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In this paper, we consider the problem of finding latent structure in high dimensional data. It is assumed that the 

observed data (here music signals) are generated by unknown latent variables and their interactions. The task is 

to find the latent variables and the way they interact, given the observed data only. A novel method for solving 

the above problem is independent component analysis (ICA). Furthermore, ICA achieves independency of the 

features components which reduces redundancy of information.  The new independent features are then used for 

genre classification through Support Vector Machine (SVM) classifier. We will show through different 

experiments that this approach gives better accuracy rates than classical feature sets such as wavelet based, 

spectral, temporal or MFCC feature sets associated with different classifiers such as Multiclass SVM, Multilabel 

SVM. These results are obtained with a database of 64 songs issued from the database of the Algerian radio. We 

thus obtain scores of 93% to 95% for six genres. Interesting comparative results are reported and commented.  

1 Introduction 

Progress in networking transmission, compression of 
audio, and protection of digital data allows now or in the 
near future to deliver quickly and safely music to users in a 
digital format through networks, either Internet, or digital 
audio broadcasting. Further, digitalization of data makes it 
possible for users, to access huge catalogues of musical 
titles. This situation demands for tools able to ease 
searching, retrieving, and handling such a huge amount of 
data. Among those tools, automatic musical genre classifiers 
(AMGC) can have a particularly important role, since they 
could be able to automatically index and retrieve audio data 
in a human-independent way. Music genre is very useful for 
music indexing and content-based music retrieval.  The 
research field of automatic music genre classification has 
got increasing importance in the last few years. Music 
Information Retrieval (MIR) is the most important 
application of AGC, but it is not the only one. The automatic 
analysis of music stored in audio format is one of the 
important topics of MIR [3]. The majority of such audio 
analysis techniques make use of numerical features, called 
descriptors, that attempt to capture information about 
musical content. Many different sets of descriptors have 
been proposed so far. A large number of them are mainly 
originating from speech recognition or signal processing 
area. They can be divided generally into time-domain. or 
spectral-domain features [1]. Wavelet based features have 
also been introduced and have proven their efficiency. In 
this work, we propose a new set of independent features, 
which are obtained by applying Independent Component 
Analysis over a concatenation of basic features. It will be 
compared  to different classical sets of features obtained 
either by concatenation of basic features (spectral, temporal 
and MFCC) or built on statistics of wavelet coefficients. The 
performances and importance of the proposed feature sets 
are evaluated by training three pattern recognition 
classifiers: a Multi-Class Support Vector Machine    (MC-
SVM), a Multi-Label Support Vector Machine (ML-SVM), 
and an Artificial Neural Network (ANN). We used, at this 
purpose, music collections from different physical supports 
old disks, compact disks, radio and the web.  The chosen 
taxonomy for musical pieces is defined by the Algerian 
radio listeners and accepted by most musicologists. 

The paper is structured as follows. A short state of the art on 
music features extraction is provided in section 2. Section 3 
deals with Independent Component Analysis.  Section 4 
defines and describes how to use ICA to built independent 
features.The evaluation of the performances for the 
proposed feature sets via automatic classification is 
described in section 5. Experiments and interested results 
are reported. The last section is devoted to conclusions and 
future directions 

2 Feature extraction 

Two different approaches have been used  to extract 
audio features [4]. In short time audio analysis, the signal is 
broken into small and overlapping segments in time. These 
segments are called analysis windows and we assume that 
the signal for that short amount of time is stationary.  
Frames are then classified each separately; combining these 
classification results over a larger window gives the global 
classification result.  The second approach takes account of 
the sound texture that arises from the temporal relationships 
between frames i.e. their temporal order. Therefore, the 
running means and variances of the extracted features 
described in the previous section are computed over a 
number of analysis windows. This larger window is called 
texture window. A single vector of features will represent 
each musical signal over the texture window and then genre 
classified. Feature extraction provides a compact numerical 
representation of the musical pieces. We have chosen to 
represent each signal by a unique feature vector over the 
texture window.  

2.1 Time or Spectral domain features 

  These features are computed over the time or spectral 

representation of the signal [1]. Among all the huge 

quantity of existing features, we have chosen the following 

ones: 

 Zero Crossings rate: the zero crossings rate gives a 

measure of the noisiness of a signal. Zero crossings 

rate for musical signals is higher for musical signals 

than speech.  
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Where the sign function is 1 for positive arguments and 

0 for negative ones; x [n] is the time domain signal for 

frame t. 

