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The study of flute-like instruments involves several subfields of investigation such as acoustics of the waves in
the pipe, hydrodynamics of a jet perturbed by an acoustic field and aeroacoustics of a jet/labium interaction.
Historically, several models of flute-like instruments have been proposed, including the results from separated
studies of the parts mentioned above. In this paper, such a model is written, taking into account the following
elements:

• hydrodynamics of a jet perturbed by an acoustic field, through a delay equation, corresponding to the con-
vection of a perturbation of the jet from the flue exit to the labium

• aeroacoustics of a jet/labium interaction, through a nonlinear equation, which highlights the presence of a
dipolar pressure source

• acoustics of the waves in the pipe, through a modal formulation

• nonlinear losses at the labium, through an additional nonlinear term

This description includes two nonlinear terms, which require numerical solving. This paper aims at comparing
different approaches in terms of the resolution of the nonlinear equations. The following aspects of the model
behaviour are addressed: amplitude/frequency evolution along periodic branches, oscillation threshold.

1 Introduction

Since the works of Helmholtz [1], flute-like instruments
have been widely studied, and different models have been
proposed [2]. They generally include the following elements:
hydrodynamics of an unstable jet, aeroacoustic source pro-
duced by a jet-labium interaction, acoustic response of a pipe,
and a nonlinear term of losses [3]. Even if such a separation
between the different terms could be discussed, its validity
has been proved [2], and many studies dealing with these el-
ements have been conducted (for example [4, 5, 6] for the jet,
[7] for aeroacoustic sources, [8, 9] for the pipe).
However, due to the complex nature of such a model, its
global solving is a sensitive issue, and requires numerical
tools. Different methods have been proposed (for example
[10, 11, 12]), with sometimes important limitations. Since
it can be related to the musician/instrument interaction, the
study of the solutions evolution with the value of a parameter
slowly varying with time is specially interesting, but requires
to take into account additional precautions (sections 2 and 4).
We propose to compare different numerical solving meth-
ods, focusing on oscillation threshold, and oscillating ampli-
tude/frequency evolutions along the periodic solution bran-
ches.
In the first section, we briefly recall the mechanism of sound
production in flute-like instruments and we describe the sim-
plified model. Then, we present the different resolution meth-
ods, and in section 4, we compare the results provided by
these different approaches.

2 Physical model of flute-like instru-
ments

2.1 Mechanism of sound production

2.1.1 General description

A classical approach in musical acoustics consists in de-
scribing an instrument by a nonlinear coupling between an
exciter and a resonator [13]. In flute-like instruments, the ex-
citer consists of the interaction between an air jet and an edge
called “labium” (see Fig. 1).
More precisely, when the musician blows in the instrument,
an unstable jet is generated at the channel exit. The inter-
action between this jet and the labium constitutes an aeroa-
coustic source, exciting the resonator. The acoustic field thus
created in the pipe, in turn, perturbs the jet at the channel
exit. This perturbation is amplified and convected along the
jet towards the labium, and so sustains the oscillations of the

jet around the labium. Closing the feedback loop, this mech-
anism allows the establishment of auto-oscillations.
To correctly model the saturation of the oscillating ampli-
tude, a term of dissipation must be taken into account, which
describes the vortex shedding at the labium. In this section,
we first briefly describe the behaviour of these different el-
ements, and we secondly present the studied model and the
simplifications on which it is based.
In flute-like instruments, the jet velocity U j is an important
parameter. Indeed, it is directly related to the slowly varying
pressure in the musician’s mouth, and so associated to the
fact that the instrumentalist blows hard or not. As we will
see below, it is thus particularly interesting to study the evo-
lution of the model solutions with the value of this parameter.

Figure 1: Simplified representation of the excitation window
of a recorder.

