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For the simplest model of clarinet-like instruments, leading to the iterated map scheme, the solving of the nonlinear

characteristic equation involves the inversion of the modified characteristic function linking the incoming wave to

the outcoming one. The inversion can be problematic when the reed opening is large, i.e. when the associated

dimensionless parameter is larger than unity, the inverse function being multi-valued. The problem was already

noticed by Gokhstein (1981) concerning oboes or bassoons. To overcome this difficulty, several discretization

schemes can be found, e.g. by modeling a reed as a one degree of freedom oscillator, or by modeling the air in the

mouthpiece as a simple spring. The use of these schemes at their limits allows studying how the choice between the

solutions can be done when using the classical scheme with the multi-valued function for the incoming/outcoming

waves. . The case of conical reed instruments is particularly investigated.

1 Introduction

A usual scientific method of investigation is the search

for models with a minimum of parameters. This allows an

easy understanding of the main phenomena. A famous ex-

ample was given by the paper by McIntyre et al[1]. For reed

instruments, these authors gave a general model, then applied

it to clarinet-like instruments. In what follows, we will sum-

marize some general ideas already published, then focus the

attention on conical instruments. Obviously at least one sup-

plementary parameter needs to be considered when studying

conical instruments instead of cylindrical ones. Three main

questions are investigated: i) the needs for discretization; ii)

the possibility to keep a short history; iii) the problem of mul-

tivalued functions. In particular we will see how the latter

problem, already discovered by Gokhstein[2], can be investi-

gated. In practice, this problem seems to be a major attribute

of double reed instruments.

2 General model of reed instruments
Since the work by McIntyre et al [1], it is well known

that when ignoring the reed dynamics, an elementary model

of reed instruments is based upon two equations:

p(t) = [h ∗ u] (t) (1)

u(t) = F
[
p(t)
]
. (2)

The two unknowns are the pressure p(t) and the flow rate

u(t) at the entrance of the instrument. In the present paper,

we consider dimensionless quantities. The impulse response

h(t), inverse FT of the input impedance Z(ω), is the character-

istic of the resonator, assumed to be linear, and the nonlinear

function F(t) characterizing the nonlinear excitor is assumed

to be quasi-static.

The same authors suggested to slightly modify these equa-

tions, in order to reduce the duration of the reflection history,

by using the d’Alembert decomposition. If a cylindrical tube

is considered at the input of the instrument, the two new un-

knowns are the incoming p−(t) and outcoming waves p+(t)
at the input of the tube,

p− =
1

2
(p − u); p+ =

1

2
(p + u). (3)

Doing that, Eq. (1) is replaced by:

p−(t) =
[
r ∗ p+

]
(t), (4)

where r(t) is the (plane) reflection function. Two advantages

can be found: first, as soon as the length of the cylindrical

section is not zero, the incoming wave is 0 at time t = 0 ;

moreover, the history of r(t) is in general much shorter than

that of h(t). The problem can be solved by solving at each

time the following equation:

u(t) = p(t) + ph(t) (5)

with ph(t) = −2 ∗ [r ∗ p+
]
(t) (6)

together with Eq. (2). This can be done by using a graphic

method, searching for the intersection between a straight line

and the nonlinear function F (see [3]). Some problems can

arise when several intersections exist: this is discussed in

section 4. Nevertheless this method is very general.

For a purely cylindrical instrument of length �, with no

losses and zero radiation impedance, the reflection function

is a single delta function,

r(t) = −δ(t − 2�/c), (7)

and no discretization of the time variable is necessary when

the initial condition is given by e.g. a single step of the ex-

citation pressure (c is the sound speed). The search for the

intersection of the line with the function F can be replaced by

the solving of a modified function G, obtained by a rotation

of 45◦ from the function F, and this leads to the calculation

of an iterated map scheme (see [4, 5]). The function G is

defined by

p+n = G
[−p−n

]
(8)

and is obtained from Eqs. (2) and (3). For the classical model

based upon the Bernoulli equation (and some hypotheses, see

Ref. [6]), its analytical expression is given in Ref. [5]. This

method can be extended to the case of the so-called Raman

model (Ref. [7]), i.e. of a cylindrical tube with losses inde-

pendent of frequency.

3 Statement of the problem for conical
tubes

x1 x1l l

Figure 1: Truncated cone and the corresponding cylindrical

saxophone
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3.1 The cylindrical saxophone
For truncated cone resonators, we are seeking simple mod-

els and calculation methods generalizing as far as possible

the iterated map algorithm. In what follows, we limit the dis-

cussion to lossless resonators and zero radiation impedance.