  Spectral Centrod: the spectral centroid   is the 

gravity centre of the magnitude spectrum of the 

Short Time Fourier Transform (STFT). It measures 

the spectral brightness of a sound  
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Where Mt(n) is the magnitude of the Fourier transform 

at frame t and frequency bin n. 

 Spectral Rolloff: Spectral rolloff is a measure of 

spectral shape. It’s defined as the frequency F 

below which 85% of the magnitude distribution is 

concentrated. 

 

           
 



tR

n

N

n

tt nMnM

1 1

)(*85.0)(                    (3) 

 

 Spectral Flux: Spectral flux is a measure of local 

spectral changes in the signal.  
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Where Nt (n) and Nt-1 (n) are the normalized magnitude 

of the Fourier transform at current frame t, and previous 

frame t-1 respectively.  

 Low-Energy: Low-Energy is defined as the 

percentage of analysis windows that have less RMS 

energy than the average RMS energy across the 

texture window.  

2.2 Wavelet features 

      The Wavelet Transform (WT) and more particularly the 
Discrete Wavelet Transform (DWT) is a relatively recent 
and computationally efficient technique for extracting 
information about non stationary signals like music. It 
provides a compact time-frequency representation of a 
signal.  The DWT analysis can be performed using a fast, 
pyramidal algorithm. In the pyramidal algorithm the signal 
is analyzed at different frequency bands with different 
resolution by decomposing the signal into a coarse 
approximation and detail information. The coarse 
approximation is then further decomposed using the same 
wavelet decomposition step. This is achieved by successive 
high pass and low pass filtering of the time domain signal 
and is defined by the following equations: 

 

                                                            (5) 

 

                                                             (6) 

where d(k) and a(k) are respectively the detail 
information and the coarse approximation of the signal (i.e. 
outputs of the high pass and low pass filters g and h). The 
filters must be chosen carefully and there are a variety of 
different wavelet families that have been proposed so far :  
Coiflet, Symlet, Meyer and Daubechies [5]. The properties 
of the wavelet condition the quality of the wavelet analysis. 
In order to further reduce the dimensionality of the extracted 
feature vectors, statistics over the set of the wavelet 
coefficients are used. That way the statistical characteristics 
of the “texture” or the “music surface” of the piece can be 
represented [4].  

We built the following features: the mean of the absolute 
value of the coefficients in each subband, the standard 
deviation of the coefficients in each subband, the ratios of 

the mean values between adjacent subbands. These features 
provide information either about frequency distribution or 
amount of change of this distribution.  

2.3 Mel Frequency Cepstral coefficients  

The MFCC represent the shape of the spectrum with 

very few coefficients. The cepstrum is the Fourier 

Transform (or Discrete Cosine Transform DCT) of the 

logarithm of the spectrum . The Mel-cepstrum is the 

cepstrum computed on the Mel-Bands instead of the 

Fourier spectrum. The use of Mel scale allows to better take 

into account the mid-frequencies part of the signal. The 

MFCC are the coefficients of the Mel cepstrum. The first 

coefficient is being proportional to the energy is not stored, 

The five next ones are stored for each frame. We can also 

store the Delta-MFCC and Delta-Delta MFCC which are 

the first and second order derivative of the MFCC along 

time. The MFCC are computed following the scheme 

represented on Fig.1 
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      Figure 1: MFCC computation 

3 Latent variables estimation 

Here, the term latent means hidden, unknown or 

unobserved. The term structure refers to some regularities 

in the data which consist in feature vectors described in 

section 2. It will be assumed that these feature vectors ,that 

we can also name observed data are generated by 

interactions between latent variables. The objective is to 

find out what these latent variables are and how they 

interact. Depending on the point of view, the “structure” in 

the data is either due to the values taken by the latent 

variables or due to the way the latent variables interact. We 

will assume that there are no inherent dependencies 

between the latent variables. Independent Component 

Analysis is a well-known method of finding latent structure  

In data. ICA is a statistical method that expresses a set of 

multidimensional observations as a combination of 

unknown latent variables. These underlying latent variables 

are called sources or independent components and they are 

assumed to be statistically independent of each other. 

