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Abstract: 

 

This paper deals with the use of transmissibility functions for 

damage localization. The first part is dedicated to a critical review of 

the state-of-the-art highlighting the major difficulties when using 

transmissibility functions for damage detection and localization. In 

the second part, an analytical study is presented for non-dispersive 

systems such as chain-like mass-spring systems. The link between the 

transmissibility function and the mechanical properties of four 

subsystems defined by the boundary conditions, the position of the 

excitation and the two measurement locations used for the 

computation of the transmissibility functions is derived. This result is 

used to discuss the situations in which damage localization is likely to 

work. The last section discusses the extension of these results to more 

general dispersive systems such as beams or plates. 
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Introduction 

 

 Many countries are facing serious 

security problems due to the aging of their 

civil infrastructures, such as bridges. On one 

hand, the structures are coming to the end of 

their theoretical lifetime, and on the other 

hand, the maximum loads to which they are 

exposed are always increasing (i.e. traffic on 

bridges). It is therefore crucial to be able to 

estimate the current state of health of such 

structures, as well as their remaining lifetime. 

Current techniques are based on scheduled 

maintenances with visual inspections and 

local methods such as ultrasounds or eddy 

currents. 

 

For more than twenty years, researchers have 

developed alternative global methods based 

on the measurement of vibration signals. 

Existence of structural damage in an 

engineering system leads to modification of 

the vibrations. The main idea is that damage 

changes the stiffness of the structure and 

therefore the modal properties (natural 

frequencies, mode shapes and modal 

damping values) which can be obtained from 

results of dynamic (vibration) testing. The 

goal of structural health monitoring (SHM) is 

to detect damage at or near its onset, before it 

becomes critical to structure’s function and 

integrity. One of the major challenges in 

detecting and locating small-scale structural 

damage is that this type of damage is a local 

phenomenon. Rytter [1] distinguished four 

levels of damage identification each of which 

provides more detailed information about the 

structural damage. The ultimate goal of the 

previous work in SHM is to determine when, 

where, and how badly a structure is damaged 

or deteriorated. The literature on the subject 

is enormous [2] but these methods have not 

seen a big success, mainly for two reasons: 

(i) the modal properties of the structure are 

also dependant on environmental parameters 

(weather, loads, wind …) which cause 

changes in the vibration characteristics of the 

same order of magnitude as damage, and (ii) 

mode shapes and frequencies are global 

properties which are not very sensitive to 

small localized damages. 

  

Thanks to the enormous advances in sensors 

and instrumentation, it is now possible to 

instrument a structure with hundreds or 

thousands of sensors which are capable of 

measuring the vibrations of structures in real 

time. By following the dynamic behavior of 

the structure in real time, it is possible to 

apply statistical methods in order to detect 

small damages and remove the effects of the 

environment ([3], [4], [5] and [6]). This 

opens the way to the development of 

automated damage detection systems and 

could allow going from an “on schedule” 

maintenance to an “on demand” 

maintenance, therefore greatly reducing the 

costs and the risks of failure between two 

maintenances. 

 

The next step to help the engineers in the 

maintenance of structures is to develop tools 

to locate damage. There exist two families of 

methods: the first family uses a model (i.e. 

finite elements) which is updated regularly 

based on experimental results [7]. Any 

change in the parameters of the model will 

give the indication of the position of damage. 

The major drawback with these methods is 

the difficulty to build accurate models of the 

initial structure.  

The second family of methods relies only on 

the experimental measurements to detect 

damage. In order to do this, it is important to 

choose the right feature. The ideal feature is 

one that is defined locally and changes only 

if damage appears at that specific location. 

To the best of our knowledge, for vibration 

based methods, two types of features have 

been identified and investigated in the past: 

curvature mode shapes ([8], [9], [10] and 

[11]) and transmissibility functions. 
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This paper deals with transmissibility 

functions (TF). The first section is dedicated 

to a critical review of the literature on the use 

of TFs for damage detection and localization. 

