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SINGULAR PERTURBATION OF OPTIMAL CONTROL PROBLEMS
ON MULTI-DOMAINS*

NICOLAS FORCADEL' AND ZHIPING RAO?

Abstract. The goal of this paper is to study a singular perturbation problem in the framework
of optimal control on multi-domains. We consider an optimal control problem in which the controlled
system contains a fast and a slow variables. This problem is reformulated as an Hamilton-Jacobi-
Bellman (HJB) equation. The main difficulty comes from the fact that the fast variable lives in
a multi-domain. The geometric singularity of the multi-domains leads to the discontinuity of the
Hamiltonian. Under a controllability assumption on the fast variable, the limit equation (as the
velocity of the fast variable goes to infinity) is obtained via a PDE approach and by means of the
tools of the control theory.

Key words. singular perturbations, optimal control, Hamilton-Jacobi-Bellman equations, es-
sential Hamiltonians, multi-domains
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1 Introduction In the present work, we investigate a class of singular
perturbation problems for Hamilton-Jacobi-Bellman equations motivated by optimal
control systems with different time scales on multi-domains. The multi-domains con-
sidered here is the following repartition of R? by two disjoint open subsets €1,
with

Zﬁl Uﬁg, Q1 NQy =0.

Consider the nonlinear controlled systems of the following form: given the final time
T > 0 and the initial data ¢t > 0,z € R%,y € R?,
(1.1)
X(s) = f(X(S) Y(s),a(s)) fora(s)e A, se(t,T),
Y (s) = 2gi(X(s),Y(s),a(s)) for Y(s) € Q;,i=1,2, a(s) € A, s € (t,T),
(X(5),Y() = (z,9).

where € > 0, A is compact, f and g; are Lipschitz continuous in the state variables
and continuous. The optimal control problem that we are interested in is of Mayer’s

type:

ve(t @, y) = lrgg{w(X(T),Y(T))},

where ¢ is Lipschitz continuous.

The goal of this paper is to obtain a characterization of the limit of v* as ¢ goes to
zero. Singular perturbation problems for deterministic controlled systems have been
studied by many authors; see e.g., the books by Kokotovi¢, Khalil, and O’Reilly [17],
and Bensoussan [6], as well as the articles by Gaitsgory [15], Bagagiolo and Bardi [7],
Alvarez and Bardi [1, 2], and the references therein.
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However, up to our knowledge, there is no result for this kind of problem on
multi-domains. In our setting, the dynamics of the fast state variable Y () switch to
g; when Y (-) goes into €;. Then the definitions for the dynamical system (1.1) and
the optimal control problem are not clear since the dynamics of Y'(+) is not continuous
on R2. The subject of optimal control problems on multi-domains is quite recent and
we would like to refer to [4, 8, 10, 16, 20, 21]. The main difficulty lies in finding out
the proper junction condition between 2; and 25 to characterize the value function
of optimal control problems. Thanks to the recent work [10] on optimal control
problems on stratified domains and [21] on the HJB equations on multi-domains,
optimal control problems on multi-domains can be associated to HJB equations with
discontinuity by introducing the concept of Essential Hamiltonians. The existence
and uniqueness result for the solution of HJB equations with essential Hamiltonians
has been established in [21]. Roughly speaking, the idea of this essential Hamiltonians
consists in selecting the useful dynamics on the interfaces between 2; and 5 that
drive the trajectories either to go into the interior of €2; or to travel on the interfaces
between them. The value function v¢ is then characterized as the unique solution of

1
—0(t,z,y) + HE (z,y, Dave (¢, z,y), gDyvs(t,x,y)) =0on (0,T) x R? x R?

where H? is the essential Hamiltonian (see Definition 2.1 below), with the final con-
dition

v (T, x,y) = ¢(z,y) on R? x R?,

We are interested in the limit behavior as € — 0 of the solution for the above HJB
equation. However, this essential Hamiltonian H¥ is not necessarily Lipschitz con-
tinuous, which is a significant difficulty. There are some works [5, 19] dealing with
the homogenization of metric Hamilton-Jacobi equations where the Hamiltonians are
continuous and coercive. But when the Hamiltonians become discontinuous, this prob-
lem remains a difficult issue. In [19], an algorithm has been introduced to solve the
piecewise-periodic problems numerically where the Hamiltonians are not continuous,
but there is no general theoretical result for this method.

In this paper, we consider coercive Hamiltonians by assuming a controllability
condition on the fast variable Y'(-): 3ry > 0,

B]R2(07T0) c {gi(x7y7a)aa € A}a Vz e Rda Y€ R27 1=1,2.

We also assume that the multi-domains have a periodic structure so that the dynamics
for Y(+) is bounded. Our main result states that the limit v(¢,z), as ¢ — 0, of the
value function v¢(¢,x,y) is the unique solution of

—0w(t,z) + H(z, Dyv(t,z)) =0 on (0,T) x RY, and v(T,z) = inlg2 (z,y) on RY.
ye

The Hamiltonian H is called the effective Hamiltonian and is classically determined
by the following cell problem: for each fixed z € R?, P € R?, there exists a unique
constant H (z, P) such that the cell problem

HE(xvy’Pv Dyw(y)) = F(x,P)

has a periodic viscosity solution w.
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To solve the cell problem, we classically introduce an approximated cell problem
(see [18, 13]). However, the essential Hamiltonian H¥ which appears in this ap-
proximating cell problem is not continuous. Thus, the construction of approximated
corrector is a difficult issue. To solve this problem, we use the fact that the essen-
tial Hamiltonian is defined from an optimal control point of view and we show that
approximated correctors can be constructed as the value functions of infinite horizon
optimal control problems.

Another difficulty is to prove that approximated correctors converge toward a
corrector of the cell problem. This uses a stability result which we prove in the
framework of discontinuous hamiltonian (but only for Lipschitz continuous solutions).

1.1 Setting of the problem We are interested in the limit value of the
optimal control problems of Mayer’s type. Let T' > 0 be a fixed final time and A be
the set of controls given by

A:={a:(0,T) - R™ measurable functions, «a(t) € A a.e. in (0,7)}

with A being a compact subset of R". In the sequel, all the periodic functions we
consider have the period

S=(-11),
then " f is S-periodic" means:
VkeZ? Vo € R? f(x+2k) = f(x).
We assume that the function f: R? x R? x A — R? satisfies the following:

(i) VzeRyyeR2 {f(z,y,a):ac A} is nonempty, convex, and compact;
(H1) < (ii) f(=,y,a) is L-Lipschitz continuous w.r.t z, y, and continuous w.r.t a;
(iii) 3 M > 0 so that ||f(x,y,a)|| < M, V,(z,y) € R? x R? a € A.

For i = 1,2, we assume that the functions g; : R x R? x A — R2 satisfies the following
assumption

i) VaeR%yecR2 {gi(r,y,a):ac A} is nonempty, convex, and compact;

H2
(H2) iii) Jrg > 0 so that V (z,y) € R? x R2, B(0,7¢) C {gi(x,y,a) : a € A};

(
(ii)  gi(x,y,a) is L-Lipschitz continuous w.r.t z, y, and continuous w.r.t a;
(
(iv) Yz €RY ac€ A, gi(z,-,a)is S-periodic.

