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The hybrid finite element/statistical energy analysis (FE/SEA) method [1,2] is a vibro-acoustic analysis approach 
based on a non-parametric model of uncertainty. It allows the prediction of the ensemble mean and variance of 
the response of a complex built-up system across a large range of frequencies, with a small number of degrees-
of-freedom, and without the use of Monte-Carlo simulations. This approach considers the structure as an 
assembly of fully deterministic components, modelled using FE, and highly random components, which are 
modelled with SEA, and a diffuse field reciprocity relation is used to effect coupling between the components.  
The main difficulty of this method is the choice of the different components. The work presented here addresses 
this issue. The aim is to develop an algorithm that can automatically recognise the SEA and FE components in a 
hybrid model based on a relatively coarse-mesh finite element model. 

1 Introduction 
In the design of engineering structures that are sensitive 

to manufacturing imperfections (for example, cars from a 
production line) it is ideally required to predict the statistics 
of the response across the ensemble of manufactured 
systems. This is particularly true for the high frequency 
response, where the manufacturing imperfections are 
commensurate with the length scale of deformation 
producing a high sensitivity to uncertainty.  

 
Standard analysis techniques for acoustics and 

vibration, such as the Finite Element Method (FE) and the 
Boundary Element Method (BEM), are well suited to the 
analysis of the response of a system in the low frequency 
range.  However, as the frequency increases, the number of 
degrees of freedom required to capture the dynamic 
behaviour of the system components rises, producing large 
computational times, even without accounting for 
uncertainty. These considerations have lead to the 
development of alternative analysis methods which account 
for uncertainties while also requiring a reduced number of 
degrees of freedom in the high frequency range. One such 
method is Statistical Energy Analysis (SEA), a probabilistic 
method based on the analysis of vibrational energy flow 
within the system. The applicability of the SEA method is 
usually limited to higher frequencies because of the 
underlying assumptions, specifically that each structural 
component is sufficiently random and that the coupling 
between subsystems (i.e. different regions of the system) is 
sufficiently weak. Between the respective ranges of validity 
of FE and SEA there is a “mid-frequency” region, and 
much research effort has been directed at the development 
of efficient analytical methods that can be applied in this 
range. 

 
Over the last decade a hybrid finite element 

(FE)/statistical energy analysis (SEA) method based on 
non-parametric modelling of uncertainty has been 
developed. This method provides an efficient way of 
combining the strength of the two well established 
techniques, and allows the prediction of the ensemble mean 
and ensemble variance response of complex built-up 
structures across a broad frequency range. Within this 
approach the structure is considered as an assembly of fully 
deterministic components, modelled via FE, and highly 
random components, described with SEA, and the coupling 
of the two methods is achieved via the diffuse field 
reciprocity relation. The hybrid FE-SEA method is 
available in the commercial software package VA ONE. In 
recent years many industrial users have applied VA ONE to 
a variety of vibro-acoustic problems (aerospace, 

automotive, etc.) validating the approach against 
experimental results and showing good prediction accuracy. 
But the main difficulty of the method is the choice of the 
different subsystems and the master system. 

 
The aim of this work is to develop an automatic method 

whereby the subsystems and the master system in a hybrid 
model can be identified from a finite element model.  This 
problem has previously been addressed for purely SEA 
models by Totaro and Guyader [3] and by Gagliardini et al 
[4], and the algorithms that have been employed are 
described briefly below.   