This section highlights the major issues for 

the development of SHM systems based on 

TFs: the importance of the choice of the 

frequency bands, and the problem of 

operational and environmental variability 

which might cause false alarms. In addition, 

we point out the lack of general analytical 

results to assess the limits of validity of the 

damage localization methods based on TFs.  

 

The second section is dedicated to a review 

of the mathematical concepts of TFs and the 

associated damage indicators proposed in the 

literature. The third section deals with a 

specific type of systems: chain-like mass-

spring systems. A general analytical result is 

derived in which the TF is expressed as a 

function of the properties of four sub-systems 

defined by the locations of the measurement 

points used for the TF, and the location of the 

force. This analytical formula is used to 

understand the impact on the TFs of a change 

of stiffness or mass parameters in each of the 

four sub-systems and to draw conclusions on 

the limits of the methods proposed for 

damage localization. The formula can be 

extended to more general non-dispersive 

systems such as rods in traction-compression 

or in torsion. 

 

The last section is dedicated to more general 

types of systems for which the simple 

analytical formula obtained for chain-like 

mass spring systems cannot be derived. A 

beam example is presented in order to 

emphasize the fact that the applicability of 

the method is, in this case, even more 

restricted than for the simple non-dispersive 

systems studied in the previous section. It 

seems difficult however to derive more 

precisely these additional restrictions. 

 

1 Review of transmissibility-based damage 

detection and localization methods 

 

Transmissibility functions have been 

first proposed as potential features for 

damage detection in [12]. Since then, they 

have been extensively used in the research 

group lead by Keith Worden at the 

University of Sheffield for damage detection 

and localization. In [13], an auto-associative 

neural network using TFs was developed to 

compute a novelty index for damage 

detection. The example treated was a 

numerical 3 degrees of freedom (dofs) chain-

like mass spring system. Another numerical 

example involving a 3 dofs system was 

studied a few years later by the same 

research group [14]. In this contribution, 

outlier analysis based on frequency lines in 

the TFs was used for damage detection.  A 

few years later, experimental validations on 

the use of TFs for damage detection ([15], 

[16] and [17]) and localization [18] have 

been performed using vibration data from a 

laboratory wing box structure and a gnat 

aircraft wing. Detection was based on three 

different novelty detection techniques 

(outlier analysis, auto-associative neural 

networks and kernel density estimation), 

while localization was based on supervised 

learning using a multi-layer perception 

(MLP) neural network. Apart from the fact 

that TFs appear to have a high sensitivity to 

damage, the main motivation for using them 

is the fact that there is no need to measure the 

excitation. Although this is true, it should be 

emphasized that for the types of structures 

encountered in aeronautics and civil 

engineering applications, TFs do not depend 

on the frequency content of the excitation, 

but do depend on the location of the 

excitations. A change in the excitation 

location might cause a significant change in 

the TFs under normal (undamaged) 

condition, which is very likely to cause false 

alarms. This issue was recently discussed in 

[19] where it was shown that TFs computed 

at the eigenfrequencies of the system are 

independent on the excitation location. Note 
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that this property has also been used to 

develop output-only modal analysis 

techniques [20]. Restricting the TFs to 

narrow frequency bands around these 

eigenfrequencies was therefore proposed as a 

way to get rid of the variability of the TFs 

due to a change in the location of the 

excitation. 

 

In the studies cited above, the authors have 

used specific frequency lines or bands 

extracted from the TFs. For damage 

detection, one should find the frequency 

bands for which the features are highly 

sensitive to damage and insensitive to 

variability in the normal condition [15]-[16]. 

For damage localization, an additional 

requirement is to find frequency bands in 

which the features are highly sensitive to one 

type of damage, and almost insensitive to the 

others [18]. A major problem is that these 

frequency bands cannot be determined a 

priori without having access to data from the 

structure in the different damage conditions 

and that in practice, such data is rarely 

available. This problem has been recognized 

by the research group at the University of 

Sheffield who has proposed the use of 

pseudo-faults in the form of added masses on 

the actual structures in order to produce data 

representative of the structure in the damaged 

condition [21]-[22]. Although this approach 

has proved to work on specific examples, 

there is no evidence of its applicability on 

any given type of structure. 