We consider the following periodic chessboard structure (see also Figure 1.1)

Sy = {(0,1)x (0,1)+kS, k € Z°U{(~1,0) x (=1,0)+ kS, k € Z*}, @ := | ] M,
M€>91

Sy :={(=1,0)x (0, 1)+ kS, k € Z2}U{(0,1) x (=1,0)+ kS, k € Z°}. Q.= | ] M.
MEeS,



Fic. 1.1. The periodic chessboard structure.

Remark 1.1. The structure of multi-domains we considered here is the type of chess-
board structure. In fact, due to the work [10, 21] our results can be generalized on
any periodic structure of multi-domains (M;)i=1,..n,n € N satisfying the following:
each M; is a C? open embedded 2-manifold in R2, each M; is prozimally smooth and
wedged, and

n
S=JMi, MinM; =0 fori#j, i,j=1,...,n.

i=1
The concepts of prozimally smooth and wedged are introduced in [12]. For any set
M C R, we recall that M is proximally smooth means that the signed distance
function to M is differentiable on a tubular neighborhood of M. M is said to be
wedged means that the interior of Tiz(z) is nonempty for each x € M. Here Tyz(z)
is the tangent cone of M at x defined by

- N o e dig(z + 1)
Tre(x) ={CeR .htn_1>01£1f7t

=0},
where dyz(+) is the distance function to M.

Now in order to well define a dynamical system on the whole R? for Y (-), we
need to determine the dynamics on the interfaces between the sets of S7 and S;. The
idea is to consider the approach of Filippov regularization of the dynamics around the
interfaces, i.e. consider the multifunction ® : R% x R? ~» R? defined by

_ ) ®i(x,y) it y € L,
O(x,y) = { @(q)l(x’y%q)z(x,y)) otherwise,

where
D, (z,y) := f(@,y.a) ac€Ap, V(r,y) eRIxR? i=1,2
K2 ) * gl(x’ y’a) ) ) ) ) 9 )
and ¢o(Pq(z,y), Po(x,y)) is defined as the set
f(%l/,al) > ( f(m7y7a2) ) }
1-6 0 0 €10,1], aj,a0 € A} .
{( ) ( 91(3%1%@1) i g2(£7yaa2) | [ ] 1,2

Now we are ready to introduce the optimal control problem. Given the initial time
t € [0, T) and the initial state (z,y) € R? x R?, we consider the controlled trajectories
(X,Y)(-) : [0,T] — R? x R? satisfying

( §>((i)) ) € ®(X(s),Y(s)) forse (t,T),

(1.2)
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We denote by Sf, 7 (z,y) the set of absolutely continuous trajectories satisfying (1.2).

Let ¢ : R x R?> — R be a bounded Lipschitz continuous function. Consider the
following Mayer’s problem: for any € > 0,

(13)  w(tay) = inf {p(X(T),Y(T)) : (X(),Y() € Sinen) )}

Note that ® is upper semi-continuous and convex valued, but ® is not necessarily
Lipschitz continuous. The characterization of the value function via the Hamilton-
Jacobi-Bellman approach is a difficult issue and we refer to [21] in order to prove that
v is the unique solution of
(1.4)

—0pe(t,x,y) + HE (z,y, Dyve (t, 0, y), %Dyvs(t,x,y)) =0 on (0,7) x R? x R?,
{ v (T, z,y) = ¢(z,y) on R4 x R2,

where H? is the essential Hamiltonian which is discontinuous in general and will be
defined in Section 2.

1.2 Main results We now want to characterize the limit v of v* as the
velocity of the fast variable goes to infinity (i.e. € — 0).

The main results are the following.
Theorem 1.2 (Definition of the effective Hamiltonian). For each fired x € RY, P €
Re, there exists a unique \ := H(x, P) € R such that the cell problem

(1.5) HP(z,y, P, Dyw(y)) = A

has a periodic viscosity solution w. Moreover, seen as a function of x and P, H is
Lipschitz continuous.

Theorem 1.3 (Convergence result). Assume (H1)-(H2). The value function v°
defined in (1.3) converges uniformly on [0, T] x R xR? to the unique viscosity solution

v of

(1.6) { —0p(t,x) + H(z, Dyo(t,x)) =0 fort € (0,T), x € R,

v(T,x) = infycpe p(x,y) for z € RY,

Note the fact that the limiting equation does not depend on the fast variable,
(1.6) can be understood by looking at the controllability assumptions which implies
that at the limit, the fast variable can travel over all the space R? with infinite velocity
(this also explains the terminal condition).

We also want to point out that the effective Hamiltonian H is Lipschitz continuous
in = and so the perturbed test function (introduced by Evans [13]) can be adapted to
our case.

The paper is organized as follows. In section 2, we give some preliminary results
including the notion of essential Hamiltonians. Section 3 discusses the cell problem
while Section 4 is devoted to the properties of the effective Hamiltonian H. The proof
of the convergence result is given in Section 5.

2 Preliminary results We now state the definition of the essential

Hamiltonian. Note that we have two types of interfaces according to their dimensions,
we set

I:={(k,k+1)x{m}, (k,m) € Z*YU{{k} x (m,m+1), (k,m) € Z*} UZ?



as the union of all the 1-dimensional interfaces and 0-dimensional interfaces.
For any M € S; U Sy U I, we denote by @ : R? x R? ~» R? x R? defined by

] Pi(z,y) MeS;, i=1,2,
Ppal,y) = { O(r,y) i Mel

Consider the essential multifunction ®F (introduced in [10, 21]) defined as follows.
Definition 2.1. [Essential dynamics and essential Hamiltonian/ Let ®F : R? x R? ~
R? x R? be a multifunction defined for any (z,y) € R x R? by

(2, y) == U (@m(z,y) N (R x Tir(y)))-
MESUSLUI, yeM

We also denote by H? : R x R — R the essential Hamiltonian defined by

HE(.T,y,E,C) = sup {7p§7qg}
(P,9)€RF (z,y)

Example 1. Here we give a precise example to see more clearly the elements in ®F.
We ignore the variable X since there is no singularity in the structure of the dynamics
of X. Consider g1 = (1,1) and g2 = (=1, 1), Figure 2.1 shows the differences between
® and ®F on the interfaces (elements in I. In fact, on the interfaces ® contains

v . NN
v V7 N v

VA ZE N / N

B & £

Fic. 2.1. ® and ®F.

all the possible directions (the whole triangles) in which some of them may be useless.
While the definition of ®F allows to select only the useful dynamics for the trajectories
m S[Et,T] (w,5): the directions g; which are inward for Q; and the tangent directions for
the interfaces. We refer to [10, 21] for more details.

Remark 2.2. ®¥(x,y) is Lipschitz continuous in x since ®(-,y) is Lipschitz contin-
uous. However, ®F(x,y) is not necessarily continuous in y because of the geometrical
singularity of the dynamical structure for the variable y. Therefore, the essential
Hamiltonian H® (z,y,&,() is Lipschitz continuous in x, but not necessarily continu-
ous in .

Then here is the characterization result ([21, Theorem 2.4]) for the value function.
Lemma 2.3 (Characterization of the value function). The value function v° is unique
Lipschitz continuous viscosity solution of (1.4) in the sense of Definition 2.5.