There are two schools of thought with respect to what 

actually is the aim in estimating the independent 

components in the data. First, one may be regard the data 

being generated by a combination of some existing but 

unknown independent source signals si, and the task is to 

estimate them. This viewpoint is chosen in the so called 

blind source separation (BSS) framework.  Another point of 

view is to regard ICA as a method of presenting the data in 

a more comprehensible way by revealing the hidden 

structure in the data and often reducing the dimensionality 

of the representation. According to his latter school of 

 s(n)     FFT MelBand 

    Log    DCT MFCC 
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thought, it might well be that there are no “true” source 

signals generating the data but it still pays to represent the 

data as a combination of few latent factors that are 

statistically as independent as possible. It is a data mining 

approach of the problem.  

3.1 Independent Component Analysis 

    The Independent Component Analysis (ICA) allows the 
separation of sources under the hypothesis of statistical 
independence. Some estimation algorithms of the ICA 
model already exist. These different versions change 
according to the selected contrast function and scheme 
adopted for its optimization. Their performances differ in 
their stability, convergence speed and their memory need 
[12]. The ICA of a random real vector x consists in finding a 
linear transformation s = Wx so that the components would 
be as independent as possible in the way to maximize a 
function Ω( s1, s2….. sm)  which measures the independency. 
Ω is called contrast function or cost function. The ICA 
model as defined previously presents in addition to the 
condition of sources statistical independency the following 
restrictions:  

- At the most one among the sources conforms to a 
gaussian distribution.  

- Two kinds of indeterminations are generated by the 
ICA model: an indetermination on the estimated 
components order and an indetermination on the amplitude 
of the estimated sources. 

3.2 Fast Independent Component  

Analysis algorithm           

The Fast Independent Component analysis (FASTICA) 
algorithm developed by Hyvarinen and Oja [13] uses the 
negentropy ( non negative entropy ) as contrast function. 
The negentropy  J(x) associated to   px(u) will be defined as:  

         J(x) = 
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Where px(u) is the probability density function of the 

random vector x and  is the gaussian centred random 
variable, with the same variance than x, which admits Φν(u)  
as probability density function. A robust estimator of the 
negentropy has been proposed by Hyvarinen in [4]. The 
FASTICA algorithm uses also the Newton-Raphson method 
to maximize this measure. A learning rule searches the 
direction (i.e. a line vector w from the separation matrix W) 
for which the w

T
x projection maximizes the non Gaussianity 

in the meaning of the negentropy J(w
T
x ). The w

T
x  variance 

must be equal to the unit, thus for whitened data this is 
equivalent to restrain the norm of w to unity. The maxima of  
J(w

T
x)  are obtained for some optima of E{G(w

T
x)}. Then, 

according to the Kuhn-Tucker [4] condition, the optima of 
E{G(w

T
x)} under the constrain:  

               1
22
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                                 (8) 

are obtained at the points where :  

               0 wxwxgE T                                  (9)    

g is the derivative of the G function  

3.3 Sources estimation     

Equation (4) is resolved by the Newton method, this comes 
to calculate each line w of the matrix W by formula:   

     )1(.)1((')1()(  kwxkwgExkwxgEkw TT
   (10)  

The algorithm takes then the following form:                       

1) Take a random initial vector  w(0) 

2) Do        )1(.)1((')1()(  kwxkwgExkwxgEkw TT
 

3) Normalize w(k)  

4) If ║w
T
(k)w(k+1)║ is not enough near to 1, then go 

back 2, else pull out  w(k).  

The resulting vector is a column of W allowing to separate 
one among the non-Gaussian sources with w

T
(k)x  is one of 

the sources and x is an observation. In order to estimate 
several components, the previous algorithm must be used 
and to avoid the convergence of the vectors to the same 
maximum, it is necessary to decorrelate the projections 
w

T
(1)x,…….., w

T
(n)x after each iteration. Two approaches 

are possible: a deflation approach or a symmetric 
decorrelation approach [4].  

4 Evaluation and Results 

In order to evaluate the proposed feature sets, we trained 

a Multi-Class Support Vector Machine (MC-SVM) 

classifier using real Algerian music pieces.  