 

While all these studies show, on specific 

examples, the possibility to use TFs for 

damage detection and localization, they do 

not present any analytical results supporting 

these findings. While it is rather simple to 

demonstrate the sensitivity of TFs to damage 

(because they are the ratio of FRFs which are 

known to be sensitive to damage), it is much 

more difficult to prove the localization 

capabilities of TFs. 

 

Around the same time, similar developments 

on the use of TFs (called transmittance 

functions in the related papers) for structural 

health monitoring have been presented in 

[23], [24], [25], [26] and [27]. A damage 

indicator based on the integral over a 

frequency band of the difference between the 

intact and the damaged TFs was used for 

damage detection and localization.  The 

underlying (heuristic) idea is that damage 

between points i and j will cause a change in 

the TF computed between these two points, 

and not (or only slightly) on the other TFs. 

The applicability of the technique was 

assessed using experimental data acquired on 

beams, plates and wind turbine blades. 

Although the method was shown to be 

efficient for the examples treated, there are 

again no analytical developments to assess 

the limits of applicability of the technique. In 

particular, the issue of the specific frequency 

bands to be used for successful damage 

localization is not raised.  

 

In parallel to these investigations, several 

authors have published analytical work on 

the extension of the transmissibility concept, 

initially developed in the field of vibration 

isolation for two degrees of freedom systems, 

to multi-degree of freedom systems ([28], 

[29] and [30]). In particular, in [29], the 

authors have demonstrated the fact that when 

generalizing the concept of transmissibility to 

MDOF systems, the transmissibility matrix 

depends on the location of the excitation, as 

stated above. In addition, it can easily be 

shown that the resonances and anti-

resonances of TFs correspond to the zeros of 

the frequency response functions (FRFs) of 

the two sensors from which the 

transmissibility is computed. A study of the 

sensitivity of these zeros to stiffness changes 

can be found in [31]. This study does not 

show a strong difference in sensitivity 

between the poles and zeros of FRFs, at least 

on the numerical example treated, which 

somehow contradicts the statements of other 

authors (see for example [32]). This 

contradiction could show that the issue is 

very problem dependent so that care should 
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be taken when generalizing a result from a 

few examples only.  

 

Based on these theoretical developments, the 

possibility to detect and locate damage using 

TFs has been studied by the research team of 

Maia at IST in Porto [33].  The difference of 

TFs between the undamaged and the 

damaged conditions was used for damage 

localization, in a very similar way to the 

method presented in [25]. One important 

aspect of these methods is the fact that they 

are based on the data measured on the intact 

structure only, therefore avoiding the need of 

training data emphasized in [14], [15] and 

[16]. The authors note however that while the 

approach seems to work well at low 

frequencies, the results deteriorate when 

increasing the frequency band, raising again 

the question of the frequency band to be 

used. In practice, the authors found that one 

should look at the difference between the TFs 

only below the first resonance or anti-

resonance, which restricts strongly the usable 

frequency range. An alternative proposed is 

to ‘count the occurrences’ instead of 

computing the cumulative error in a 

frequency band. Very recently in [34], an 

alternative damage indicator based on 

correlations of the TFs rather than 

differences, similar to the well known modal 

assurance criterion (MAC) used in modal 

analysis, has been proposed for damage 

detection (but not for localization). The 

results show a higher sensitivity when TFs 

are used compared to FRFs. In all these 

examples, while the method seems to be 

effective on the numerical example studied, it 

is difficult to assess the general applicability 

of the approach. 

 

In parallel to the work of the research group 

of Maia, the use of TFs for damage 

localization has also been studied by the 

group of Adams at Purdue University [32], 

based on the analytical developments in [29]-

[31] and the method proposed earlier  in [23], 

[24] and [25]. In addition to dealing with 

linear systems, the authors extend the 

application of TFs to non-linear systems. For 

linear systems, the possibility to locate 

damage is shown on a 3 dofs chain-like 

mass-spring system, for which it is 

demonstrated that damage between masses i 

and j causes a change in the transmissibility 

between these two masses only. Note 

however that there are restrictions on the 

position of the excitation for this result to be 

valid. While this is probably the only 

tentative to derive analytical expressions to 

demonstrate the localization properties of 

TFs, the authors claim that this result can be 

generalized to systems with more degrees of 

freedom, but there is no proof presented. 

