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Planck data, spinorial space-time and asymptotic Universe

Luis Gonzalez-Mestres∗

The Planck collaboration reports an age of the Universe t close to 13.82 Gyr and a present ratio H between
relative speeds and distances at cosmic scale around 67.8 km/s/Mpc. The product of these two measured quantities
is then slightly below 1 (about 0.96), while it can be exactly 1 in the absence of matter and cosmological constant
in suitable patterns. An example is the cosmology based on a spinorial space-time we have considered in previous
papers, where such an expansion law is of purely geometric origin and can reflect an equilibrium between the
dynamics of the ultimate constituents of matter and the geometry of space and time. Taking also into account
the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic
limit for the product H t in the long-term evolution of our Universe up to possible small corrections. No ad

hoc combination of dark matter and dark energy would then be needed to get an acceptable value of the cosmic
speed/distance ratio H. We briefly comment on possible realistic versions of cosmologies exhibiting this property.

1. Introduction

Obviously, WMAP [1] and Planck [2] data re-
quire a new close study after the 2013 Planck re-
sults have been made available (see [3,4] and other
recent papers by the Planck Collaboration). In
particular, even if WMAP and Planck have sys-
tematically used the ΛCDM model as the basic
tool for data analysis, nothing prevents from ex-
ploring other possible cosmologies [5] potentially
related to new physics at ultra-high energy [6] and
beyond Planck scale.

The question of the space curvature is a major
one, but measuring it at large cosmological scales
may be extremely difficult if the actual Universe
is much larger than the observable one. If the
effective global curvature is very small for this
reason, it can even be masked by other (more
local) phenomena. But it may also happen that
such a small space curvature generates the leading
contribution to the expansion of the Universe [5].

And do we really understand the meaning of
concepts such as dark matter and dark energy
that, according to Planck analysis, would account
for 95% of the energy in our Universe? The
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CNRS/IN2P3, 74941 Annecy-le-Vieux, France
luis.gonzalez-mestres@megatrend.edu.rs at the Cosmology
Laboratory, Megatrend University, Novy Beograd, Serbia
lgmsci@yahoo.fr, personal e-mail

recent AMS results [7,8] are not yet conclusive
and, even assuming that a dark matter signature
would have been detected, alternatives to fash-
ionable theories already exist [9].

The situation seems even more unclear con-
cerning what is usually called inflation, in spite of
the remarkable effort in model building for more
than thirty years. Suitable alternatives to infla-
tion can naturally be provided by pre-Big Bang
cosmologies [5,10].

Similarly, in the standard ΛCDM cosmology,
the ratio between relative velocities and distances
at cosmic scales given by the LundmarkLemâıtre-
Hubble (LLH) constant (see [5,11] and references
[12] to [16]) depends crucially on a set of poorly
identified phenomenological parameters. How-
ever, if H is the LLH constant and t the age of the
Universe, the product H t is identically equal to
1 in some specific cosmological geometries before
introducing matter, energy and gravitation.

An potential example can be built using the
well-known Friedmann equations [17,18] as a
guide. We start considering the Friedmann-like
relation :

H2 = 8πGρ/3 − kR−2 c2 + Λ c2/3 (1)

where H = a−1
s

das/dt is the LLH constant,
as the scale factor, G the gravitational constant,
ρ the energy density, c the speed of light, k R−2
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the curvature parameter, R the present curvature
distance scale of the Universe (the curvature ra-
dius, and possibly the radius of the Universe, for
k = 1) and Λ the cosmological constant. Taking
ρ = 0, Λ = 0 and a−1

s
das/dt = R−1 dR/dt, one

would get for k = -1 (negative curvature, hyper-
bolic space) the simple relation dR/dt = c. But
such a relation does not appear to be compatible
with cosmological data, as c t R−1 would be too
small for a realistic fit. A possible modification
of equation (1) will be discussed below.

A more clear situation concerning the geomet-
ric origin of the relation H = t −1 is obtained
with the spinorial space-time we introduced in
1996 [5,19], where the cosmic time t is given by
the modulus of a cosmic spinor and the cosmic
space at time t is described the associated hyper-
sphere. In this case, the natural space curvature
is positive and no critical speed is introduced, but
the law H = t −1 holds automatically in the ab-
sence of matter and cosmological constant.