4.1 Datasets 

Training the classifier needs a large collection of 

Algerian musical signals. Various recording qualities were 

used to choose the musical excerpts: radio broadcasting, 

compact disks, and old disks. Two different audio format 

files were also used: the wav and the MP3 format. The 

Algerian musical genres were labeled following a study over 

50 subjects of different ages and positions. The most cited 

labels have been adopted as Algerian genres dataset. These 

are: Andalou, Chaabi, Chaoui, Haouzi, Kabyle, Malouf, Rai, 

Staifi. 8 excerpts represent each of the 8 genres. It leads to a 

database of 64 excerpts which associates to each example a 

unique label. The files were stocked at 22050 Hz, 16 bits, 

mono audio files.  

4.2 Classification 

The database is divided into 80% of the files for the 

learning process and 20% for the test. We have implemented 

a Multi-Class Support Vector Machine to achieve the 

classification task, with “one against one” strategy. The 

necessary learning step uses the Sequential Minimal 

Optimization (SMO) algorithm  We have chosen the RBF 

kernel and a grid search allows during the learning step to 

optimize the pair of parameters C (penalty parameter)  and σ 

(gaussian kernel width).  

4.3 Feature sets 

 Before the features extraction, the time-domain musical 

signals are normalized to have zero mean and unity 

variance. After that, music signals are divided into 20ms 

frames (analysis windows); Using hamming windows 
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minimizes edge effects and successive analysis windows      

overlap each other every 10ms. We then compute for each 

frame the descriptors cited in the previous section.  

The means and variances of spectral centroid, rolloff, 

flux, zerocrossings and five first MFCC over the texture 

window of 3s are computed (3s is shown to be the minimum 

time amount necessary to identify a particular piece of 

music by human listeners). The low energy descriptor is 

already computed over the texture window. The resulting 

feature vector (TSPMFCC) is a 19 dimensional vector.  

Applying ICA to extract the latent structure leads to a new 

feature vector (TSPMFCC-IND).  For wavelet feature 

vectors the computation is slightly different; For each music 

piece, a discrete wavelet transform is computed over a 

segment of 3s. The statistics of the coefficients of the DWT 

are then used to build acoustic vector for each signal. Their 

dimension depends on the chosen resolution, the type of 

filter and the statistics used. Three sets of feature vectors are 

extracted : the mean of the absolute value of the coefficients 

in each subband (MVPEA), the standard deviation of the 

coefficients in each subband (STDPEA) and the ratios of the 

mean values between adjacent subbands (MCPEA). We 

used the following wavelet filters : Daubechies1(db1), 

Daubechies5 (db5), Meyer (Meyer), Symlet2 (Sym2) and 

Coiflet1 (Coif1). 

4.4 TSPMFCC-IND features  

Table I represents the grid-search of the learning step for 

the MC-SVM. The feature set used is the  TSPMFCC-IND. 

The RBF kernel has  been chosen. We can see that for C=2
8
 

and σ= 2
-9

 , the classification accuracy percentage reachs 

95% which means that the learning step was succesfull. 

Table II gives the confusion matrix for the test step. It shows 

the classification scores for six genres. We can see that these 

scores are of 100% for five genres while they reach 75% for 

the last one leading to a global score of 95.8%.  

Table I: Grid-Search (C, σ), Learning step 

  

 

 

 

          Table II: Confusion matrix, Test step 

 

4.5 TSPMFCC-IND versus TSPMFCC  

In order to compare between the TSPMFCC  and the  

TSPMFCC-IND features, Figure 2 shows the accuracy 

percentages for different TSPMFCC and TSPMFCC-IND 

feature vectors. These vectors are composed of different 

combinations of simple descriptors, but their dimension is 

the same: 26 descriptors. We have Class I , Class II, Class 

III and  Class IV  feature vectors. All the  combinations 

contain MFCC descriptors. The classifier is the MC-SVM 

with RBF kernel. We can see that the best score is obtained 

for TSPMFCC-IND with 85%. The feature set for this score 

is composed of 13 MFCC and 13 Delta-MFCC.  