Further papers by the same research team 

deal with applications on a steel frame 

structure, a helicopter frame [35] , and rolling 

tires [36]. A later paper [37] deals with the 

issue of frequency band selection in order to 

reject variability due to operational and 

environmental conditions, emphasizing one 

more time this important aspect. Here again, 

data acquired on the damaged structure is 

necessary in order to select the frequency 

bands.  

 

Although the present paper is intended to 

deal with linear structures only, it is worth 

citing a recent study on the extension of the 

concept of transmissibilities for non-linear 

systems using the concept of “non-linear 

output frequency response functions” 

(NORF) [38]. 

2 General formulation 

 

This first part introduces the basic 

equations used in this work. It details the 

formulation of frequency response functions, 

necessary to understand the concept of TFs 

and of the damage indicator.  

 

2.1 Frequency response functions 

 

 The usual n dof undamped system, 

illustrated in Figure 1, is written for the case 

of harmonic excitation as: 
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 2 x f K M  (1) 

 

Where K and M are the stiffness and 

mass [nxn] matrices and f and x are the input 

and output (response) [nx1] vectors. The 

nature of the model of the system will 

determine the structures of matrices K and 

M. Next sections will show that particular 

properties of TFs depend on these structures. 

The displacement is given by 

 
2

2

(

det(

adj )
x f f

)






 



K M
H

K M
 

(2) 

 

Where H is the dynamic flexibility matrix, 

and the j,kth term of the adjoint matrix is 

 

 2( 1) detk j

jk
    K M  

(3) 

 

 

The subscript jk on the matrix [K-ω2M]jk  

denotes the fact that the kth column and the jth 

row have been deleted. Note that the 

subscript k is linked to the input as illustrated 

in Figure 1. 

It is known that the poles are the 

natural frequencies of the system, and 

represent a global behaviour of the structure; 

the poles are the eigenvalues of (K-ω2M). 

Poles appear when the denominator det(K-

ω2M) is zero. 

Zeros on frequency response function 

for a force at coordinate k and response at 

coordinate j occur when the respective 

adjoint element (element at column k and 

row j) is zero due to a singularity of the 

submatrix [K-ω2M]jk. The zeros are the 

eigenvalues of the submatrix [K-ω2M]jk, 

which are potentially different for each input-

output pair. 

 

2.2 Transmissibility functions 

 

 On the contrary to admittance 

functions (usually called frequency response 

functions FRF) which are frequency 

responses between conjugate variables 

(motion response/ force input), TFs are 

obtained by taking the ratio of two response 

spectra of like variables (motion 

response/motion input)  xi and xj, for a given 

input located at degree of freedom (DOF) k : 

 
 

2

2

( 1) det
( )

( )
( ) ( 1) det

k i
k

ikk i
ij k

k j
j

jk

x
T

x




 





   
 

   

K M

K M

 

 

 

(4) 

It can be observed that the common 

denominator det(K-ω2M), whose roots are 

the system’s poles, disappears by taking the 

ratio of the two response spectra. 

Consequently, poles or zeros of the TF 

correspond to the zeros of both FRFs.  

In general, TFs depend on the input 

location of the (unknown) force. Note that 

this definition corresponds to the case of a 

single point input, which may not cover all 

cases encountered in practice. It is however 

the most widely used in SHM applications. 

Moreover, the limitations of this approach 

which are highlighted in the present study 

hold for multiple-input locations, which have 

been found to be an even more restrictive 

case. For the sake of clarity, this study is 

therefore restricted to the single input 

location case. 

