C. Prax, F. Golanski, and L. Nadal, Control of the vorticity mode in the linearized Euler equations for hybrid aeroacoustic prediction, Journal of Computational Physics, vol.227, issue.12, pp.6044-6057, 2008.
DOI : 10.1016/j.jcp.2008.02.022

URL : https://hal.archives-ouvertes.fr/hal-00384036

J. H. Seo and Y. J. Moon, Linearized perturbed compressible equations for low Mach number aeroacoustics, Journal of Computational Physics, vol.218, issue.2, pp.702-719, 2006.
DOI : 10.1016/j.jcp.2006.03.003

F. Nataf, A new approach to perfectly matched layers for the linearized Euler system, Journal of Computational Physics, vol.214, issue.2, pp.757-772, 2006.
DOI : 10.1016/j.jcp.2005.10.014

URL : https://hal.archives-ouvertes.fr/hal-00112953

J. Diaz and P. Joly, ROBUST HIGH ORDER NON-CONFORMING FINITE ELEMENT FORMULATION FOR TIME DOMAIN FLUID-STRUCTURE INTERACTION, Journal of Computational Acoustics, vol.13, issue.03, pp.403-431, 2005.
DOI : 10.1142/S0218396X05002736

URL : https://hal.archives-ouvertes.fr/inria-00409201

C. Bogey, C. Bailly, and D. Juve, Computation of Flow Noise Using Source Terms in Linearized Euler's Equations, AIAA Journal, vol.40, issue.2, pp.235-243, 2002.
DOI : 10.2514/2.1665

F. Q. Hu, A Perfectly Matched Layer absorbing boundary condition for linearized Euler equations with a non-uniform mean flow, Journal of Computational Physics, vol.208, issue.2, pp.469-492, 2005.
DOI : 10.1016/j.jcp.2005.02.028

M. Bernacki, S. Lanteri, and S. Piperno, TIME-DOMAIN PARALLEL SIMULATION OF HETEROGENEOUS WAVE PROPAGATION ON UNSTRUCTURED GRIDS USING EXPLICIT, NONDIFFUSIVE, DISCONTINUOUS GALERKIN METHODS, Journal of Computational Acoustics, vol.14, issue.01, pp.57-82, 2006.
DOI : 10.1142/S0218396X06002937

URL : https://hal.archives-ouvertes.fr/hal-00607725

P. Delorme, P. Mazet, C. Peyret, and Y. Ventribout, Computational aeroacoustics applications based on a discontinuous Galerkin method, Comptes rendus de mécanique 333, pp.676-682, 2005.
DOI : 10.1016/j.crme.2005.07.007

J. P. Coyette, Manuel théorique ACTRAN, Free Field Technologies, 2001.

S. Duprey, Etude mathématique et numérique de la propagation acoustique d'un turboréacteur, Thèse de Doctorat de l'Université Henry Poincaré-Nancy, 2006.

A. Ern and J. Guermond, Theory and practice of finite Element, Applied Mathematical Sciences, vol.159, 2004.
DOI : 10.1007/978-1-4757-4355-5

G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems, Journal of Computational Physics, vol.225, issue.2, pp.1961-1984, 2007.
DOI : 10.1016/j.jcp.2007.02.030

H. Galbrun, Propagation d'une onde sonore dans l'atmosphère terrestre et théorie des zones de silence, 1931.

]. G. Gabard, R. J. Astley, and M. B. Tahar, Stability and accuracy of finite element methods for flow acoustics. II: Two-dimensional effects, International Journal for Numerical Methods in Engineering, vol.40, issue.7, pp.974-987, 2005.
DOI : 10.1002/nme.1319

F. Treyssede, G. Gabard, and M. B. Tahar, A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian???Lagrangian description, The Journal of the Acoustical Society of America, vol.113, issue.2, pp.705-716, 2003.
DOI : 10.1121/1.1534837

URL : https://hal.archives-ouvertes.fr/hal-00612473

A. S. Bonnet-ben-dhia, J. F. Mercier, F. Millot, and S. Pernet, A low-Mach number model for time-harmonic acoustics in arbitrary flows, Journal of Computational and Applied Mathematics, vol.234, issue.6, pp.1868-1875, 2010.
DOI : 10.1016/j.cam.2009.08.038

A. S. Bonnet-ben-dhia, E. M. Duclairoir, and J. F. Mercier, Acoustic propagation in a flow: numerical simulation of the time-harmonic regime, ESAIM Proceedings, p.22, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00976953

P. Azerad, Analyse deséquationsdes´deséquations de Navier-Stokes en bassin peu profond et de l'´ equation de transport, 1996.

A. S. Bonnet-ben-dhia, J. F. Mercier, F. Millot, S. Pernet, and E. Peynaud, Abstract, Communications in Computational Physics, vol.22, issue.02, pp.555-572, 2012.
DOI : 10.1016/j.cam.2009.08.038

A. S. Bonnet-ben-dhia, E. M. Duclairoir, G. Legendre, and J. F. Mercier, Time-harmonic acoustic propagation in the presence of a shear flow, Journal of Computational and Applied Mathematics, vol.204, issue.2, pp.428-439, 2007.
DOI : 10.1016/j.cam.2006.02.048

URL : https://hal.archives-ouvertes.fr/hal-00876232

M. Myers, On the acoustic boundary condition in the presence of flow, Journal of Sound and Vibration, vol.71, issue.3, pp.429-434, 1980.
DOI : 10.1016/0022-460X(80)90424-1

W. Eversman, THE BOUNDARY CONDITION AT AN IMPEDANCE WALL IN A NON-UNIFORM DUCT WITH POTENTIAL MEAN FLOW, Journal of Sound and Vibration, vol.246, issue.1, pp.63-69, 2001.
DOI : 10.1006/jsvi.2000.3607