2.1.2 Hydrodynamics of the jet

In flute-like instruments, the initial perturbation of the jet
is provided by the acoustic field present in the pipe resonator.
This phenomenon, called “receptivity”, has been studied by
De la Cuadra [5]. Based on experimental works, he proposed
the following expression for the initial perturbation of the jet
at the channel exit:

η0(t) = h
vac(t)

U j
, (1)

where η0 is the transversal displacement of the jet at the chan-
nel exit, h the height of the channel exit, vac the oscillating
amplitude of the acoustic velocity at the pipe exit, and U j the
jet central velocity.
Since the works of Rayleigh [14], it is known that the con-
vection of a perturbation along a naturally unstable jet is ac-
companied by its amplification. As a first approximation,
a linear model, such as that proposed by Rayleigh, predicts
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an exponential amplification with respect to the distance x:
η(x) = η0 · eαi x where αi is the amplification parameter. De la
Cuadra [5] proposed the empirical expression αi ≈ 0.4

h .
The combination of this element with Eq. (1) leads to the
transversal perturbation of the jet at the labium:

η(W, t) = eαiWη0(t − τ) =
h

U j
eαiWvac(t − τ), (2)

where W is the distance between the channel exit and the
labium (see Fig. 1), and τ the convection delay of the pertur-
bation along the jet, given by: τ = W

cp
with cp the convection

velocity of perturbations along the jet. Theoretical [14] and
experimental [5] works have shown that 0.3U j ≤ cp ≤ 0.5U j.
We retain cp = 0.4U j, and consider the following realistic
values for a recorder: W = 4mm and h = 1mm.

2.1.3 Nonlinear jet-labium interaction: aero-acoustic
source

The oscillation of the jet around the labium (see Fig. 1)
corresponds to a flow injection alternately inside and outside
the pipe. Following the jet-drive model developped by Verge
[4], we represent this alternative flow injection as a pressure
difference Δp = pin−pout between the two sides of the labium
(pin is the pressure in the pipe, and pout the external pressure):

Δp = −ρδd
S w
· dQin

dt
, (3)

where ρ is the air density, δd the effective distance between
the two flow sources, S w = WH the surface area of the win-
dow between the channel exit and the labium, and H the
width of this window. Assuming that each flow source is
located at a distance h of the labium, Verge [4] calculated:
δd =

4
π

√
2hW.

Qin, the part of the flow injecting in the pipe, is given by:

Qin = 〈H
∫ y0−η(t)

−∞
U(y)dy〉, (4)

with y0 the offset between the labium and the channel exit
(see Fig. 1), and U(y) the jet velocity. Representing the bell-
shape of the jet by a Bickley profile U(y) = U jsech( y

b )2, with
b the half width of the jet, leads to the pressure difference:

Δp(t) =
ρδdbU j

W
· d

dt

[
tanh

(
η(t) − y0

b

)]
. (5)

This pressure difference represents the acoustic force exerted
by the jet/edge interaction on the air column, and thus con-
stitutes the aeroacoustic source that excites the resonator.

2.1.4 Acoustical response of the pipe

The resonator, constituted by the air column in the pipe,
amplifies the acoustic oscillations near its resonance frequen-
cies. As the exciter involves a pressure source, the acoustical
response of the pipe can be represented through its input ad-
mittance Yin =

Vac

ΔP , where Vac and ΔP are respectively the
acoustical velocity and the term of pressure source, in the
frequency domain (i.e. for ΔP the Fourier transform of Eq.
(5)). Using a modal decomposition, we write the input ad-
mittance in the frequency domain as a sum of m resonance
modes:

Yin =
∑

m

am jω
ω2

m − ω2 + jωωm

Qm

, (6)

where am, ωm and Qm are respectively the modal amplitude,
the resonance pulsation and the quality factor of the mth res-
onance mode.

2.1.5 Nonlinear losses at the labium

In most flute-like instruments, the surface area of the win-
dow between the channel exit and the labium is smaller than
the cross section of the pipe. Therefore, the window repre-
sents a constriction for the acoustic flow, which causes the
separation of the flow at the labium, and leads to the for-
mation and the shedding of vortices on the jet [3]. One can
model this phenomenon as a variation of the pressure differ-
ence between the two sides of the labium. It results in an
additional nonlinear term in Eq. (5) reprenting the aeroa-
coustical source:

Δp(t) =
ρδdbU j

W
d
dt

[
tanh

(
η(t) − y0

b

)]
− ρ

2
v2

ac

α2
vc

sgn(vac), (7)

where αvc ≈ 0.6 is the vena-contracta factor [3].