Before giving the definition of viscosity solution, we need the following notion of
extended differentials.

Definition 2.4 (Extended differential). Let ¢ : (0,7) x R x R? — R be a continuous
function and M € S; U Sy U I. Suppose that ¢ € C((0,T) x R? x M), then for any
t € (0,T),z € RY y € M, the extended differential of ¢ on (t,x,vy) is defined by

Dﬂ(rb(tvxay) = z%};l,rzne./\/l D¢(t,$, Z)
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Note that since D¢(t, z, -) is continuous on A M, the extended differential is nothing
but the extension of D¢(t,x, ) to the whole M.

We now state the definition of viscosity solution for (1.4).
Definition 2.5 (Viscosity solution for (1.4)). Let u : (0,7] x R x R? — R be a
bounded Lipschitz continuous function.
(i) We say that u is a supersolution of (1.4) if for any (to, xo,y0) € (0,T) x R? xR2,
é € CH(0,T) x R x R?) such that u— ¢ attains a local minimum on (to, o, yo),
we have

1
—éu(to, 2o, Yo) + H” (20, yo, Dud(to, 70, Yo), gDy¢(thx07yO)) > 0.

(ii) We say that u is a subsolution of (1.4) if for any (to,zo,y0) € (0,T) x R? x R2,
any continuous ¢ : (0,T) x R4 x R? — R with ¢|(0 T)xRIx A DEING C* for each
M € S1U Sy UT with yg € M such that u — ¢ attains a local mazimum at
(to, o, Yo), we have

—¢¢(to, 0, Y0) + sup {=p - Dz9(to, z0,%0)
(P,9) €@ M (w0,90) (R X T£(yo0))

1
- D5z0(to, w0, 90)} < 0.

(11i) We say that u is a viscosity solution of (1.4) if u is both a supersolution and a
subsolution, and u satisfies the final condition

uw(T, z,y) = p(z,y), ¥(z,y) € R x R,

In the following, we will also use different equations (in particular for the cell
problem and for the approximated cell problem). We then give the definition of
viscosity solution for a more general equation of the form

(2'1> Hl(u(y)) + HE<$,y,P, Du(y)) =0.

Definition 2.6 (Viscosity solution for (2.1)). Let u: R> — R be a bounded Lipschitz
continuous function.
(i) We say that u is a supersolution of (2.1) if for any yo € xR?, ¢ € C1(R?) such
that w — ¢ attains a local minimum on yo, we have

Hi(u(yo)) + H” (z,y0, P, Dp(yo)) > 0.

(ii) We say that u is a subsolution o (2.1) if for any yo € R2, any continuous
¢ :R? = R with Plxg being C' for each M € S1 US> UT with yo € M such that
u — ¢ attains a local maximum at yo, we have

Hi(u(yo)) + sup {-=p- P —q-Dgz0(yo))} < 0.
(P,0) €D M (2,y0)N(RE X Tr(yo))

(ii) We say that u is a viscosity solution of (2.1) if u is both a supersolution and a
subsolution.

We now state a comparison principle for the equation (1.4) on bounded domain
Theorem 2.7 (Comparison principle in bounded domain). For any open bounded
QC(0,T) xRY, let uy,uy: (0,T) x RY x R2 — R be Lipschitz continuous. If uy is a
subsolution of (1.4) and us is a supersolution of (1.4) on Q x R?, then we have

t — t < t — t .
(t,zér)lgéxkz{ul( 7:1;7:‘/) u2( ,%y)} = (t,z,yl)neaa)élsz{UI< 7xay> u2( aw7y)}



Before we start the proof, we have the following lemma which is direct consequence
of [21, Theorem 3.7, Theorem 3.11].
Lemma 2.8 (Dynamics programming principle). Let u : (0,T) x R? x R? be Lipschitz
continuous.
o Ifu is a supersolution of (1.4), then for any (t,z,y) € [0,T] x R? x R? there
exists (X,Y) € S (@, y) such that

u(t,z,y) > u(t+h, X(t+h),Y(t+h)), for0<h<T—t.

e Ifu is a subsolution of (1.4), then for any (t,z,y) € [0,T] x R x R? and any
(X,Y) € 55 1 (2,1)

u(t,z,y) <u(t+h, X+ h),Y(Et+h)), for0<h<T-—t1.

Proof. |Proof of Theorem 2.7] For any (to, zo, y0) € QxR?, ug is a supersolution on
(2 implies that there exists an absolutely continuous function (X,Y) € S§ 7 (o, 90)
such that

us(to, 2o, Yo) > uz(to + hy, X (to + h),Y (to + h)), for 0 < h < hy,
where
ho :=inf{h > 0: (to + h, X (to + h)) & Q}.
u1 is a subsolution on 2 implies that
u1 (to, 2o, y0) < ui(to +h, X(to +h),Y (to + h)), for 0 < h < hy.
We then deduce that

(u1 — U2)(t0, xg, yo) < (ul — ’l@)(to + ho,X(to + h),Y(to =+ h))

The definition of ho implies that (¢o + ho, X (to + h)) € 9, then we obtain

ul(t07x07y0) - u2(t07x07y0) S (tw’yr)neagéxkz{ul(tvmvy) - Ug(t,$7y)},

which leads to the desired result.

3 The cell problem In this section, we focus on the the cell problem:
given x € R4, P € RY, find A € R such that the equation (1.5) has a viscosity solution.

3.1 Approximating problem To solve the cell problem, we classically

introduce an approximated cell problem. Given z € RY, P € R? and 8 > 0, we
consider the problem

(3.1) BvP(y) + HE (z,y, P, DvP(y)) = 0, y € R%

Then we investigate the limit of the approximating equation (3.1) as 8 — 0 by proving
that v — v and Bv® — —\ with v solution of (1.5)

Since H¥ is not Lipschitz continuous in y, the existence and uniqueness of the
solution for (3.1) need to be carrefully studied. A simple idea is to link the HIB
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equation (3.1) with an optimal control problem. For any y € R?, we denote the set
of absolutely continuous trajectories by

Sz, yl:={(X,Y), (X(5),Y(s)) € ®(z,Y(s)), X(0) ==z, Y(0) =y}

Given P € R?, consider the value function w” of the following infinite horizon optimal
control problem:

“+o0
ﬂ = 1 _BSP' X d .
w (y) (X,Yr?ég[m,y]/o ¢ (S) 5

The main result of this subsection is the following characterization of the value func-
tion w?:

Theorem 3.1 (Characterization of the value function w?). The value function w® is
the unique viscosity solution of (3.1) in the sense of Definition 2.6.

We begin by the existence part. As in the classical case (see [9, Proposition
I11.2.5]), w? satisfies a Dynamical programming principle (DPP).
Proposition 3.2 (Dynamic programming principle). Assume that (H1) hold. Then
for any y € R?, h > 0, the following holds.

(i) The super-optimality. 3 (X,Y) € S[x,y] such that
h —_ J—
w?(y) > / e PP . X(s)ds + e PhwP (Y (h));
0
(ii) The sub-optimality. V (X,Y) € S[z,y] we have
h .
wP(y) < / e PP . X(s)ds + e Phw? (Y (R)).
0

The value function w” satisfies the following properties.
Proposition 3.3 (Regularity of w?). Assume that (H1)-(H2) hold. Then w® is
bounded and Lipschitz continuous. Moreover, the Lipschitz constant is uniform in (.