 

 

 

2.3 Damage indicator 

 

 Damage detection and localization is 

based on the tracking of the changes of the 

TFs at certain frequencies or over certain 

frequency bands. For that purpose, a damage 

indicator was introduced first in [23] and 

used by many authors subsequently. This 

damage indicator Dij  is a scalar value which 

quantifies the change of the TF between 

measurement points i and j across a given 

frequency band. It is defined over a 

frequency range from ω1 to ω2 by:  
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2

1

2

1

1 2

( ) ( )
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( )

h d

ij ij

ij

h

ij

T T d

D

T d









  

 

 









 

 

 

(5) 

where Th
ij is the baseline undamaged TF, and 

Td
ij is the current potentially damaged TF. As 

stated earlier, the selection of an appropriate 

frequency range [ω1, ω2]  is a key parameter 

for a good detection, as discussed in different 

papers in the literature. Note that a slightly 

different version of this indicator has been 

proposed in [35] where the amplitude of the 

logarithm of the TFs is used instead of the 

TFs. In practice TF based on accelerations 

measurement are often used. Due to the 

definition of the TF, their expression is 

identical using accelerations or 

displacements, since the multiplying factor –

ω2 cancels out. 

 

3 Non dispersive systems 

 

3.1 Definition 

 

The first class of problem that we 

shall consider is governed by a second order 

partial differential equation. This kind of 

problem presents non dispersive waves, 

including transverse vibrations of strings, 

longitudinal deformation of beams, or chain-

like mass-spring systems. The system is 

governed by the well known wave equation. 

For simplicity, in the following, discussions 

on non dispersive systems will be illustrated 

with chain-like mass-spring systems. 

 

3.2 N degree of freedom system 

 

The chain-like mass-spring systems 

are models composed of masses 

interconnected by springs, capable of only 

translational motion. Each node has only one 

degree of freedom and is connected to its 

nearest neighbours. Such a simple model 

allows for a good understanding of various 

properties of TFs for non dispersive systems. 

A n degree of freedom chain-like 

mass-spring is represented in Figure 1. 

 

These systems are well known, and their 

equation of motion has the form of: 
1x x f  H Z   (6) 

 

With Z is the following 3 diagonal [nxn] 

matrix: 

1 2

1

( )

( )

( )

j j j

n n

M k

k M k

k M









 
 
 
   
 
 
  

Z

 

 

 

 

(7) 

 

And where 
2

1( )i i i iM k k m     (8) 

 

Using Eq (2), the FRF between output j and 

input k can be written: 

  ( 1) det

det(

k j

jkj

jk

k

x
H

f )


 

Z

Z
 

(9) 

 

It is interesting here to develop the 

adjoint matrix (we recall here that it 

corresponds to the matrix Z without the kth 

column and the jth row, illustrated with the 

doted lines): 

 

We can write this matrix in the following 

form: 

 
j

jkjk

k

Ma Md

Mb Me

Mc

 
 


 
  

Z  

(11) 

 

1 2

1 1

1 1 2

1

1

1

1 2

2
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( )
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( )

Z

j j j

j j j

k

k

k k

k k

k
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M k

k M k

k M k

k

M

k k

M k

k

k M













 
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





 




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 
 
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 
 
 
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 
 
 
 
  

  

 

 

 

 

 

(10) 



Author manuscript, published in           Mechanical Systems and Signal Processing 38 (2013) 569–584   
 
S. Chesné & A. Deraemaeker                                                                                     http://dx.doi.org/10.1016/j.ymssp.2013.01.020 

 

 8 

Where the three sub matrices of interest, 

separated by the row j and the column k, are: 

1 2

1 1

( )

( )

j

j j

M k

Ma

k M



 
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 

  
  

 

1 1

1

( )

( )

0

j j

jk k

k

k M

Mb M

k





 



 
 


 
  

 

1 2( )

( )

k k

k

n n

M k

Mc

k M





  
 


 
  

 

 

 

 

 

 

 

(12) 

 

It can be observed that matrices Md and Me 

are empty, expect at one corner where a 

single stiffness term appears. Nevertheless 

their determinant is zero so that they do not 

appear in the expression of the FRF 

The concept of subsystem appears clearly in 

equation (11). Noting that the sub matrix 

Mbjk is triangular, it follows that the FRF Hjk 

can be written as: 

 

It is interesting to notice that the zeros 

of the FRF Hjk, do not depend on the 

dynamic parameters of the system between 

points j and k. The zeros correspond to the 

poles of the exterior subsystems when dofs j 

and k are grounded as shown by (12) and 

(13). Figure 2 illustrates the two exterior 

subsystems which determine the zeros of the 

FRF Hjk.  