 
(i) The method of Totaro and Guyader [3] consists of 

applying an excitation to the structure (typically a point 
load) and then calculating the energy density at a grid of 
points over the structure at a number of frequencies within 
a specified band.  A rectangular energy matrix is then 
constructed in which the rows correspond to the grid points 
and the columns correspond to the frequencies.  Each entry 
of the matrix is given by the energy density of the relevant 
grid point at the relevant frequency, minus the average of 
the grid point energies at that frequency (i.e. the deviation 
of the grid point energy density from the mean).  This 
matrix is then multiplied by its transpose to yield a square 
symmetric matrix with dimension equal to the number of 
frequencies.  The eigenvalues and eigenvectors of this 
matrix are found, and ranked in order of decreasing 
eigenvalue.   The energy matrix is then post multiplied by 
the eigenvector matrix, and the resulting matrix is called the 
“PCP” matrix: the ijth entry of this matrix refers to the ith 
grid point, and the numerical value is equal to the scalar 
product of the frequency dependency of the energy at this 
point with the jth eigenvector.  The aim of the method is 
then to “cluster” the grid points into groups that have a 
similar dependency on the first few eigenvectors (i.e. 
groups with similar rows in the PCP matrix).  These 
clusters are then identified as the SEA subsystems.  The 
above description refers to only one excitation point, but 
the method is normally extended by calculating the PCP 
matrix for a number of excitation points, and then 
producing a combined matrix by representing each matrix 
as a set of columns in a larger matrix.  Physically this 
method identifies subsystems by looking for grid points that 
display a similar dependency on frequency. 

 
(ii) The method of Gagliardini et al [4] is based on 

selecting a number of grid points on the finite element 
model and then computing the modulus squared Green’s 
function between each pair of grid points, averaged over a 
specified frequency band.  The resulting functions are 
expressed as the entries of a matrix.  An iterative algorithm 
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is then employed to try and identify groups of grid points in 
the system that are strongly coupled to each other but 
weakly coupled to other groups.  The authors state 
“unfortunately the optimization process may never 
converge, and some of the points may remain definitely 
unstable.  Further work is required to identify robust 
convergence criteria.”  Although the method has a clear 
physical basis, it appears that it can be complicated and 
numerically expensive to apply. 

 
In what follows the aim is to develop an identification 

method which is conceptually simple and relatively 
numerically efficient and stable. 

2 Identification method 

2.1 Definition and properties of the A 
matrix 

Given a finite element model of the system, the modes 
of the system can be computed and then projected onto a 
grid of points distributed over the model, and the set of 
Green’s functions between any two points i and j can then 
be written in the form : 

 
 

(1) 
 

                                    
where is the velocity in direction k at point i caused by 

a point load applied in direction l at point j.  The term  
represents the value of mode n in direction k at node i, and 

 is the nth natural frequency.  It is implied in Eq. (1) 
that the damping is proportional with loss factor , 
although this assumption can be changed if required.  The 
entries of the matrices employed in the final part of 
equation (1) are readily deduced. A matrix A is now 
defined as : 

 
           

                 (2) 
 

 
which represents the modulus squared Green’s function 
averaged over force and response directions and over a 
frequency band .   

 
The following approach is based on the premise that a 

system comprised of “perfect” uncoupled SEA subsystems 
would have an A matrix with the structure 

 
                                                   
 

(3) 
 
 
 
 

where each entry of the sub-block  is identical, i.e. 

 

.                                                  
 (4) 

 
 
 

 
Equation (3) and (4) imply that the response of each 

subsystem is homogeneous, regardless of which point in the 
subsystem is subjected to excitation.  The matrix  has 
only one non-zero eigenvalue, and the corresponding 
eigenvector has identical entries.  The matrix A therefore 
has n non-zero eigenvalues, and the corresponding 
eigenvectors have the form 

 
 
 

.                                                       (5) 
 
 

 
In such a “perfect” system, the spatial domain of the 

subsystems can readily be identified by examining the 
eigenvectors associated with the non-zero eigenvalues (note 
that, depending on the grid numbering scheme, the matrix 
A may be shuffled and it may be non-trivial to identify the 
subsystems from A itself).  If the system is “non-perfect”, 
then each sub-block of A will have non-constant values, 
and couplings between the sub-blocks will occur.  
Nonetheless, a similar eigenvalue/eigenvector structure 
would be expected: i.e. there should be a limited number of 
large eigenvalues, corresponding to the number of 
subsystems, and the associated eigenvectors should be 
approximately homogeneous and localized to a particular 
subsystem.  

