Atomic-resolution structural dynamics in crystalline proteins from NMR and molecular simulation

Abstract : Solid-state NMR can provide atomic-resolution information about protein motions occurring on a vast range of time scales under similar conditions to those of Xray diffraction studies and therefore offers a highly complementary approach to characterizing the dynamic fluctuations occurring in the crystal. We compare experimentally determined dynamic parameters, spin relaxation, chemical shifts, and dipolar couplings, to values calculated from a 200 ns MD simulation of protein GB1 in its crystalline form, providing insight into the nature of structural dynamics occurring within the crystalline lattice. This simulation allows us to test the accuracy of commonly applied procedures for the interpretation of experimental solid-state relaxation data in terms of dynamic modes and time scales. We discover that the potential complexity of relaxation-active motion can lead to significant under- or overestimation of dynamic amplitudes if different components are not taken into consideration.
Type de document :
Article dans une revue
Journal of Physical Chemistry Letters, American Chemical Society (ACS), 2012, 3 (23), pp.3657-3662. 〈10.1021/jz3016233〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00809244
Contributeur : Agnès Bussy <>
Soumis le : lundi 8 avril 2013 - 17:06:04
Dernière modification le : lundi 19 février 2018 - 14:34:03

Identifiants

Collections

Citation

Luca Mollica, Maria Baias, Jozef R. Lewandowski, Benjamin J. Wylie, Lindsay J. Sperling, et al.. Atomic-resolution structural dynamics in crystalline proteins from NMR and molecular simulation. Journal of Physical Chemistry Letters, American Chemical Society (ACS), 2012, 3 (23), pp.3657-3662. 〈10.1021/jz3016233〉. 〈hal-00809244〉

Partager

Métriques

Consultations de la notice

258