Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation of periodic solutions

Sami Karkar 1, * Christophe Vergez 2 Bruno Cochelin 3
* Auteur correspondant
2 Sons
LMA - Laboratoire de Mécanique et d'Acoustique [Marseille]
3 M&S - Matériaux et Structures
LMA - Laboratoire de Mécanique et d'Acoustique [Marseille]
Abstract : We propose a new approach based on numerical continuation and bifurcation analysis for the study of physical models of instruments that produce self- sustained oscillation. Numerical continuation consists in following how a given solution of a set of equations is modified when one (or several) parameter of these equations are allowed to vary. Several physical models (clarinet, saxophone, and violin) are formulated as nonlinear dynamical systems, whose periodic solutions are directly obtained using the harmonic balance method. This method yields a set of nonlinear algebraic equations. The solution of this system, which represent a periodic solution of the instrument, is then followed using a numerical continuation tool when a control parameter (e.g. the blowing pressure) varies. This approach enables us to compute the whole periodic regime of the instruments, without any additional simplification of the models, thus giving access to characteristics such as playing frequency, sound level, as well as sound spectrum as a functions of the blowing pressure.
Type de document :
Communication dans un congrès
Société Française d'Acoustique. Acoustics 2012, Apr 2012, Nantes, France. 2012
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00810847
Contributeur : Hal System <>
Soumis le : lundi 23 avril 2012 - 10:00:00
Dernière modification le : lundi 24 novembre 2014 - 16:34:12
Document(s) archivé(s) le : dimanche 18 décembre 2016 - 14:22:38

Fichier

hal-00810847.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00810847, version 1

Citation

Sami Karkar, Christophe Vergez, Bruno Cochelin. Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation of periodic solutions. Société Française d'Acoustique. Acoustics 2012, Apr 2012, Nantes, France. 2012. <hal-00810847>

Partager

Métriques

Consultations de
la notice

182

Téléchargements du document

265