In the spinorial space-time under consideration,
the inverse square of the age of the Universe plays
the role of the curvature term replacing the term
− kR−2 c2 in the equation equivalent to (1). The
expression c R−1 is directly replaced by an inverse
time scale, and there is no − sign associated to
the space curvature. At this stage, no space units
or critical speed(s) have been introduced. Sim-
ilarly, matter and cosmological constant are not
required to get a sensible value of H.

Even assuming the existence of a realistic con-
cept similar to the cosmological constant, in al-
ternative approaches to quantum field theory [5]
one can expect it to be generated only in the pres-
ence of standard matter. In this case, its con-
tribution to equations like (1) decreases like the
matter density as the Universe expands and the
relation H = t −1 will be preserved as a limit
at large t except if new (small) corrections to the
effective geometry must be taken into account.

In the present note, we discuss the possibility
that the geometric relation H = t −1 remains, up
to small extra terms, an asymptotic limit of cos-
mic evolution at large t in suitable cosmologies.
We defer to later work a more precise insertion of
general relativity within the spinorial space-time
framework we have suggested.

2. The spinorial space-time

As explained in [5,19], for a SU(2) spinor ξ de-
scribing space-time coordinates, and taking the
positive SU(2) scalar | ξ |2 = ξ†ξ where the dag-
ger stands for hermitic conjugate, a definition of
the cosmic time can be t = | ξ | with an associ-
ated space given by the S3 hypersphere | ξ | =
t. Other definitions of t in terms of | ξ | (f.i. t =
| ξ |2) lead to similar cosmological results as long
as a single-valued function is used.

Then, using the definition t = | ξ |, if ξ0 is
the observer position on the | ξ | = t0 hyper-
sphere, space translations inside this hypersphere
correspond to SU(2) transformations acting on
the spinor space, i.e. ξ = U ξ0 where:

U = exp (i/2 t−1

0 ~σ.~x) ≡ U(~x) (2)

~σ being the vector formed by the usual Pauli ma-
trices. The vector ~x is the spatial position of ξ
with respect to ξ0 at constant time t0. The an-
tipodal point − ξ0 corresponds to U (2 π) = − 1.
The spinorial position ξ − ξ0 violates causality
but can be relevant at very small scales [5,21].

Space rotations with respect to a fixed point ξ0

are SU(2) transformations of the spatial position
vector ~x. A standard spatial rotation around ξ0

corresponds now to U(~y) turning any U(~x) into
U(~y) U(~x) U(~y)†, where the vector ~y provides
the rotation axis and angle.

The origin of our time can then be associated
to the point ξ = 0. One thus gets a naturally
expanding Universe where cosmological comoving
frames would correspond to straight lines crossing
the origin ξ = 0. In the absence of matter and of
a cosmological constant, such a geometry can be
applied to relative velocities and distances at cos-
mic scale for comoving frames and automatically
yields the LLH law H = t −1.

More precisely, for two cosmological comoving
frames separated by a constant angular distance
θ, the spatial distance D between the two corre-
sponding points on the | ξ | = t hypersphere will
be D = θ t, with a relative velocity v = θ. The
ratio between relative velocities and distances is
therefore given by t−1 [5,21]. t is actually the only
physical scale available, and no critical speed has
been introduced at this stage.
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The situation does not basically change if the
distance on the S3 hypersphere is taken to be
equal to t times an arbitrary function of the an-
gle θ. It is even possible, for each observer at a
given ξ0, to send to infinity the antipodal point
θ = 2 π turning the hypersphere into a hyper-
boloid. Contrary to standard cosmology, such a
transformation would not change the sign of the
spinorial curvature term t−2 [5] in the equation
describing the Universe expansion through H2.

Together with conventional matter, standard
relativity can be introduced as a local low-energy
limit of space-time as seen by such matter [5,6],
just as low-momentum phonons in a solid can ex-
hibit a Lorentz-like symmetry [20]. Friedmann-
like equations emerging at this stage must take
into account the pre-existing global spinorial
space-time on which matter has been generated
and the LLH law inherent to this space-time.

3. Geometry in our Universe

The ΛCDM-based data analyses presented by
Planck and WMAP do not report any significant
space curvature. But this is not a surprise if the
actual Universe is much larger than the observed
one, in which case the effective curvature can be
very small even if the space geometry is spherical
or hyperbolic. Furthermore, as just explained, it
may turn out that the standard Friedmann equa-
tions ignore fundamental pre-matter information
and fail for this reason to correctly describe the
cosmological role of space curvature.