 

With these results and observations, we can 

write the TF for this type of mechanical 

systems: 

1

( ) det( )
( ) ( )

( ) det( )

j
k ik i

ij p

p ijk j

H Ma
T k

H Ma




  

    
 

 

(14) 

 

The expression of Tij
k(ω) in equation 

(14) is not a function of the excitation 

coordinate k, which means that Tij
k(ω) is not 

dependent on the excitation position as long 

as we have  k ≥ j ≥ i. This independence on 

the force location is true as long as the force 

remains on the same side of points i and j.   

 

 

3.3 Damage localization using TFs 

 

If the poles are the natural frequencies 

of the systems, what is the physical meaning 

of the zeros? The information provided by 

the zeros seems to be a bonus because it 

refers to a different system (sometimes called 

a fictitious system) which can be represented 

by the original model matrix representation 

when certain rows and columns have been 

eliminated (through the adjoint matrix of the 

numerator). Miu [39] considers that zeros of 

the FRF represent the resonant frequencies 

associated with energy storage characteristic 

of this subportion of the system defined by 

artificial constraints imposed by the location 

of input and output. They represent the 

frequencies at which energy is trapped in the 

energy storage elements of the subportion of 

the original system such that no output can 

ever be detected at the measurement point.  

 

In the context of damage detection, 

we saw that the system (global) transfer 

function poles are sensitive to changes in 

structural health anywhere because the term 

det(Z) in (9) is a function of all the system 

parameters. In contrast, the zeros are only 

sensitive to a certain subset of mass and 

stiffness parameters that are localized in 

specific regions of the structure (see equation 

(14)). This difference in sensitivity to 

global/local changes can be exploited by 

selecting a damage feature based on TFs, 

which are independent of the poles and solely 

dependent on zeros. By focusing on the zeros 

rather than the poles, it might be possible to 

“trap” damage or local structure variation 

between certain DOFs and perform damage 

localization. Let us illustrate this with the 

subsystems (A, B, C and D) represented on 

Figure 3. The global system is limited by two 

fixed boundaries, and 3 particular DOFs, (1 

input and 2 outputs) delimiting 4 subsystems. 

1

det( )det( )det( ) det( )det( )
( )

det( det(

k
j j jk k j k

jk p

p jk

x Ma Mb Mc Ma Mc
H k

f ) )  

   
Z Z

 

(13) 
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We consider that outputs are not on the 

boundary or collocated to the input. 
 

Applying equation (14), we find: 

1

det( )
( ) ( )

det(

j

ij p

p i

A
T k

AB)


 

   
 

(15) 

This expression is of great interest, as it 

allows understanding the physical origin of 

poles, zeros and gains of the TF. The first 

thing to note is that the TF is not dependent 

on subsystems C or D and will not be 

affected by a damage located in these 

subsystems.   

According to (15) a change of stiffness in 

subsystems A or B will affect Tij(ω). The 

possibility to locate damage depends on the 

sensitivity of Tij(ω) to stiffness changes in B 

due to two sources: 

• A change in the gain of Tij(ω) through the 

term  
1

j

p i

pk
 

   which is the product of the 

spring stiffnesses between points i and j. 

 

• A change in the poles of Tij(ω) through the 

term det(AB). 

 

On the other hand, a damage in subsystem A 

will also cause a change in Tij(ω)which will 

be detrimental to the localization. The 

changes are due to two sources: 

 

• A change in the zeros of Tij(ω) through the 

term det(A). 

 

• A change in the poles of Tij(ω) through the 

term det(AB). 