Proof. By the definition of w?, for any y € R?,

oo P\ M
(3.2) Wl [ et - ” g .
0

Now we prove the Lipschitz continuity. For any v, z € R?, consider the following
trajectory:

z —

Y
ly — 2|

Y(s):==y+rmo s, for s > 0.

We set h = ||y — z||/ro, then we have Y (0) =y, Y(h) = z. Note that ||g,(s)| = ro,
by (H2)(iii) there exists X such that (X,Y) € S[z,y]. Since w” satisfies the sub-
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optimality along (X,Y), we obtain
h .
wP (y) < / e PSP . X (s)ds + e PhuwbP ()
0
h .
< wh(2) —|—/ e PP - X(s)ds + (" — 1w’ (2)
0

h
< wﬁ(z) —|—/ eiﬁSHPHMds +(1- eiﬁh)|w*3(z)|
0

< wf(z) +2(1 e*ﬁh)w
2| P||M
<wl(z) + 2P = w(2) + ATy

which implies the Lipschitz continuity of w” (the Lipschitz constant is independent
on f3).

Then we have that w” is solution of the equation (3.1).
Proposition 3.4 (w” satisfies (3.1)). The value function w® is the viscosity solution
of (3.1).

Proof. We first prove that w? is a supersolution. For any yo € R?, let ¢ € C'(R?)

such that u — ¢ attains a local minimum on yo. By the super-optimality satisfied by
w?, 3 (X,Y) € S[yo] such that

h .
(3.3) w? (yo) > / e PP - X(s)ds + e PrwP (Y (h)).
0
By definition of ¢, we have

(3.4) w” (yo) = ¢(yo) < w’(Y(h)) = 6(Y (h)), VI > 0.
Then, (3.3) and (3.4) imply that

h .
35 w2 [ PP X (s)ds e o) + 6T ()~ b(a0),

ie.
1—efh

(3.6) -

e=Ph rh — =
/0 D¢(Y(s))-Y(s)ds > 0.

I -
B _ —Bsp. _
w” (yo) h/o e PP - X(s)ds o

By [21, Lemma 3.6], there exists h,, — 0 such that (Y(h")y%’”’))_(z’y(}) — (po, qo) for

)

some (po, qo) € co®®(z,10). We then get

Bw? (yo) — po - P — qo - D(yo) > 0,

which leads to

B’ (yo) + sup  {—p-P—q-Do(yo)} > 0.

(p,q)Eco®® (z,y0)

Since (p,q) — —p- P — q- D$(yo) is linear, we have

sup {=p-P—q-Doé(yo)} = sup  {—p-P—q-D¢(yo)}-
(p,q) €Eco®E (z,y0) (p,9)€PE (x,y0)
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Thus

BuwP(yo)+  sup  {—p-P—q-Do(yo)} >0,
(p,@)€PE (x,y0)

which ends the proof for the supersolution property.

Now we prove that w? is a subsolution. Let ¢ € C(R?) such that u — ¢ attains a
local maximum at yo with ¢ € C1(M) for every M € S; U Sy U I such that yo € M.
If yo € M with M € S;U S5, since g1 and g are Lipschitz continuous, then the proof
is classical (see [9]) and we skip it. We then assume that yg lies in an element of I.
For each M € S; U S, U I with yo € M, any (p,q) € Pam(z,y0) N (R x Tiz(yo)), by
[21, Lemma 3.9] there exists h > 0 and a solution (X,Y) € S[z,yo] which is C* on
[0, h] with (X(0),Y(0)) = (p,q) and Y (s) € M,V s € [0, h]. By the sub-optimality of

h .
w? (yo) < / e PP . X(s)ds + e Phw (Y (R)).
0

We have also

w’(yo) = d(yo) > w? (Y () = (Y (h)), ¥h > 0.
By a similar argument as in the supersolution property case, we can deduce that

e hh

_e—Bh h . h .
() - /0 TP Y (s)ds — — /O Do(Y (5))Y (s)ds < 0.

h

Taking h — 0 leads to

Bw’ (yo) — (p+ P+ q - Digd(yo)) < 0.

The point (p, ¢) being arbitrary in ®q(z,yo) N (RE x Txt(vo)), we deduce that

Buw® (yo) + sup {-=p- P —q- Dyzé(z0)} <0,
(,9) €2 M (w,y0) V(R X Tg(2,y0))

which ends the proof.

Before we prove the uniqueness result, we state the following results dealing with
the relation between supersolution (resp. subsolution) and super-optimality (resp.
sub-optimality).

Theorem 3.5 (Supersolution implies super-optimality). Let u : R? — R be a super-
solution of (3.1), then u satisfies the super-optimality.

Proof. We want to prove that there exists (X,Y) € S[z,y] such that

h .
u(y) > / e PP . X (s)ds + e Phu(Y (h)), for h > 0,
0
ie.

u(Y(h)) < &(h), &(h) = " <u(y) —/0 e_BSP~X(S)ds> , h>0.
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For any y € R2, consider the following viability problem:

(X(h),Y (h) € B(z,Y (h)) for h € (0, 00),
(37) £(h) = BE(h) — P - X (h) for h € (0,00),

(X(0),Y(0),£(0)) = (z,y,u(y)),

(Y'(h),£(h)) € epi (u)

For any (y,€) € epi (u), we have u(y) < ¢ We claim that for any (¢,0) €
[773pi (u) (y7 u(y))]_*,

(38) (p7q)i€n(§($7y)<(% ﬂf -pr. p)7 (<7 0)> <0.

Indeed, let (¢, o) € [Tepi (u)(y,u(y))] ™. Since (0,1) € Tepi (u)(y,u(y)), by the definition
of [7—epi (u) (yv u(y))]7 we have

((¢,0),(0,1)) <0,
i.e. 0 <0. Based on this fact, we consider the following three cases.

Case 1: 0 = -1
By [14, Proposition 4.1] there exists ¢ € C!'(R?) such that u — ¢ attains a local
minimum on y with D¢(y) = ¢. Then

inf — ((g, 8 = P-p), (¢, —1)) = —5€+( inf ){qu(y) ~q+P-p}

(p,9)€2(2,y) P,9)€®(z,y
< —Bu(y)+ inf  {D¢(y)-q+ P p}
(p,q) €2 (2,y)
< —Bu(y) + inf ){qu(y) -q+ P-p} <0.