The first idea is to use the approximation which is called

“cylindrical saxophone” (for which a well known possible

solution for the steady-state regime is the Helmholtz mo-

tion, see Ref. [8]). After some calculations from the input

impedance Z(ω), the Fourier Transform of the global plane

reflection function is found to be:

R(ω) = [Z(ω) − 1] / [Z(ω) + 1] , thus (9)

R(ω) = 1 −
[
1 − e−2 jk(x1+�)/c

] +∞∑
n=0

[
1

2

(
e−2 jkx1/c + e−2 jk�/c

)]n
.

This expression exhibits the successive reflections with the

delays 2x1/c and 2�/c, which are the durations of a round trip

in the two parts of the tube (in this equation k = ω/c). The

plane reflection function remains of infinite extent. In prac-

tice its duration is shorter than that of the impulse response,

thanks to the factor (1/2)n, but we tried to find expression

with a short history. Generalizing Eq. (7), the plane reflec-

tion function is used on both sides of the source. The length

on the right and on the left are � and x1, respectively. Using

the d’Alembert decomposition and the boundary conditions,

the equations for the resonator are:

p(t) = p+(t) − p+(t − 2x1/c) = q+(t) − q+(t − 2�/c);

u(t) = p+(t) + p+(t − 2x1/c) + q+(t) + q+(t − 2�/c).

Therefore

u(t) = 2p(t) + 2p+(t − 2x1/c) + 2q+(t − 2�/c) or

u(t) = 2p(t) − 2p(t − 2L/c)

+u(t − 2x1/c) + u(t − 2�/c) − u(t − 2L/c),

where L = � + x1. q±(t) are the outcoming and incoming

spherical waves, while p±(t) are without physical meaning:

they are defined in Eqs. (3). These expressions differ from

Eq. (5) by the factor 2, but the principle of calculation is

the same, and what is essential if the finite duration of the

history term. Moreover it is not necessary to discretize the

time variable for a simple initial condition.

3.2 Truncated cone without mouthpiece
If the approximation of the cylindrical saxophone is aban-

doned, the time discretization becomes necessary, because

round corners appear in the solutions. The use of the plane

reflection function should be possible (see [9, 10]), but it is

of infinite extent. Another difficulty exists, but can be over-

come: because no cylindrical part is present at the input, the

reflection starts at t = 0, and the convolution integral giving

ph(t) needs to be calculated until instant t. However, using

the rectangle method, the calculation of the integral can be

stopped just before this time, and the convergence to the true

result is ensured when the discretization path tends to 0.

Therefore the main difficulty of the use of the plane re-

flection function lies in its duration. Some authors (Ref.

almeida [11]) tried to use the spherical reflection function.

In the frequency domain, the solution of the acoustic equa-

tions in the conical tube can be written as:

P = Q+ + Q−; U = Q+ − Q− +
P
jkx

(10)

where Q± = a± exp(∓ jkx)/x.

Capital letters are used for the quantities in the frequency

domain. At the input, if the d’Alembert decomposition (Eq.

(3)) in planar waves is formally used, the following result is

deduced, for x = x1:

Q− − P− =
P

2 jkx1

; Q+ − P+ = − P
2 jkx1

. (11)

Assuming a zero radiation impedance at x = �, this condition

is written as:

q−(t) = −q+(t − τ) (12)

where τ = 2�/c. Finally we get the following expression:

p−(t) = −p+(t − τ) − 1

2

c
x1

∫ t

t−τ
p(t′)dt′ (13)

As expected, the time variable needs to be discretized for

the computing of the integral (the equation could be also

written using a finite difference scheme). If the integral is

calculated using the top left-corner approximation of the rect-

angle method, this equation has the form of Eq. (5), if ph =

−2p−. The major point is the finite duration of the integral.

This equation can be solved together with Eq. (8) step by

step.

The chosen initial condition is the following: the mouth-

piece pressure is zero for negative times, then its value jump

to a fixed constant. Therefore for t < 0, p = u = p+ = p− =
0, and p−(0) = 0.

For this model, we did not find a correct convergence to

a limit cycle. More precisely, the convergence can be very

slow, or limit cycles correspond to higher modes of the res-

onator. Inharmonicity of truncated cone resonators is prob-

ably the main explanation. As a matter of fact, the lossless

model considers only two parameters for the definition of

the truncated cone, the length of the missing part, x1, and

the length of the truncated cone, �. This means that only the

ratio of the input and output radii is fixed. When the length

� tends to zero, the truncated cone tends to a short cylinder,

with a big increase of inharmonicity, the second eigenfre-

quency tending to 3 times the first one. The reasoning con-

cerning the effect of inharmonicity is confirmed by numerical

results: the convergence to a limit cycle becomes very slow

or impossible for short lengthes.