2.2 Simplified model

In order to simplify the study, we take into account a sin-
gle acoustic mode of the resonator (that is to say a single term
in Eq. (6)), with a1 = 28, Q1 = 40, and f1 = 500 Hz.
Writting Eq. (6) in the time-domain leads to:

v̈ac(t) +
ω1

Q1
v̇ac(t) + ω

2
1vac(t) = a1Δ̇p. (8)

Assuming that the jet velocity U j varies slowly compared to
the other variables, its derivatives can be neglected. Then
injecting Eqs. (7) and (2) in this expression, we obtain:

v̈ac(t) =
a1ρδdbU j

W
d2

dt2

{
tanh

[
heαiWvac(t − τ)

bU j
− y0

b

]

−ρ
2

(
vac

αvc

)2

sgn(vac)

⎫⎪⎪⎬⎪⎪⎭ −
ω1

Q1
v̇ac(t) − ω2

1vac(t).

(9)

To simplify numerical issues, it is helpful to make the system
dimensionless. We define a dimensionless time t̃ = ω1t and a
dimensionless acoustical velocity ṽ(t̃) = heαiW

bU j
vac(t̃). Injecting

these expressions in Eq. (9) finally yields:

¨̃v(t̃) =
a1ρδdbU j

W
d2

dt̃2

{
tanh

[
ṽ(t̃ − τ̃) − y0

b

]

− ρ

2e2αiW

(
bU j

hαvc

)2
ṽ(t̃)2

⎫⎪⎪⎬⎪⎪⎭ −
˙̃v(t̃)
Q1
− ṽ(t̃),

(10)

where ˙̃v is the derivative of variable ṽ with respect to dimen-
sionless time t̃.

3 Resolution of the model: different
approaches

Due to the presence of two nonlinear terms in Eq. (10),
analytical resolution is not possible, and the study of the
model requires the use of numerical methods.
Moreover, the presence of a delayed term in the derivative
part of Eq. (10) highlights the neutral nature of the studied
model. This feature increases the model complexity [15], and
its accurate analysis requires the use of particular numerical
methods described in this section.

3.1 Linear Analysis

Although accurate results can only be obtained while solv-
ing the nonlinear equations, linearization of the studied sys-
tem around the trivial solution Δp = η = vac = 0 allows to
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obtain a first approximation of different results. In a feed-
back loop system such as the one presented in the previous
section, it is known that the emergence of auto-oscillations
is possible under the necessary (but not sufficient) following
conditions on the linearised open-loop gain G [16]:

• |G| must be larger than 1.

• arg(G) must be a multiple of 2π.

As demonstrated in [12], the linearization of the studied sys-
tem leads to the open loop gain (in the frequency domain):

G = jω
hρδdeαiW

W
Yin(ω)e− jωτ. (11)

The second condition applied to this equation leads to:

−ωpτ +
π

2
+ arg

[
Yin(ωp)

]
= −2nπ. (12)

The solution ωp of this equation yields a first approxima-
tion of the oscillating frequency of the studied model. Al-
though this reasoning is rigorously valid only at the oscilla-
tion threshold, previous studies have shown that it provides
good approximations along the whole solutions branch [12].
The integer n is related to the order of the hydrodynamic
mode of the jet: the case n = 0 corresponds to the first hy-
drodynamic mode, that one can observe on flute-like instru-
ments in normal playing conditions [5]. The higher values of
n correspond to “aeolian modes”, which are particular sounds
obtained at very low jet velocity [3].

3.2 Time-domain simulations

We compare the results provided by several classical time-
domain approaches, based on different numerical schemes
adapted to neutral delay differential equations:

1. An iterative algorithm based on a fourth-order Runge
Kutta method (RK4). The delayed sample is estimated
by a linear interpolation of the previous calculated sam-
ples. The jet velocity is allowed to vary with a piece-
wise shape between three target values. The jet ve-
locity must verify a quasi-steady condition because its
derivatives have been neglected in Eq. (10) (see [12]
for more details). The oscillation is initiated by hold-
ing the variable y constant at an arbitrary value for neg-
ative time. It results in a short transient, with no phys-
ical meaning, after which the system evolves freely.

2. A Bogacki-Shampine scheme with adaptative step-size,
implemented in the Simulink/Matlab solver ode23 [17].
As above, the delayed samples are estimated by a lin-
ear interpolation between to computed samples.

3. A “dissipative” approach (ddeNsd), especially devel-
opped to solve neutral delay differential equations [18].
It consists in approximating the neutral equation:

y′(t) = f
[
t, y(t), y(t − τ), y′(t − τ)] (13)

by the delay differential equation:

z′(t) = f

(
t, z(t), z(t − τ), z(t − τ) − z(t − τ − δ)

δ

)
(14)

and in resolving this system with a Matlab solver (na-
mely ddesd), developped for delay differential equa-
tions [19]. This solver, which originally does not sup-
port neutral systems, is based on an explicit Runge
Kutta scheme with continuous extension to evaluate
the delayed variables.