(p, ) €D (z,y

Case2: 0<0
In that case, (¢/|o|,—1) € [Tepi (u)(¥,u(y))]”. We deduce using the previous case,
that

. L <
(p-,q)leng(g;,y)<(q’B£ P p),(|0|, 1)) <0,

which implies

<(Qa Bg - P'p)> (C?U)> <0.

inf
(P, @) €®(z,y)
Case 3: 0=0
By [14, Lemma 4.2] there exists y, — ¥, (Cn,0,) — (¢, 0) such that
(Cnao'n) € [7;pi (w) (ynvu<yn))]7a onp < 0.
Using Case 2, we get that

inf ,BE—P - p), (Cnyon)) <0.
(p7q)e<1>(x7y,L)<(q pe ), (€ )

*[Tepi (u) (¥, u(y))]~ is the negative polar cone of Tepi (u) (¥, u(y)), L.e. P € [Teps () (ysu(y))] ™ if
and only if (p, ) <0 for any g € Tepi (u) (¥, u(y))-
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Since @ is upper semicontinuous, we deduce that

(paq)ieng(m,y)((q’ﬁg —P-p),(¢,0)) <0.

which ends the proof of (3.8).
Note that

( §<(:>) ) i} ( ﬁ&?h) ) * ( o ><P<W<h>> = WY (h), (),

where U is upper semicontinuous since ® is upper semicontinuous. Equation (3.8)
can be rewritten as

) 0 0 1 P ¢
(p,q>lerg<z7y><<55>+< —-P 0)(‘1)’(0>>§0’

which is equivalent to, by the definition of ¥,

inf — ((p,q),(C,0)) <0.

(p",q¢" )€Y (z,y)

Then we deduce that
(Y, &) N Tepi (u) (y, uly)) # 0, for (y,£) € epi (u).
For any (y,€) € epi (), if € # u(y), i.e. € > u(y), then (y,€) € int epi (u), we have
Tepi () (¥, &) =R 2 Tepi () (y, u(y))-
Thus,

(Y, ) N Tepi (u) (y,€) # 0, for (y,€) € epi (u).
Since (y,u(y)) € epi (u) and ¥ are usc, the viability theorem [3, pp. 180] yields that

problem (3.7) has a viable solution (X (-),Y(-),&(+)), i.e.

(Y'(h), &(h)) € epi (u), Yh =0,

which leads to u(Y (k) < &(h), Vh > 0.
Theorem 3.6 (Subsolution implies sub-optimality). Let u : R? — R be a subsolution
of (3.1), then u satisfies the sub-optimality.

To do the proof, we need the following result
Proposition 3.7. Let u be a subsolution of (3.1). Suppose M € S3 U Sy UI and
Q is a finite union of sets contained in Sy U So U I with M C Q. Assume Q has
the following property: for any 0 < a < b and any trajectory (X,Y) € S[z,y] with
Y(-) C Q, we have

b
(3.9) u(Y(a)) < / e PP X (s)ds + e P~y (Y (D).
Then for any trajectory (X,Y) € S[z,y] with Y (-) C QU M, we still have

u(Y(a)) < / ’ e PE=D P X (s)ds + e POV (Y (b)).
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Proof. Let (X,Y) € S[z,y] with Y () C QU M satisfying the property (3.9).
Without loss of generality, suppose that Y (a) € M, Y (b) € M (otherwise we consider

the first arrival time and the last exit time of Y for M). Let J := {s € [a,b] : Y (s) &
M}, which is an open set and so can be written as

J = G (an,bp)
n=1

where the intervals are disjoint. For a fixed p € N, we set

C=

JIp 1= (an,bp)

n=1

as the union of the first p intervals which, without loss of generality, after reindexing
can be assumed to satisfy

a1<b1§a2<62§~-~§ap<bp.

We set by := a and apt1 :=b. Then a < ay and b, <b. Forn=1,...,p, Y(s) € 2
for s € (an,by). Let n > 0 small enough such that [a,, +n, b, —n] C (an,by), then by
(3.9)

bn_n

u(Y(an+n)) < / e Pls—an—n)p. X(s)ds + e_B(b"'_a”_Q")u(Y(bn —n)).
an+mn

Taking 77 — 0 and by the continuity of u, Y'(-) and the integral, we deduce that

bn .
w(Y (an)) < / e Pl=an) p . X (s)ds + e Pln=an)y (v (b,)).
Next we need to deal with Y'(-) restricted to [bn, any1]. For n =0,...,p, we note that
Y (s) € M for all s € [by,, ans1]\J, then (X(s),Y (s)) € ®(z,Y(s)) N (RE x T (Y (s)))
for almost all s € [by, ant1]\J. For n =0,...,p, set 0, := meas([bn,anﬂ] N J), and
note that Y7 _ n, = meas(J\J,). Then we have

Ap 41 .
/ e~ Bls=bn) p. X(s)ds| < M|P|ny,.
b

n

We now calculate how far (X (-),Y(-)) is from a trajectory lying in R? x M with
dynamics ®(X(-),Y(:)) N (R x Ta(Y(+))) by

Gntl 2M
5 i /b dist ((X(s),Y(5)), @(X(5), ¥ () N (RY X T (Y (5)) ) ds < ——nn,

n

where ¢ is given in (1.2). By the Filippov approximation theorem (see [11, Theo-
rem 3.1.6]) and also [12, Proposition 3.2]), there exists a trajectory (X, Z,)(:) of
®(x, Z, (1)) N (R x Tar(Z,(+))) defined on the interval [b,, a,+1] that lies in RY x M
with Z,,(b,) = Y (b,) and satisfies for any ,s € [b,, an11]
(3.10)

2

M 2M
H(Xnazn)(s) o (X, Y)(S)H < eL(sfbn)/e(r)*n < Telz(sfbn)/»snn < TeL(anJrl*bn)/enn'
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Since (Xy, Z,)(+) lies in R? x M and is driven by ®(z, Z,(-)) N (R? x Ta(Zn(-)))
which is Lipschitz continuous, the subsolution property of v implies that

An+41 .
U(Zn(bn)) < / e Pl p. Xn(s)ds + eiﬁ(an-#lib")u(zn(an-&-l))'
b

n

Then by (3.10) we have
w(Y (bn)) = w(Zn(bn))
an1 . ant1 2M
< / e Pt pl X (s)ds + </ eﬂ<sbn>ds||P||LEeL<an+1bn>/6nn>
by, b

M Loy,

Jreiﬂ(a”“*b")u(Y(aM_l)) + e Blanyi=ba)

An+1 .
< / e~ B(s=bn) p. X(s)ds + e*ﬁ(anJrl*bn)u(y(an+1))
b

n

2M
(311) +(IPL + L)kt

where L, is the Lipschitz constant of u. Then we deduce that

bn, . An41 .
u(Y(a,)) < / e Plman)p. X (s)ds + / e Plsman)p. X (s)ds
an by,

2M
—l—e_ﬁ(a"“_a")u(Y(anH)) + e—[ﬂ(bn—an) . (HPHL + Lu)TeL(anH—bn)/snn

QAn 41 .
< / e Plman) P X (s)ds + e Plant1=4)y(V (a4 1))
2M
(3.12) +(||P||L + Lu)?e”‘lm*bn)/ﬁnn.
By using (3.11) for n =0 and (3.12) for n =1, ..., p, we obtain
" —Be—a)p . ~B(a1—a) ZM L(ar—bo)/e
u(Y(a)) < e P-X(s)ds+e 1 u(Y(al))+(||P||L—|—Lu)Te 17900/ nq

2M
(s— a)P X( )ds+efﬁ(“2*a)u(Y(a2)) + (HP”LJFLu)TeL(aszo)/a(nO +m)

IN

2M -
(s—a)p . X( )dsJre*ﬂ(apﬂfa)u(y(ap_i_l)) + (”P”LJrLu)TeL(apﬂfbo)/eZnn
n=0

IN

=
o

:/ B~ P X (s5)ds + e PO u(Y (b)) + (| P||L + Lu) ooz e= (0~ a/fznn
a

By taking p — +oo, we have .7 _ n, = meas(J\J,) — 0 and the desired result is

obtained.