3.1. A modified Friedmann equation

Even within the ΛCDM model framework, if
the radius of the actual Universe is more than ∼
100 times larger than that of the observable one,
a curved space does not appear to be excluded by
the bounds Planck has recently presented. If most
of this space is empty, and in the absence of dark
matter and dark energy, a hyperbolic curvature
term can become the dominant contribution to
H in a Friedmann-like equation of the type (1)
describing this global Universe.

Furthermore, as the matter density is expected
to decrease with the Universe expansion faster
than the curvature term, the relation H = t −1

clearly appears as the natural asymptotic limit at
large t in the absence of a cosmological constant.

It remains to fit the measured value of H with-
out using dark matter and dark energy. A possi-
bility would be to modify the value of the constant
c2 multiplying the term − k R−2 in (1). Instead of
the square of the speed of light, a larger effective
constant c2 allowing to account for superluminal
relative speeds in the global Universe can in prin-
ciple compensate the smallness of the curvature
parameter itself. More precisely, the ratio c R−1

should have a value close to the observed value of
H (and therefore, to that of t−1).

The possible physical and cosmological mean-
ing of this modification of the Friedmann equa-
tions will be further discussed in a forthcoming
paper. But the basic idea is to give the global
cosmic curvature a weight accounting for its role
at cosmic scale, including reminiscent effects from
an inflationary or pre-Big Bang era. The spino-
rial space-time provides an illustration of such a
new approach to space curvature in cosmology.
In this case, the sign of the leading cosmic curva-
ture term does not depend on that of the standard
curvature parameter in equations like (1).

3.2. Cosmology and spinorial space-time

As explained in Section 2, the spinorial space-
time considered in [5,19] and in [21,22] (see also
[23,24]) presents a direct geometric description re-
lating the expansion rate of the Universe to its
age, and automatically reproducing the relation
H = t −1 in the absence of matter and of a con-
ventional cosmological constant.

As no critical speed or space units have been
introduced to obtain the H = t −1 law, the
spinorial space-time can naturally be much larger
than our observable Universe and allow for crit-
ical speeds much larger than that of light. The
speed of light would be just the critical speed of
standard matter. Pre-Big Bang scenarios allow-
ing for superluminal motion would thus provide
a natural alternative to inflation [5,10].

Then, it seems normal to assume that our stan-
dard matter universe nucleated at a very early
stage of the evolution described by the spinorial
space-time geometry, so that its age does not dif-
fer from the cosmic time thus defined. But this
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conventional universe does not necessarily fill the
whole available space and other kinds of matter
or pre-matter reminiscent from the pre-Big Bang
era can exist elsewhere obeying different physical
laws. In all cases, new forms of matter and pre-
matter can exist everywhere, so that the stable
structure of the physical vacuum is not necessar-
ily made of the standard scalar fields and zero
modes from quantum field theory [23,24].

As our standard matter universe is facing an ex-
pansion of the global Universe generated by the
original spinorial space-time, fluctuations in its
observable expansion rate may occur due to the
interaction between conventional matter and the
global space-time structure. The apparent cosmic
acceleration [25] can thus actually be the expres-
sion of a temporary fluctuation without real in-
fluence on the long-term evolution of our conven-
tional universe [23,24]. In this case, dark energy
is not required to explain the present acceleration
and the relation H = t −1 will remain asymptoti-
cally valid inside our Universe. Small corrections
to the relation H = t −1 can be generated by
the standard Friedmann-like curvature terms af-
ter the nucleation of conventional matter.

3.3. On cosmic acceleration

In the ΛCDM model, cosmic acceleration is
linked to the second Friedmann equation:

A = − 4/3 πG (ρ + 3pUc−2) + Λ c2/3 (3)

where A = dH/dt + H2 = a−1
s

d2as/dt2 and pU is
the pressure parameter. However, this equation
may require a substantial modification following
that of (1). Then, without using dark energy,
new mechanisms can be imagined to explain the
observed cosmic acceleration in our region of the
Universe. In particular, a new term describing
the reaction of standard matter to the geomet-
ric expansion of the Universe can provide a natu-
ral way out, together with a term describing the
counter-reaction of the geometry itself.

A difference in density between this part of
the Universe and the Universe as a whole may
have already produced a local gravitational reac-
tion of matter opposing the geometric expansion
and making it locally slower. Later in such a sce-
nario, as the matter density has become smaller,

the local expansion would have started to accel-
erate getting closer to the geometric value of H.
Even without such a difference in density, the
same kind of gravitational reaction can occur if
the expansion of the Universe is led by other phe-
nomena than those considered in the standard
Friedmann equations. In particular, if the role
of space curvature is stronger than predicted by
(1) and obeys to a different geometric origin.

