2 (p−2) =
2 p3 (p− 1)µ2

(3 p− 2) (5 p− 6)
,

and ∫
C |∇ϕ|

2 dy∫
C u

2
µ,∗ dy

= αp−2 Ip
I2

[
(d− 1) +

(
p

p− 2

)2

β2

(
1− f(q + 2)

f(q)

)
|q= 2 p

p−2

]

=
1

2

p µ

p+ 2

[
4 (d− 1) +

p2 (p− 2)µ

3 p− 2

]
.

If µ = µFS, then we find that
∫
C |∇ϕ|2 dy∫
C u

2
µ,∗ dy

= 2 p (p−2) (p2+p−1)
(p+2) (3 p−2)

µ2
FS.

Appendix A.4. First spherical harmonics

Denote by ζ ∈ [0, π] the azimuthal angle and consider the Laplace-Beltrami operator L
on the sphere Sd−1. When L is restricted to functions on Sd−1 depending only on ζ, it
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takes the form

L f = sin2−d ζ
d

dζ

(
sind−2 ζ

df

dζ

)
and L is unitarily equivalent to L defined by

L g = (1− x2) g′′ − (d− 1)x g′ x ∈ [−1, 1]

whose eigenvalues are the Gegenbauer polynomials or ultra-spherical polynomials. The

correspondence between the operators is simply given by

f(ζ) = g(cos ζ)

and one can check that∫ π

0

|f(ζ)|2 sind−2 ζ dζ =

∫ 1

−1

|g(x)|2 (1− x2)
d
2
−1 dx .

It is also not difficult to check that the first Gegenbauer polynomials are

g0(x) = 1 , g1(x) = x , g2(x) = d x2 − 1 , g3(x) = (d+ 2)x3 − 3x ,

with eigenvalues respectively equal to Λ0 = 0, Λ1 = d− 1, Λ2 = 2 d and Λ3 = 3 (d+ 1):

− L g0 = 0 , − L g1 = (d− 1) g1 , − L g2 = 2 d g2 , − L g3 = 3 (d+ 1) g3 .

On [0, π], we consider the probability measure

dν(ζ) =
1

Zd
sind−2 ζ dζ

where Zd =
∫ π

0
sind−2 ζ dζ =

√
π

Γ( d−1
2 )

Γ( d2)
. Then

f0(ζ) = 1 , f1(ζ) =
√
d cos ζ , f2(ζ) =

√
d+ 2

2 (d− 1)
(d cos2 ζ − 1)

are normalized eigenfunctions in L2([0, π], dν(ζ)):∫ π

0

|fi|2 dν = 1 ∀ i = 0 , 1 , 2 ,

with eigenvalues Λ0 = 0, Λ1 = d− 1 and Λ2 = 2 d:

−L f0 = 0 , −L f1 = (d− 1) f1 , −L f2 = 2 d f2 .
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We also have the useful formulae∫ π

0

|f1|4 dν =
3 d

d+ 2
, κ(d) :=

∫ π

0

|f1|2 f2 dν =

√
2 (d− 1)

d+ 2
,

f 2
1 = f0 +

√
2 (d− 1)

d+ 2
f2 = f0 + κ(d) f2 .
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