Now we state the proof of Theorem 3.6.

Proof. [Proof of Theorem 3.6] Let u be a subsolution of (3.1). For any trajectory
(X,Y)(:) € S[x,y], any [a,b] C [0,400), we want to prove that (3.9) is true, i.e.

u(Y(a)) < /b e PP X (s)ds + e POV (Y (b)).

a
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We set
Q={Me S USUI|3s € [a,b] such that Y (s) € M}.

Note that 2 is connected since Y'(+) is continuous.
Let dg be the minimal dimension of the manifolds contained in 2.

Case 1: dg = 2.

Then Q C Q; U Q. Since Y(+) is continuous, then Y, ; lies entirely in €; or Q.
Since the dynamics g; of Y(+) is Lipschitz continuous, then the subsolution property
of u implies that u satisfies the sub-optimality along (X,Y)|(4y, i.e. (3.9) holds true.

Case 2: dg = 1.
Two cases can happen.

Case 2.1: Q contains only one manifold
In that case, Q € I with dimension 1, then the subsolution property of w implies (3.9)
since the dynamics ® N (R? x 7Tg) is Lipschitz continuous on Q.

Case 2.2: () contains more than one manifold

Let M, ..., M}, be all the manifolds contained in Q with dimension 1. Then Q' :=
Q\ (Up_, M},) contains only manifolds of dimension 2. For any (X,Y) € Sz,y]
with Y(-) C &/, (3.9) is satisfied (see Case 1). Then using Proposition 3.7, we get
that (3.9) holds true for every trajectory (X,Y) € Slx,y] with Y(-) € Q' U M}
because M} C €. By induction, (3.9) holds true for every (X,Y) € S[z,y] with
Y(O)cQuMiu---uM, =Q.

Case 3: dg = 1.
The arguments are quite similar to the ones of Case 2.

Finally, to complete the proof, we remark that the sub-optimality of u is proved
by taking a = 0,b = h in (3.9).

We are now ready to prove the following comparison principle
Lemma 3.8 (Comparison principle for (3.1)). Let u,w : R> — R be Lipschitz con-
tinuous functions. Suppose that u is a subsolution of (3.1) and w is a supersolution
of (3.1). Then we have

u(y) <w(y), Yy € R%
Proof. By contradiction, suppose that

(3.13) Sélﬂg)z{u(y) —w(y)} =M > 0.

Then there exists 3y € R? such that

M
(3.14) u(yo) — w(yo) > o
Since w is a supersolution, by Theorem 3.5, w satisfies the super-optimality, i.e.
3(X,Y) € Slyo] such that

(3.15) w(yo) > e Phw(Y(h)) + /h e P p. )L((s)ds, Vh>0.
0
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Since u is a subsolution, by Theorem 3.6, u satisfies the sub-optimality, i.e.
— ’L =
(3.16) u(yo) < e Pru(Y (h)) +/ e PP . X(s)ds, Vh > 0.
0

Equations (3.15) and (3.16) leads to
u(yo) — w(yo) < e (u(Y (h)) —w(Y (h))), Yh > 0.
If there exists ho > 0 such that Y (h) = o, then we deduce that

u(yo) — w(yo) <0,

which contradicts (3.14). Otherwise, we set z;, = Y (h) with zj, # yo and h = log2/p.
We then have

M
u(zn) = w(zn) > e (uyo) — w(yo)) > 6%7 =M,
which is a contradiction to (3.13). Thus M < 0 and the desired result holds.
We now give the proof of Theorem 3.1.
Proof. [Proof of Theorem 3.1] The fact that w® is a viscosity solution of (3.1) is
a consequence of Proposition 3.4. The uniqueness is deduced from Lemma 3.8.

3.2 Proof of Theorem 1.2 Before we start the proof, we need the fol-
lowing stability result.
Lemma 3.9. Let v? be the viscosity solution of

(3.17) 807 (y) +a” + H (z,y, P, DvP(y)) = 0
with a® € R. Assume that there exist A € R and v : RZ2 — R such that
Bv? + a”? — =X uniformly and v® — v uniformly when B — 0.

Then v is a viscosity solution of (1.5).

Proof. We first prove that v is a subsolution. Let yo € R?, ¢ € C(R?) and
¢ € CY(M) for each M € S; U S, U I with 39 € M such that v(z) — ¢(x) attains a
strict maximum at yo. We want to prove that

-2+ sup {=p-P —q-Dyzo(yo)} <O0.

(P,9) €® M (x,y0)N(RE X Tor(yo))

Let M € S; U Sy U T such that yo € M.
For any y € R2, let Pgz(y) be the projection of y on M, and dist(y, M) be
the distance function to M. Consider the penalized function ¥(y) := v(y) — ¢(y) —

Cdist(y, M) with
C > |Dv? — Dg|.

We have

v(y) — ¢(y) — Cdist(y, M) < v(y) — ¢(y) < v(yo) — é(yo); Yy # Yo,
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which implies that v(y) — ¢(y) — Cdist(y, M) attains a strict maximum at yo. Since
v# — v uniformly, v? —¢+ Cdist(y, M) attains a local maximum at some yg with
Yy — Yo. For any y ¢ M, we have

0P (y) — ¢ly) — Cdist(y, M) < P (Pxz(y)) — ¢(Prg(y)) + [|Dv® — D|| - [ly — Pzl
<P (Pgz(y)) — (Prz(y)).

Then we deduce that the maximum yz € M.
v# is the subsolution of (3.17), thus

(3.18)  BP(ys) +ap+ sup {-p-P—q-Do(ys)} <O0.
(P,9) €EP M (z,y8)N(REX Txr(ys))

We claim that

(3.19) Trt(wo) € Tre(yg)-

If yo € r-int M (the relative interior of M), then yz € r-int M for 3 small enough.
Therefore,

Tri(ys) = Tm(ys) = Taa(yo) = Trg(o)-

If yo € r-bdry M (the relative boundary of M), note that ysz — yo and yg € M,
then yg € r-bdry M or yg € r-int M. If yg € r-bdry M, then

Tai(ws) = Tar(yo)-

Otherwise y3 € r-int M, then

Tai(vo) € Tam(ys) = Trg(ys)-

Finally, we conclude that (3.19) holds true.
Equations (3.18) and (3.19) implies that

AP (yp) + a” + sup {—p-P—q-Dg(ys)} < 0.
(P,0) €2 M (2,y5)N(REX Txr(yo))

By letting 8 — 0, we obtain

A+ sup {=p-P —q - Dyi06(x0))} <0.
(p,9) €P M (x,y0)N(RE X T (o))

Now we prove that v is a supersolution. Let ¢ € C1(R?) such that v — ¢ attains
a strict minimum at yo. Since v# — v uniformly, v? — ¢ attains a minimum at some
yg such that ys — yo. Then we have

Bv(ys)+a®+  sup  {—p-P—q-Dd(ys))} > 0.
(p,9) €D (x,yp)

Since ®F(-) C ®(-), we have

B (ys) +a®+  sup  {-p-P—q-Do(ys))} > 0.
(PyQ)eq>(wryﬁ)
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By sending 8 — 0 and the upper semi-continuity of ®, we get

A+  sup  {-p-P—q-D¢(yo))} >0,
(p,9)€®(x,y0)

which, by [21, Proposition 3.5, Theorem 3.7], is equivalent to

-\ + sup  {—p-P—q-Dop(yo))} > 0.
(p,9)€PE (z,y0)

Now we state the proof of Theorem 1.2.
Proof. [Proof of Theorem 1.2] By Theorem 3.1, given z € R?, P € R?, for each
B > 0, we know that the approximating problem

B (y) + HE (x,y, P, Du’(y)) = 0, for y € R?
has a unique bounded Lipschitz continuous viscosity solution w?.