A similar mechanism would be expected for
the spinorial space-time just discussed. In this
case, when standard matter is introduced, new
terms accounting for the gravitational reaction to
the already existing geometric expansion of space
and for the geometric counter-reaction should be
added to the Friedmann-like equations. Dark en-
ergy is not required to generate such a process.

In both cases, and most likely also in other sce-
narios, the present cosmic acceleration would cor-
respond to the evolution of our Universe towards
the asymptotic relation H t = 1 (up to possible
small corrections) in the large t limit.

A small correction to the asymptotic expansion
law H t = 1 can be of the form:

H = D−1 dD/dt = t−1 (1 + α) (4)

where D is the distance at time t between two
commoving frames. The (positive or negative)
constant α can be the expression of an additional
(small) space curvature term possibly related to
the presence of conventional matter and reminis-
cent from the standard Friedmann approach as
given in equation (1). One then readily gets the
relation D/D0 = (t/t0)

1 + α where D0 is the
value of the cosmic distance D at cosmic time t0.

3.4. The arrow of time

In the spinorial description of space-time con-
sidered here, the arrow of time is of purely geo-
metric origin, and directly related to the deepest
geometric space-time structure.

If the cosmic time t is not a single-valued func-
tion of | ξ | and the arrow of time is to be pre-
served, the picture will require some modifica-
tions such as replacing t by a function of | ξ | in
the definition of the space coordinates. Although
this is not the scenario considered here, further
work on this question is required.
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Recent work on the arrow of time following dif-
ferent approaches can be found, for instance, in
references [26,27] and in [28,29].

4. Conclusion and comments

Instead of trying to build ad hoc the observed
value of the LLH constant using large amounts
of dark matter and dark energy, we present here
a natural geometric approach based on what can
be the ultimate space-time structure (as seen by
spin-1/2 particles) and automatically leading to
the relation H = t −1 in the absence of stan-
dard matter and of a cosmological constant. The
definition of the age of the Universe t is directly
linked to the geometric size of the cosmic space.

No dark energy is required, and no conventional
cosmological constant is introduced, in this new
cosmology where the H = t −1 law can result
from an equilibrium between geometry and the
most fundamental form of matter or pre-mater.

A really new approach to the role of space cur-
vature in cosmology is thus at the origin of a new
structure of Friedmann-like equations. In partic-
ular, the leading contribution to the square of the
LLH constant comes from a curvature term equal
to t −2 whose sign does not depend on the space
curvature felt by standard matter.

As the leading contribution to the Universe ex-
pansion comes from this (S3) curvature term gen-
erated in the spinorial space-time previous to the
introduction of standard matter and outside the
standard general-relativistic framework, standard
matter can react to this geometric constraint.
Such an interaction between matter and geom-
etry would lead to a new terms in the modified
Friedmann-like equations. If the reaction of stan-
dard matter has initially slowered the Universe
expansion when the matter density was much
larger, the apparent cosmic acceleration can be
just an evolution associated to the weakening of
matter density and restoring asymptotically the
expansion rate from fundamental geometry.

Thus, it is tempting to conjecture that, con-
trary to many claims, the observed acceleration
of the expansion of the Universe is just the reflect
of a fluctuation due to gravitation, and perhaps
to other standard interactions, in the presence

of the pre-existing spinorial space-time geometry.
As the Universe expands, the product H t tends
to 1 (except possibly for a small correction to this
value) as the natural asymptotic limit at t → ∞.
Data from Planck and other experiments appear
compatible with such a hypothesis that does not
appear naturally in the ΛCDM model.

Similarly, as the spinorial space-time has been
previous to the formation of conventional matter,
it seems reasonable to assume that its expansion
is in equilibrium with a primordial vacuum pos-
sibly formed during a short pre-Big Bang era.

Then, the condensates and zero modes usu-
ally introduced in standard quantum field theory
can be just a simplified way to describe the in-
teraction between conventional particles and the
physical vacuum. In such a situation, there is
no compelling reason to consider an item like the
standard cosmological constant, even if a related
phenomenon can occur in the presence of conven-
tional matter [5,23]. In this last case, the cos-
mological weight of such an effect is expected to
decrease like the matter density, contrary to the
standard cosmological constant.

Cosmologies naturally leading to an asymptotic
value of H t equal or close to 1 deserve particular
attention. As they have not been really explored,
further work in this direction is clearly necessary.
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