 

 

         Figure 2: TSPMFCC-IND versus TSPMFCC 

 

4.6 TSPMFCC-IND versus others  

In order to compare between our TSPMFCC-IND and 

other feature vectors, Figure 3 gives accuracy percentages 

for  two classifiers and for different acoustic vectors. We 

used MC-SVM and Multi-Label SVM classifiers. Two 

categories of feature vectors have been used: TSPMFCC 

and Wavelets. TSPMCC features are labeled Class (for 

classic), IND (for independent), Inst (for instantaneous) or 

Fus (for fusion). Wavelet features are labeled MCPEA, 

MVPEA, STDPEA and STDPEA-Multilabel (STDPEA 

with Multilabel SVM). We can see that the best score is 

obtained for the TSPMFCC-IND features and reachs 95% 

followed by the MCPEA-Multilabel features with a score of 

about 93%.. 

 

 
20 22 24 26 28 

20 0.8 0.8 0.75 0.75 0.75 

2-1 0.8 0.9  0.9   0.85   0.85 

2-3 0.75 
  

0.9 
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2-5 0.7 0.8 0.9 0.85   0.85 

2-7 0.6 0.7  0.8 0.9 0.9 

2-9 0.6 0.6 0.7 0.8   0.95 
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Chaabi 1 0 0 0 0 0 

Kabyle 0 1 0 0 0 0 
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 Figure 3: TSPMFCC-IND versus others 

5 Conclusions 

We can see that introducing Independent Component 
Analysis to retrieve latent structure in our data improved the 
scores of genre classification. Despite the good results 
obtained for our Algerian datasets, many future researches 
had to be done. The genre hierarchy has to be expanded: 
more genres and also many sub genres. New genres not 
depicted in our actual work (such as gnawi music must be 
included; Sub genres has also to be defined for we can 
imagine to classify Andalou, Chaabi and Haouzi as sub 
genres of a more general genre labeled Classical for 
example. An interesting direction for future research is to 
associate instrument recognition to our classifier, for 
Algerian genres maybe described by the type of instrument 
played.  The number of excerpts for each genre should also 
be augmented; this would for sure lead to better 
classification rates.  Another way of research may concern 
reducing the dimension of feature vectors which may be 
done in parallel with Independent Component Analysis. 

    REFERENCES 

[1] G. Tzanetakis,  P. Cook, “Musical genre classification of audio 
signals”, in IEEE Trans. On Speech and Audio Processing, 2002, pp. 
293-302. 

[2] R. O. Duda, P. E. Hart, Pattern recognition, John Wiley and sons, 
2001. 

[3] M. Mandel, D. Ellis, “Song-level features and support vector 
machines for music classification”, in Proc. Int. Conf. on Music 
Information Retrieval (ISMIR’05), London, 2005, pp. 594–599. 

[4] T. Lambrou, P. Kudumakis  and all, “Classification of audio signals 
using statistical features on time and wavelet transform domains” in 
Proc. Int. Conf. on acoustics, speech and signal processing 
(ICASSP98), USA, pp. 3621-3624. 

[5] J.J. Aucouturier, F. Pachet, “Musical genre: a survey”, in Journal of 
new music research,2003, pp. 1234-1265. 

[6] M.R. Boutell, J. Luo, X. Shen and C.M. Brown, “Learning multi-
label scene classification”, in Pattern Recognition, 2004, pp. 1757-
1771. 

[7] K. Brinker, J. Furnkranz and E. Hullermeier, “A unified model for 
multilabel classification and ranking” in Proc. European Conf. on 
Artificial Intelligence (ECAI’06), Italy, 2006, pp. 489-493. 

[8]  V. Vapnik, Statistical Learning Theory, John Wiley and sons,  2001. 

[9] T. Li, C. Zhang and S. Zhu, “Empirical studies on multilabel 
classification” in Proc. Int. Conf. on Tools with Artificial 
Intelligence, USA, 2006, pp. 86–92. 

[10] G. Tsoumakas, I. Katakis, “Multi-label classification: An overview”, 
in International Journal of Data Warehousing and Mining, 2007, 
pp.1–13 

[11] C. Jutten, J. Herault “Blind separation of sources, part I: An adaptive 
algorithm based on neuromimetic architecture” in Signal Processing, 
1991, pp.1-10 

[12] A. Hyvärinen “Fast and robust fixed-point algorithms for 
independent component analysis” in IEEE Trans. On Neural 
Networks, 1999, pp.626-634 

 

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

404