Step 1: Estimate on w?.
We now prove that w? is S-periodic. For k € Z2, we set w”(y) := w?(y + k). It is
then easy to check that w” is still a solution of (3.1). Thus, by uniqueness, we get

B = w? ,
which implies that w? is S-periodic.

Since w” is uniformly Lipschitz continuous (see Propositon3.3), then w? is differ-
entiable almost everywhere and

sup HDw*gH < (.
0<p<1

Moreover, by (3.2), we get that
(3:20) 8w’ || < || P||M.

Let v# = w” —ming w?. Since w” is continuous and periodic, there exists yg € S
such that v# = w? — wP(z¢). Then

(3.21) 0P| < 2v2| Dw?|| < 2v2C,, Dv® = Duw”.

Using the fact that w? is a viscosity solution of (3.1), we get that v is a viscosity
solution of

Bv°(y) + HE (z,y, P, Dv® (y)) = — min(fu’), Vy € R?.
Step 2: Passing to the limit
Using (3.20), (3.21) and Arzela-Ascoli Theorem, up to a subsequence, we get

v? — v uniformly on R? and mSin(ﬁwﬂ) — —A

for some v Lipschitz continuous and S-periodic and A € R. Moreover, since v” is
uniformly bounded (see (3.21)), we get

Bv? — 0 uniformly on R
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Then by Lemma 3.9, we deduce that

HE(2,y, P, Du(y)) = A

Step 3: Uniqueness of A\
Suppose that there exists (vy, A1) and (v2, A2) solutions of the cell problem (1.5) with
A1 # A2. Assume without lost of generality that \; < A;. Note that vy, v, are both
continuous and periodic, thus they are bounded. By adding a suitable constant to vy,
we may assume that v; > vs.

Since A\ < % < A2, v1,v2 are bounded, we deduce that for ¢ small enough,
v1, U9 are respectively subsolution and supersolution of

At A

ev+ HE (z,y, P, Dv) = 5

Using the comparison principle for the equation (3.1), we obtain v; < vy which is a
contradiction.

4 Properties of the effective Hamiltonian For every

r € R4 P € R, we denote by H(x, P) the unique constant such that there exists a
periodic solution of (1.5).
Proposition 4.1. H(-,-) is Lipschitz continuous.

Proof. Let x1, x5 € R% and Py, P, € R?. For each 3 > 0, suppose that w?, 1=1,2
is a solution of

For any y € R?, ¢ € R2, by the Lipschitz continuity of H”(-,y,-,q), there exists
C > 0 such that

HP(22,y, P2, q) < HP (21,9, P1,q) + C([lz1 — 22| + || Py — Pol]).
Then we deduce that u)f - %(Hxl — x2|| + ||P1 — P2]|) is a subsolution of
Buw” + HE (x4, y, Py, DuP) = 0.

By the comparison principle for (3.1), we get

wf = G lon = wall + 1Py = Pal) < .
ie.
Buw! — puy < C(|ley — wo|| + || PL — Py)-
Letting 5 — 0 leads to
H(z1, Pr) — H(x2, P2) < C(||lz1 — 22| + ||P1 — P2)).
Exchanging the role of (z1, P1) and (z2, P3), we conclude that
|H (21, P1) — H(z2, P)| < C([la1 — 22|l + [P — Po]),

which implies the Lipschitz continuity of H(-,-).
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As studied in [9, 1], the effective Hamiltonian H can be evaluated as the optimal
average cost of an ergodic control problem in the y variable.
Proposition 4.2. Given x € R?, P € R?,

_ 1
(4.1) H(z,P)= lim sup {—P (X () — x)} ,
FHe0 (X Y)eSla ]
for any y € R2.

Proof. This result is quite similar to the formula (10) obtained in [1]. Here we
give a sketch of the proof. Consider the value function

u(t,y) = (vai)rég[x,y] {P-(X(t) —2)}.

Then v solves the HJB equation
dev(t,y) + H" (x,y, P, Dyv(t,y)) = 0 on (0, +00) x R?,

where z, P are fixed, and the initial condition v(0,-) = 0. Let w(-) be a solution
of the cell problem (1.5) with A\ = H(z, P), then w(y) — tH(z, P) is a solution of
the same Cauchy problem but with a different initial condition. Note that the HJB
equation above is the same type as (1.4), the comparison result Theorem 2.7 implies
that v(¢,y) —w(y) +tH (x, P) is bounded by ||w||s. Since w is bounded, —v(t,y)/t —
H(z, P) as t — +o0, uniformly in y.

Remark 4.3. If we consider the same case as in [7] where the controls acting on the
slow variable X and and fast variable Y are separated, more precisely given A, B two
independent control sets,

f:f('ray7a)a CLEA, gi:gi(xayab)7 bGB, Z:172
Let Hy : R? x R? x R* — R defined by

Hl(I,y,P) = sup{—P ’ f(x’yaa)}'
a€A

Then the effective Hamiltonian satisfies the following formula:

H(z,P) = mﬁRng(x,y,P), VzeRY PeRY
yeE

This is the same formula (12) obtained in [1]. It is proved through the formula (4.1)
and the controllability assumption on the fast variable Y.

5 Proof of Theorem 1.3 We define

u(t,z) = lim sup sup u®(¢,x,y) and w(t,xz) =lim inf inf w®(¢, z,y).
t,x,e yeR2 t,z,e  yeR2

The proof is divided into several steps.

Step 1 : @ is subsolution of (1.6).
Let ¢ € C1((0,T) x R?) such that @ — ¢ has a strict local maximum at (¢, zo). We
want to prove that

—d¢(to, v, y0) + H (w0, Dé(tg, 10)) < 0.
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We assume by contradiction that
(5.1) — 1 (to, wo) + H(xo, Dé(to, z0)) = 6 > 0.

We set P := D¢(tg, xo) and let v be a periodic Lipschitz continuous viscosity solution
of the cell problem

—H (0, P) + H” (x0,y, P, Dv(y)) = 0.