 

2.2 Identification of the significant  
eigenvectors 

The above reasoning suggests that the subsystems in a 
model can be identified from the appropriate eigenvectors 
of the matrix A. The question is then how to identify these 
eigenvectors. In [5], it is shown that the best ranking is 
obtained by : 
 
(i) ranking the eigenvectors of A according to the 

modulus of the mean value of the eigenvector entries 
(having scaled each eigenvector to have a unit norm). 
An eigenvector is then retained in the analysis if the 
modulus of the mean value is greater than N% of that 
of the highest ranked eigenvector.  Typically N is set 
at around 10%.  

(ii) reranking the retained eigenvectors according to a 
parameter  mj  defined as   

 

 (6) 

 
Step (i) identifies eigenvectors which tend to be 

localised to particular regions of the system, while step (ii) 
helps to reject localised eigenvectors which are oscillatory, 
and therefore not similar to those in equation (5). 
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2.3 Identification of the components of a 
hybrid FE/SEA model 

  Two different strategies could be used to identify the 
components of a hybrid model using the eigenvectors 
selected using the ranking process described in section 2.2. 
The first strategy presented in [5] is: 
 
Strategy A: 
1  retain the top M re-ranked eigenvectors such   

as mj>m; 
2 for each node 
3 find the eigenvector e with the greatest 

modulus at this grid point; 
4 if the value of the eigenvector at the grid 

point is less than a small X% of its maximum 
entry 

5    assign this node to the master system; 
6   else 
7      assign this node to the subsystem e; 
8   endif 
9 endfor 

 

  
The alternative strategy is: 
 
Strategy B: 
1 stop=0; e=1; 
2 while stop=0 
3  find the list of nodes for which the value 

of modulus of the eigenvector e is the 
greater than X% of its maximum entry; 

4  remove from this list any node already 
assigned to a subsystem; 

5     if the list is not empty  
6      assign all the nodes in the list to the 

subsystem e; 
7        e=e+1; 
8     else 
9        stop=1; 
10    endif 
11 endwhile 

 
As can be seen, the identification based on strategy A 
requires three parameters N, M and X., whereas the one 
based on strategy B requires only two parameters N and X. 
The parameter M could be sought as an a priori input of the 
number of SEA components. In practice, M is set up such 
that all the retained eigenvectors have a value of mj higher 
than a given value m, and a reasonable value for m is 0.8. 
This value depends on the problem considered. Strategy B 
might be more robust in the sense that the number of 
subsystems is automatically identified, since the algorithm 
stops as soon as an eigenvector is not associated with a 
subsystem. 

3 Numerical examples 

In this section the two different identification strategies are 
compared on two examples of increasing complexity. 
3.1 Plate-stiffener structure 

This example structure, shown in Figure 1, is made from 
aluminium, and the stiffeners are 5cm high and 10mm 
thick; the system is simply supported over the two shorter 
ends.  The structure has 337 modes below 2kHz, and the A 
matrix has been computed over the frequency band 1.5kHz 
to 2kHz, with frequency averaging being performed by 

considering 100 distinct frequencies.  A loss factor of 0.1 
has been applied in the forced response calculations.   

Figure 1: Plate-stiffener structure 

The results of the identification, obtain with the strategy 
B, are presented in Figure 2. As can be seen, the results are 
consistent with expectations in the sense that each distinct 
panel is identified as a subsystem, and the master system is 
limited to the stiffeners.  

Figure 2: Identified components for X=1,5,10 and 20% 
 
Figure 3 shows the measure mj versus the rank of the 

eigenvector of the matrix A according to the modulus of the 
mean value. On this figure, one can also see the number of 
modes selected according to the value N (defined is section 
2.2). Moreover, the red dots correspond to the eigenvectors 
used in strategy B. Therefore, for any value of m between 
0.65 and 0.82, and any value of N between 5% and 20%, 
the strategies A and B lead the same set of eigenvectors. 
One can remark a group of eigenvectors with an mj value 
equal to 1;these eigenvectors are localized in one element 
and are a numerical artefact due to the relatively coarse FE 
mesh used. 