3.3 Numerical continuation

The use of numerical continuation has recently shown to
be useful in the context of musical acoustics [20]. Indeed,
it permits to calculate bifurcation diagrams, which represent,
ideally, all the periodic solutions of the studied model, as a
function of one of the system parameters (called the “con-
tinuation parameter”). It thus provides a more global knowl-
edge of the system dynamics: existence of unstable solutions,
coexistence of several solutions (which explains, for exam-
ple, hysteresis phenomena)...
The neutral nature of the model prevents us from using clas-
sical softwares as AUTO [21] or MANLAB [22]: we use
here NDDE-Biftool [15, 23], especially adapted for numeri-
cal continuation of neutral delay differential equations. Peri-
odic solutions are computed using orthogonal collocation: a
single period T of the solution x(t) is discretized, leading to
a set of discrete points {x(t0), x(t1), ..., x(tN = t0 + T ) = x(t0)}
which are, together with the period T , the unknowns (see for
example [24] for more details).
Knowing a solution x0 for a set of parameters λ0, one can
compute the whole corresponding branch of periodic solu-
tions passing through x = x0 at λ = λ0. In NDDE-Biftool,
numerical continuation relies on a classical Prediction-Cor-
rection Method: starting from the given solution x0, an ap-
proximation of a neighboring solution (corresponding to a
set of parameters λ0 + Δλ) is computed using a tangent pre-
dictor. To avoid difficulties on the return points where the
tangent tends to infinity, the branch is parameterized using
the Keller’s pseudo arc-length (see for example [25]). This
first approximation is then corrected using an iterative cor-
rection algorithm based on Newton method. Step by step,
this approach allows to compute the whole periodic solution
branch.

4 Results and discussions: comparison
between the different approaches

In a musical context, it is particularly interesting to com-
pare the results provided by the different resolution methods
in terms of oscillating amplitude, oscillating frequency, and
oscillation threshold. Indeed, these variables are directly re-
lated to the sound intensity (for the amplitude), and to the
pitch of the note (for the frequency). Since we only take into
account a single resonance mode of the pipe, we do not ad-
dress here the sound spectrum.
For each numerical method, the user can adjust some param-
eters affecting both accuracy and convergence of the results:

• the sampling frequency, the relative tolerance, and the
rate of change of parameter U j for time-domain solver
ode23. For the time-domain solvers RK4 and ddeNsd,
the user controls, in addition, the initial condition de-
fined above.

• the number of points per period, the relative tolerance,
the maximal step of the bifurcation parameter between
two successive points of the branch, and the use of an
adaptative mesh for numerical continuation.

Thus, computing numerical solutions always relies on a com-
promise between results accuracy and computation time.
As it is classical for flute-like instruments, we define, to rep-
resent the results, the dimensionless jet velocity θ = U j

W f1
[12].
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Figure 2: Oscillating amplitude of vac (m/s) versus dimen-
sionless jet velocity θ for the different solving methods.

Left: aeolian regime. Right: “standard” regime.

4.1 Oscillating amplitude

Fig. 2 represents the oscillating amplitude of the variable
vac as a function of the dimensionless jet velocity θ. Globally,
this representation shows good agreement between the differ-
ent numerical solving methods, for both aeolian and standard
regimes. However, as shown on Fig. 3, the relative differ-
ence between the results provided by time-domain solvers
and those provided by numerical continuation highlights sig-
nificant differences on several parts of the branches. More-
over, we observe that for a given time-domain solver (for ex-
ample those based on a fourth-order Runge-Kutta scheme),
the difference is small (lower than 5%) at the top of the branch,
whereas it reaches 25% around θ = 70. It would probably
be possible to reduce these differences by further adapting
the different numerical parameters mentioned above. How-
ever, obtaining the plotted results with time-domain simu-
lations already requires a high sampling frequency (up to
1MHz and 160kHz respectively for the Bogacki-Shampine
and the fourth-order Runge Kutta solvers), and a slow vari-
ation in time of the jet velocity U j, in order to comply with
the quasi-static hypothesis (section 2). Consequently, some
of these calculations are CPU demanding (a few hours for the
Bogacki-Shampine solver). The fourth-order Runge-Kutta
scheme is more efficient (about 5 minutes for the plotted
data), but this time calculation is very sensitive to the numeri-
cal parameter values. Moreover, it is sometimes necessary to
repeat several times the same calculation in order to choose
convenient numerical parameters. Computing more accurate
results with these time-domain solvers is thus hardly con-
ceivable for an user aiming at studying the influence of the
model parameters. On the other hand, if the implementation
of a given model in the numerical continuation software can
first present important numerical issues, the study of the in-
fluence of the parameter modifications is then, most of the
time, more easy and not so CPU-demanding (about 15 min-
utes for the two plotted periodic solution branches).

