V. N. Manoharan, A. Imhof, J. D. Thorne, D. J. Pine, F. Shakeel et al., Photonic Crystals from Emulsion Templates, Advanced Materials, vol.13, issue.6, pp.447-450, 2001.
DOI : 10.1002/1521-4095(200103)13:6<447::AID-ADMA447>3.0.CO;2-4

D. K. Sarker, Engineering of Nanoemulsions for Drug Delivery, Current Drug Delivery, vol.2, issue.4, pp.953-974, 2005.
DOI : 10.2174/156720105774370267

M. M. Kaneda, S. Caruthers, G. M. Lanza, and S. A. Wickline, Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics, Annals of Biomedical Engineering, vol.44, issue.Suppl 1, pp.37-1922, 2009.
DOI : 10.1007/s10439-009-9643-z

T. G. Mason and J. Bibette, Shear Rupturing of Droplets in Complex Fluids, Langmuir, vol.13, issue.17, pp.4600-4613, 1997.
DOI : 10.1021/la9700580

J. M. Gordillo, Z. Cheng, A. M. Ganan-calvo, M. Marquez, and D. A. Weitz, A new device for the generation of microbubbles, Physics of Fluids, vol.16, issue.8, pp.2828-2834, 2004.
DOI : 10.1063/1.1737739

W. Diluzio, G. M. Whitesides, E. Kumacheva, H. A. Stone, E. Castro-hernandez et al., Formation of monodisperse bubbles in a microfluidic flow-focusing device Applied Physics Letters Microbubble generation in a co-flow device operated in a new regime, Lab on a Chip, vol.85, issue.13 612, pp.2649-2651, 2004.

K. Uemura and M. Nakajima, Formulation of monodisperse emulsions using submicron-channel arrays

P. Poncet, Monodisperse colloids synthesized with nanofluidic technology, Langmuir, vol.26, issue.4, pp.2369-2373, 2009.

W. Jeong, J. Lim, J. Choi, J. Kim, Y. Lee et al., Controlled generation of submicron emulsion droplets via highly stable tipstreaming mode in microfluidic devices, pp.12-1446, 2012.

J. I. Park, D. Jagadeesan, R. Williams, W. Oakden, S. Y. Chung et al., Microbubbles Loaded with Nanoparticles: A Route to Multiple Imaging Modalities Dissolution of multicomponent microbubbles in the bloodstream: 1. Theory, On the Stability of Gas Bubbles in Liquid-Gas Solutions, pp.6579-6586, 1950.

A. J. Webster and M. E. Cates, Stabilization of Emulsions by Trapped Species, Langmuir, vol.14, issue.8, pp.2068-2077, 1998.
DOI : 10.1021/la9712597

Y. Cheung-sang and Y. , Vers des micromousses stimulables, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00440880

E. Lorenceau, Y. Yip-cheung-sang, R. Hohler, S. Cohen-addad, S. Wahl et al., A high rate flow-focusing foam generator, 097103-5. 13. Stoffel, 2006.
DOI : 10.1063/1.2353799

URL : https://hal.archives-ouvertes.fr/hal-00182489

S. Sugiura, M. Nakajima, N. Kumazawa, S. Iwamoto, and M. Seki, Characterization of Spontaneous Transformation-Based Droplet Formation during Microchannel Emulsification, The Journal of Physical Chemistry B, vol.106, issue.36, pp.9405-9409, 2002.
DOI : 10.1021/jp0259871

M. G. Freire, A. M. Dias, M. A. Coelho, J. A. Coutinho, and I. M. Marrucho, Aging mechanisms of perfluorocarbon emulsions using image analysis, Journal of Colloid and Interface Science, vol.286, issue.1, pp.224-232, 2005.
DOI : 10.1016/j.jcis.2004.12.036

A. M. Djerdjev and J. K. Beattie, Enhancement of Ostwald Ripening by Depletion Flocculation, Langmuir, vol.24, issue.15, pp.7711-7717, 2008.
DOI : 10.1021/la800140s

C. A. Fraker, J. Mendez, L. Inverardi, C. Ricordi, and L. Stabler, Optimization of perfluoro nano-scale emulsions: The importance of particle size for enhanced oxygen transfer in biomedical applications, Colloids and Surfaces B: Biointerfaces, vol.98, pp.26-35, 2012.
DOI : 10.1016/j.colsurfb.2012.04.011

M. K. Kaneda, S. Caruthers, G. Lanza, and A. Wickline, Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics, Annals of Biomedical Engineering, vol.44, issue.Suppl 1, pp.1922-1933, 2009.
DOI : 10.1007/s10439-009-9643-z