3.3 Truncated cone with mouthpiece
As it is well known (see e.g. Ref.[12]), for a good in-

tonation and ease of playing, the mouthpiece needs to have

a volume close to that of the missing part of the truncated

cone, i.e. V = x1S 1/3, where S 1 is the input cross section

of the truncated cone. With this requirement, we tried two

methods of calculation. Notice that this improvement of the

model does not add any new geometrical parameter.
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3.3.1 First approach

The first idea is to consider a cylindrical mouthpiece with

the fixed volume V , the length varying from some centime-

ters to zero. We do not give the complete algorithm here, be-

cause it is based upon the same technique than the previous

one, i.e. that of the truncated cone without mouthpiece. With

this model, the problems of convergence are almost always

solved. It is possible to say that this algorithm calculates

the minimum model of reed conical instruments, generaliz-

ing the iterated map algorithm for cylindrical instruments,

with only one parameter more. Losses independent of fre-

quency can also be easily introduced. A major difference

between a cylindrical resonator and a conical one lies in the

time discretization, and therefore in the calculation time, but

the history duration is the same.

On the other hand, the frequency response is continu-

ous, therefore the resulting sound is a smooth signal, with-

out step. The simplest model for such an instrument allows

to listen sounds that are more realistic than those obtained

from the iterated map scheme or the scheme yielding to the

Helmholtz motion (section 3.1). Notice than because the ra-

diation impedance is assumed to be zero, the output flow rate

ur is given by

ur = 2q+(t − �/c). (14)

Then assuming the radiation of a monopole, the external pres-

sure is proportional to the derivative of the output flow rate.

3.3.2 Second approach

Another approach of the (short) mouthpiece is the follow-

ing: if it is short, only two lumped elements are to be taken

into account: a shunt compliance, proportional to the volume

V = �mS m, which is fixed (�m and S m are the length and cross

section area of the mouthpiece, respectively), and an acoustic

mass in series, ρ�m/S m (ρ is the air density), proportional to

�2m/V , which is very small compared to the input impedance

of the truncated cone . Therefore it is possible to replace the

cylindrical tube of dimensions �m and S m by a simple com-

pliance, V/ρc2.

After some algebra, with this value of the volume, the

following equation can be found:

∂t
[
p(t) − p(t − τ)] = −6c

x1

[
p−(t) +

c
2x1

∫ t

t−τ
pdt′ + p+(t − τ)

]
(15)

Using this equation at time p(t − tsample) with an asym-

metrical finite difference scheme:

∂t p(t − tsample) =
[
p(t) − p(t − tsample)

]
/tsample ,

an interesting algorithm is found

p(t) = p̃h , (16)

where p̃h is limited to time t, thus p̃h is known. Using the

nonlinear function F (Eq. (2)), the problem can be solved

without inversion of the nonlinear function. It is a very use-

ful tool to study the effect of the nonlinear characteristic on

the sound production. In particular, no problem occurs with

the difficulty of the multivalued inverse function, when seek-

ing the intersection between the line (5) and the function F.

Moreover, when several solutions exist, this method allows

to understand how the selection of the solution is done, as

explained hereafter.

4 Results and discussion
The chosen nonlinear characteristic is the classical one,

based upon Bernoulli law, and is shown in Fig 2. It includes

the hypothesis that the flow rate at the input of the instrument

can be negative, when the mouthpiece pressure is larger than

the mouth one. However, the method presented here would

apply to other characteristics such as the one measured in

double-reed instruments [13]. Two dimensionless parame-

ters are considered: the mouth pressure, denoted γ, and the

maximum flow rate that can enter in the resonator, denoted

ζ, related to the reed opening at rest and to the reed stiff-

ness. For ζ < 1, the solution of Eqs. (5) and (2) is unique,

while for ζ > 1, there are either 1 or 3 solutions, depending

on the value of ph = u − p. Roughly speaking, the first case

corresponds to saxophone-like instruments, with single reed,

while the second case corresponds to oboe- or bassoon-like

instruments, with double reed. The problem of the multi-

valued function for the case of bassoons was recognized by

Gokhstein [2], and it is well known for bowed string instru-

ments. Figure 2 shows this case, with the two limit lines for

which the function is multivalued.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

p

u

C

D

B

A

Figure 2: Multivalued nonlinear characteristic u = F(p). For

the portions in black color of the curve, there is only one

intersection with line u = p + ph . In order to have

continuity of the acoustic quantities, the history term ph

needs to have extrema at points A and B.