4.2 Oscillation threshold

As shown on Fig. 3, oscillation thresholds are partic-
ularly sensitive zones. For sake of clarity, Figs. 2 and 3
represent only the results of time-domain simulations for in-
creasing ramps of the jet velocity U j. Indeed, differences be-
tween increasing and decreasing ramps are not visible at this
scale. Fig. 4 focus on the oscillation threshold of the stan-
dard regime, and shows, for one of the time-domain solver
(fourth-order Runge-Kutta scheme), an hysteresis effect on
the threshold, between an increasing and a decreasing ramp
of the jet velocity U j. An hysteresis phenomenon is related to
the coexistence of two stable solutions of the model for the
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amplitude computed by NDDE-Biftool (numerical

continuation) and those provided by time-domain solvers.

same parameter values. The bifurcation diagram provided
by NDDE-Biftool shows only one stable solution, highlight-
ing that this hysteresis effect is purely numerical: varying
the bifurcation parameter U j with respect to time, even very
slowly, is not completely consistent with the quasi-static hy-
pothesis.
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Figure 4: Oscillating amplitude of variable vac (m/s) versus
dimensionless jet velocity θ: zoom around the oscillation

threshold of the “standard” regime.

4.3 Oscillating frequency

Fig. 5 represents the oscillating frequency versus the di-
mensionless jet velocity θ. For the different numerical solv-
ing methods of the nonlinear model, we observe a common
global shape of frequency evolution along the branches.
However, differences up to 2% to 3% occur between one of
the time-domain solver (Bogacki-Shampine scheme) and the
others numerical methods. If such a deviation may seem
small, it is significant for a frequency value: indeed, it cor-
responds to about 50 cents, thus, in a musical context, to a
quarter tone. Contrary to what is observed for the amplitude,
this frequency offset does not seem altered by the change of
the sampling frequency or the rate of change of the jet veloc-
ity U j, and it thus seems intrinsic to the numerical scheme.
Furthermore, one can observe that numerical methods es-
pecially dedicated to the analysis of neutral delay differen-
tial equations (namely the “dissipative” solver ddeNsd, the
Runge-Kutta solver, and NDDE-Biftool) seem to provide con-
cordant results. Conversely, the more general solver based
on a Bogacki-Shampine scheme (implemented in Simulink)
provides frequency values further away from the others.
Moreover, Fig. 5 shows that if the linear analysis leads to a
first approximation of the order of magnitude of the oscillat-
ing frequency, it provides neither an accurate value outside
the vinicity of the oscillation threshold, nor a good approxi-
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mation of the frequency evolution shape along the branch.
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Figure 5: Oscillating frequency (Hz) versus dimensionless
jet velocity θ for the different solving methods. Left: aeolian

regime. Right: “standard” regime.

5 Conclusion

For very low computational cost, the linear analysis pro-
vides useful informations, for instance on the oscillating fre-
quency. However, solving the whole nonlinear system is nec-
essary to calculate accurate solutions. Results obtained by
the different numerical approaches are globaly consistent, but
this comparison highlights the importance of using tools es-
pecially developped for the study of neutral delay differential
equations. Indeed, results provided by this kind of methods
seem to be more accurate than those obtained using more
general numerical schemes.
Nevertheless, such resolutions are still demanding in com-
putation time, and the choice of numerical parameters as, for
example, the sampling frequency for the time-domain solvers
or the number of points per period for numerical continuation
is very important to obtain accurate results.
Finally, it is important to keep in mind that this simplified
model takes into account a single acoustic mode of the pipe.
We can assume that several characteristics, as for example
the frequency evolution along the branches or the solutions
stability would be affected by the addition of other acoustic
modes.
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