We use the perturbed test function introduced by Evans. For any £ > 0, we define
¢°(t,x,y) = ¢(t,x) + ev(y). We want to prove that ¢ is a supersolution of (1.4) in
B((tg,z0),7) x R? for r > 0 small enough. Let ¢ € C1((0,7) x R? x R?) such that
¢° — 1 attains a minimum at (¢1,z1,y1) € B((to,7o),7) x R%. Then

(bs(tl?xlayl) - w(thxhyl) < ¢E(t,$,y) - w(taxay)
This implies that

v(y1) —T(y1) < wv(y) —T(y)

where I'(y) = 2[)(t1, 21, y) — @(t1, 21)]. We deduce that v(y)—T'(y) attains a minimum
at y1, then

—H (x9, P) + H" (20,41, P, DT'(y1)) > 0,
ie.
~6ulto z0) — 8+ HP (o, 1, Dolto, z0), - Dy, 21,1)) 2 0.
We then deduce that
—¢i(tr,x1) + HY (21,91, D(t1, 21), équl’(tl,Il,yl)) > ¢i(to, xo) — e(t1, 1) — 0

1Dy1/1(t1,3917y1))-

, -
3

1
+HE (21,91, Dp(t1, 1), gDyw(thIl,yl)) — H®(x0,y1, Dé(to, 7o)

Since ¢ € C*((0,T) x R?) and HF(-,y,-,q) is continuous, we have for r > 0 small
enough

[NV SS

1
—¢y(tr, 1) + HE (21,91, Dp(ty, 71), gDyQZJ(h,xl,m)) >

Note that v(-) is independent on ¢ and z, the application t — ¢(t,x1) — (¢, z1,y1) is
C! and attains a minimum at ¢; and the application z — ¢(t1,2) — ¥(t1, z,y1) is C*
and attains a minimum at x;, we obtain

Ge(tr, x1) = Ye(t1, 21,91), Do(t1,71) = Dotp(tr, w1, y1)-
We conclude that
1 0
—y(tr, z1, 1) + HP (21,91, Dot (t1, 21, 91), gDyw(thxlayl)) > 5
which implies that ¢ is a supersolution of (1.4). Then by Theorem 2.7, we have

max u(t,xz,y) — o°(t, x, < max u(t,x,y) — o (t,z,y)}.
B((to,zomez{( y) — o7 (t,z,y)} 83(@0@0)”%2{( y) — ¢ (t.w,y)}
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Then we deduce that

max u(t,x) —o(t,x)r < max u(t,z) —o(t,x)t,
(t,w)GB((to,xo),r){ ( ) (ZS( )} (t,z)e@B((tg,a:o),r){ ( ) QS( )}

which contradicts the fact that (¢g,z¢) is a local strict maximum of @ — ¢.

Step 2 : w is a supersolution of (1.6).

The proof is very similar. The main difference is to check that ¢¢ is a subsolution.
By contradiction, assume that there exists ¢ € C1((0,7T) x R?) such that @ — ¢ has a
strict local minimum at (o, zp).and such that

(5.2) —i(to, w0) + H(xo, Dd(to, z0)) = —6 < 0.

We set P := D¢(to, zo) and let v be a periodic Lipschitz continuous viscosity solution
of the cell problem

—H (w0, P) + H" (z0,y, P, Dv(y)) = 0.

For any € > 0, we define ¢°(t,z,y) = ¢(t,z) + cv(y). We want to prove that ¢° is a
supersolution of (1.4) in B((to,xo),r) x R? for r > 0 small enough. Let ¢ : (0,T) x
R9 x ]1%72 — R be continuous with ¢[ 7y, g7 being C' for each M € S;US,UT with
y1 € M such that u — 1) attains a local maximum at (t1,z1,y1) € B((to, 7o), ) x R2.
As in the previous tep, we deduce that v — I' reaches a maximum at y; where

D) = [t 21,0) — 6(ts,2)]

Then
—H (z0, P) + sup {=p-P—q-Dxpp(ti,21,11))} <0.
(P,2) €@ m(w0,y1)N(RE X Tp(y1))
ie.
—¢¢(to, xo)+0+ sup {=p-Do(to, o) —q-Dxpb(ti, z1,91))} < 0.

(P,0) €P M (x0,y1)N(RY X T (y1))

Then we deduce that

—¢¢(t1, 1) + sup {=p-Do(t1,21) — q- Dxpb(tr, x1,91))}
(P, ) €P M (x1,y1)N(REX T (y1))

S ¢t(t0ax0) - d)t(tl,xl)

+ sup {=p-Do(t1,21) — q- Dxpb(tr, v1,y1))}
(P, 0) €P M (x1,91)N(REX T (y1))
- sup {=p- Do(to,x0) — q- Dxgb(t1,71,y1))} — 0.

(P, 0) €P M (x0,y1) (R X T (y1))
Since ¢ € C1((0,T) x R?) and @ p¢(-,y1) N (R? x T7(y1)) are continuous, we have for

r > 0 small enough

0
—e(t1, 1)+ sup {=p-Do(t1,21) —q- Dygp(tr, x1,91))} < ~3
(P,0) €L Mm(x1,y1) R X T (y1))

Using that

(bt(thxl) = ¢t(t1;$1791)7 D(b(tl,.’l]]) = me(thxhyl)a
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we conclude that
0
—y(t1, x1,y1)+ sup {=p-Doé(t1, 21)—q-Dxpb(tr, x1,91))} < 5
(P, €P M (z1,y1)N(REX Tp(y1))

which implies that ¢° is a subsolution of (1.4). We then get a contradiction as in the
previous step.

Step 3: Terminal condition

Now we check the terminal condition. We set

:= inf .
e(z) ylélRQw(fv,y)

The Lipschitz continuity of ¢ implies that ¢ is Lipschitz continuous. Since u® (T, z,y) =
o(z,y), we have

inf w*(T = .
inf (T 2,3) = p(a)

Then we deduce that u(T,x) = p(x).

On the other hand, for any ¢t € [0,7], x € R? and y € S(= (—1,1)?),
{o(X(T),Y/(T))}

{e(@, Y(T)) + Lollz = X(T)||}

ut(t,x,y) = inf
(XY)ES, 1 (a9)

< inf
(XY)ES, 1 (29)
< inf 2,Y/(T)) + ML (T —t).
(XVY)GS[ELT](M)W( (1)) o(T' = 1)

By the controllability assumption (H2)(iii) for g;, we set that for any 2’ € R?, Y(-)
such that (2/,Y) € S[z/,y],

24/2
inf o(a', ¥ () = inf (e’ y) = pla'), for T > 1 + 22,
yEeS - T0

where we have used that S C B(0,/2).
Then for any ¢ < T we can restrict e < 79(T —t)/(2v/2) and get

lim sup sup inf (2, Y(T)) = lim sup p(z') = ¢(z).
e—0,t—T~ 2’ —x ycR2 (X',Y)ES[Et,T](w’,y) ' —r -

Therefore,

u(T,x) < p(x) +lim sup ML, (T —t) = p(x).

t—T—

We conclude that
(5.3) (T, 2) < p() = u(T,).
Step 4 : Conclusion

Since @ is a subsolution of (1.6) and u is a supersolution of (1.6), by (5.3) and the
comparison principle for (1.6) we have

a(t,x) < u(t,x), for (t,x) € (0,T) x RY,
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which gives

T=u=uin (0,T) x RY,

and implies the convergence of u® to u which is the viscosity solution of (1.6).
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