Figure 3: Measure mj versus the rank of the eigenvector of 
the matrix A according to the modulus of their mean value 
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3.2 Aircraft section 
The aircraft section structure considered as the second 

example is shown in Figure 4. The exterior shell is 
connected to the frame by a rigid connection. The interior 
shell is mounted on the frame by 12 isolators. The whole 
FE model employed to compute the modes of vibration has 
51150 degrees of freedom. The system has 217 modes of 
vibration below 500Hz, and the identification algorithm 
was run for the frequency range 250 to 500 Hz, with 250 
distinct frequencies in the frequency average calculation.  
The loss factor was set to 0.1 in the forced response 
calculations.   

Figure 4: View of the aircraft section 

The figure 5 shows the measure mj versus the rank of 
the eigenvectors according to the modulus of the mean 
value. As can be seen, in this example it is difficult to 
isolate a group of eigenvectors with high mj values. 
Moreover, contrary to the previous example, the parameter 
N has a great importance in the selection of the 
eigenvectors. In this case, N is chosen to retain all of the 
eigenvectors. Finally, the red dots in the figure correspond 
to the eigenvectors used in strategy B. 

 

Figure 5: Measure mj versus the rank of the eigenvector of 
the matrix A according to the modulus of their mean value 

 
The subsystems identified using algorithm A  (described in 
section 2.3) for X=10% and algorithm B are shown 
respectively in Figures 6 and 7.  The identification of the 
master system (colored in black in Figures 6 and 7) is 

compatible with the stiffness of the different components; 
the master system should include the connection area 
between the stiffener and the skin (interior and exterior), 
the exterior glass windows, and the area of the skins around 
the three windows. As can be seen, in this example strategy 
B gives a “cleaner” master system. As mentioned 
previously, the algorithm automatically selects the number 
of eigenvectors to be employed.  

Figure 6: resulting master system (black) and SEA 
subsystem (color) using the algorithm A with M=0.7 and 

X=10% 

Figure 7: resulting master system (black) and SEA 
subsystem (color) using the algorithm B with X=10% 

 
The identification of the SEA subsystems is not as 

clean as in the previous example. For the exterior skin 
(where around six subsystems would be expected, above 
and below the windows and between the stiffeners) the 
algorithm found more than eleven subsystems, with some 
of them interlaced. The decomposition of the interior skin is 
less easy to predict a priori. Three possibilities might be 
imagined: six subsystems similar to the outer skin; two 
subsystems, representing a single subsystem above the 
windows and one below the windows; one single 
subsystem. The computed results show closest resemblance 
to the final possibility.  

The resulting identification could be used as a guide 
in creating a hybrid FE-SEA model, rather than a method of 
automatically generating a model.  Furthermore, the results 
obtained from the identification algorithm can be simplified 
by the application of a suitable post-processing method.  
This operation is based on the proposition that the SEA 
subsystems have to be simply connected. Therefore the idea 
is, first, to consider that the master system has been 
properly identified, and then, to decompose the 
complementary part of the structure into simply connected 
domains, each of which represents an SEA subsystem. The 
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result of such an operation is shown on figure 8 using the 
result of the strategy B. As can be seen, the resulting 
decomposition is much cleaner than the original version. 

 
Figure 8: post processing of the identified subsystem using 

strategy B 

4 Conclusion 
The suggested selection algorithm is very promising 

as it gives a clear identification of the master system of the 
potential hybrid model. The identification of the SEA 
subsystems seems also to be promising but further tests on 
a wider range of structures are warranted.  The method is 
significantly simpler than previous algorithms and has the 
scope for further development – for example, scaling of the 
A matrix, or the use of alternative methods of eigenvector 
selection and component identification, or using the A 
matrix to identify the equivalent SEA matrix. 
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