Multifractal Random Walks as Fractional Wiener Integrals

Abstract : Multifractal random walks are defined as integrals of infinitely divisible stationary multifractal cascades with respect to fractional Brownian motion. Their key properties are studied, such as finiteness of moments and scaling, with respect to the chosen values of the self-similarity and infinite divisibility parameters. The range of these parameters is larger than that considered previ- ously in the literature, and the cases of both exact and nonexact scale invariance are considered. Special attention is paid to various types of definitions of multifractal random walks. The resulting random walks are of interest in modeling multifractal processes whose marginals exhibit stationarity and symmetry.
Type de document :
Article dans une revue
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2009, 55 (8), pp.3825-3846
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00808604
Contributeur : Pierre Chainais <>
Soumis le : mardi 9 avril 2013 - 14:36:26
Dernière modification le : mardi 11 octobre 2016 - 14:11:29
Document(s) archivé(s) le : jeudi 11 juillet 2013 - 15:05:41

Fichier

multifractal-fbm-rev14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00808604, version 1

Citation

P. Abry, Pierre Chainais, L. Coutin, V. Pipiras. Multifractal Random Walks as Fractional Wiener Integrals. IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2009, 55 (8), pp.3825-3846. <hal-00808604>

Partager

Métriques

Consultations de
la notice

324

Téléchargements du document

164