Optimization of Divergences Within the Exponential Family for Image Segmentation

Abstract : In this work, we propose novel results for the optimization of divergences within the framework of region-based active contours. We focus on parametric statistical models where the region descriptor is chosen as the probability density function (pdf) of an image feature (e.g. intensity) inside the region and the pdf belongs to the exponential family. The optimization of divergences appears as a flexible tool for segmentation with and without intensity prior. As far as segmentation without reference is concerned, we aim at maximizing the discrepancy between the pdf of the inside region and the pdf of the outside region. Moreover, since the optimization framework is performed within the exponential family, we can cope with difficult segmentation problems including various noise models (Gaussian, Rayleigh, Poisson, Bernoulli ...). We also experimentally show that the maximisation of the KL divergence offers interesting properties compare to some other data terms (e.g. minimization of the anti-log-likelihood). Experimental results on medical images (brain MRI, contrast echocardiography) confirm the applicability of this general setting.
Type de document :
Communication dans un congrès
2nd International Conference on Scale Space and Variational Methods in Computer Vision, SSVM, 2009, Voss, Norway. pp.137-149, 2009, 〈10.1007/978-3-642-02256-2_12〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00812626
Contributeur : Image Greyc <>
Soumis le : vendredi 12 avril 2013 - 15:12:49
Dernière modification le : mardi 5 juin 2018 - 10:14:42
Document(s) archivé(s) le : lundi 3 avril 2017 - 04:39:40

Fichier

SSVM-2009.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Lecellier, Stéphanie Jehan-Besson, Jalal M. Fadili, Gilles Aubert, Marinette Revenu. Optimization of Divergences Within the Exponential Family for Image Segmentation. 2nd International Conference on Scale Space and Variational Methods in Computer Vision, SSVM, 2009, Voss, Norway. pp.137-149, 2009, 〈10.1007/978-3-642-02256-2_12〉. 〈hal-00812626〉

Partager

Métriques

Consultations de la notice

382

Téléchargements de fichiers

159