Figure 3 presents the case of a resonator similar to a bari-

tone saxophone, with ζ = 0.55. Both approaches of compu-

tation (cylindrical mouthpiece with fixed volume with length

tending to zero, and mouthpiece modeled as a compliance

corresponding to the same volume) converge to the same

result. It can be noticed that the reed beats (the flow rate

vanishes). Moreover, during a significant time, the flow rate

becomes negative; this numerical result is usual for conical

instruments, while it is very rare for clarinet-like instruments

(see Ref. [5]). Nevertheless to our knowledge no experimen-

tal evidence of negative pressure difference between mouth

and mouthpiece has been published yet.

Figure 4 presents the case of the same resonator with a

large reed opening (ζ = 2.55). Notice that ratio of the in-

put and output radii is fixed, but the angle of the cone is free.

When several solutions exist, the first approach is not capable

to distinguish between the solutions if no selection rule is de-

fined. As opposed to the first approach, the second approach

allows to find a result, which seems to be in qualitative ac-
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cordance with measured signals.

Examining the selection done by this method, it appears

that neither jumps nor singular points are allowed. Figure 2

shows the two lines u = p + ph for the two extreme values

of ph for which several intersections with the nonlinear func-

tion exist. It is possible to understand the choice to be done

between the different solutions when ph varies. Starting from

p = −1.2, i.e. u − p = ph = 1.2, the reed beats, and the lines

goes to the right when ph decreases.

2000 2500 3000 3500 4000 4500 5000 5500

−2

−1

0
p(t)

2000 2500 3000 3500 4000 4500 5000 5500
−0.4

−0.2

0

0.2

u(t)

2000 2500 3000 3500 4000 4500 5000 5500
−1

0

1

2

u(t)−p(t)

Figure 3: A period of the steady-state regime for a

saxophone-like instrument (for clarity, the figure shows a

little bit more than one period). x1 = 0.3m; � = 1.5m.
Excitation parameters: excitation pressure γ = 0.4, “reed

opening” ζ = 0.55. Input acoustic pressure p (above), flow

rate u (center), difference u − p.

500 1000 1500 2000 2500 3000 3500
−3

−2

−1

0

p(t)

500 1000 1500 2000 2500 3000 3500

−1

0

1

u(t)

500 1000 1500 2000 2500 3000 3500
−2

0

2
u(t)−p(t)

Figure 4: A period of the steady-state regime for a

saxophone-like instrument. x1 = 0.3m; � = 1.5m. Excitation

parameters: excitation pressure γ = 0.4, “reed opening”

ζ = 2.55. Input acoustic pressure p (above), flow rate u
(center), difference u − p. Colors correspond to the regions

of the nonlinear characteristic u = F(p), according to Figure

2.

When arriving in the blue part of the curve (point A), the

flow rate needs to remain equal to zero in order to avoid

jump of the solution. When ph continues to decrease, the

line u − p = ph reaches point B (p = 1 − ζ), which is the

threshold of beating reed: at this point, the jump to point D
is not allowed, then, in order to have continuity of the so-

lutions, ph needs to go back, therefore it needs to increase.

This allows for the solution to be on the red part of the curve.

Therefore point B needs to correspond to a minimum of ph.

Similarly, point C, where the line is tangent to the nonlin-

ear curve, needs to correspond to a maximum of ph, then the

solution can be located on the green part of the curve. Fi-

nally no extremum of ph is expected at point D. This can

be checked on Figure 4. The spectrum of the acoustic quan-

tities is expected to be with more higher components than

for small reed opening, because of the “accidents” related to

these feature. Otherwise, as expected, a higher amplitude is

noticeable for larger reed opening.

5 Conclusion, further work
In conclusion, the present work does not take into account

any value of the input and output radii. This could be done

by adding a loss parameter. Time discretization is requested

for a minimum model of conical reed instruments, but algo-

rithms with short history are perfectly possible. The anal-

ysis exhibits the rule to be fulfilled when using a classical

method with the search for zeros of multivalued functions.

Notice that, for the particular case of the nonlinear charac-

teristic function based upon the Bernoulli law, the problem

of parameter ζ larger than unity has been solved previously

by using another method: taking the reed dynamics into ac-

count, the problem of multivalued function disappears, and

a second order equation has to be solved, as shown in Ref.

[14, 15]. But, as explained above, the adding of a mouth-

piece modeled as a compliance avoids the problem for any

choice of the nonlinear characteristic.

Further work remains to be done concerning the calcu-

lation time (the previous results have been obtained with a

very high sampling frequency, fs = 300000Hz). Moreover

with the second approach, we did not observe any problem

of convergence when the sampling frequency increases, but

it should be interesting to investigate the stability of the two

algorithms presented here.
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