 

We can conclude from this, that if damage is 

present anywhere between the position of the 

applied force and the boundary condition, 

perfect localization is never possible, unless 

the damaged spring is located directly next to 

the applied force. In this very specific case, 

whatever the values of i and j, the damage is 

never in subsystem A. In all other cases, 

damage will cause a change in the poles and 

zeros of Tij(ω) for some values of i and j (i.e. 

when i and j are at the right of the damaged 

spring). In some cases, this leads to the 

impossibility to locate damage, as will be 

demonstrated in the examples. Figure 4 

summarizes the role of each subsystem. 

 

 

3.4 Analysis of a damage detection case 

 

 In this section, a 4 dofs mass-spring 

system is considered (Figure 5, m1,2,3=10-3 

kg, k1,2,3=10Nm-1).     

Two representative damage cases are 

presented. The first case (Figure 6 and Figure 

7) where the stiffness k3 is damaged (30%) is 

the ideal case for damage detection where the 

input is next to the damaged spring. The 

damage indicator Dij is computed using (5) 

and using a large frequency range [0; 

300]rad.s-1 containing all poles and zeros of 

the TFs. The interpretation of the results is 

based on the subsystem representation 

previously proposed. Figure 8 is an 

illustration of how the subsystems are 

rearranged for T34. 

 

T12 and T34 are unchanged, as shown 

by their null damage indicator. Indeed, for 

these TFs, the damage is located in a 

subsystem which has no effect on the TF (C 

or D).  Equation (15) shows that TFs are not 

sensitive to a structural variation located in 

these subsystems. T23 contains the damaged 

stiffness. In this configuration, damage is 

located in subsystem B and the TF is affected 

by its presence, as shown by the non-zero 

damage indicator. This case is considered as 

the ideal one because the damage indicator is 

always zero except for the TF which contains 

the damaged element between its outputs.  

The second illustrative case is more 

problematic. The damage is on stiffness k2. 

The various TFs and damage indicators are 

shown in Figure 9 and Figure 10. 

 

 

The interesting result of this case is 

the fact that the damage indicator of T23 is 

not zero, although it is smaller than the 

damage indicator of T12. This result 
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illustrates the dependence of the TF on a 

subsystem outside the domain delimited by 

its outputs as predicted previously.  

 

In conclusion, for chain-like mass-

spring systems, the TF between points i and j 

is very sensitive to changes in subsystem B, 

delimited by these two points. Unfortunately, 

it is also sensitive to changes in subsystem A, 

located between point i and the nearest 

boundary. Consequently, for good damage 

localization, a particular attention has to be 

paid on this domain. The numerical results 

on the simple system presented show that 

despite this problem, the damage indicator is 

maximal in the damaged region, so that 

localization is possible.  

 

 

3.4.1   Effect of the frequency range 

 

 One another key parameter to 

consider is the frequency range used for the 

computation of the damage indicator. In 

order to observe its behavior, let’s plot its 

evolution as a function of ω for a 7 DOF 

system. This new damage indicator is then 

defined as: 

 

0

0

( ') ( ') '

( )

( ') '

h d

ij ij

ij

h

ij

T T d

D

T d





  



 








 

 

 

(16) 

 

 

 The input force is localized on mass 

6. For the first simulation, damage is 

localized on k6 directly next the applied 

force. Figure 11shows the evolution of the 6 

damage indicators as a function of ω. This 

corresponds to the special case where the 

only TF which changes due to the damage is 

T56(ω). The damage only affects the poles 

and the gain of T56(ω) since only subsystem 

B is damaged, and not subsystem A. Note the 

sharp increase of T56(ω) around 50 rad/s due 

to the presence of the first pole in this TF. 

This first pole corresponds to the first 

eigenfrequency of the subsystem consisting 

of 5 masses.  

 

For convenience, in the following, the 

damage indicators referring to a domain 

containing the fault are plotted using dotted 

lines.   

 

In Figure 12, we plot the evolution of the 6 

damage indicators as a function of ω when 

damage is located on k3. In this case, all 

damage indicators between point 2 and point 

6 are affected. Localization is only possible 

below 50 rad/s where T23(ω) is larger than all 

the other indicators. As stated earlier, around 

50 rad/s which corresponds to the 

eigenfrequency of the subsystem consisting 

of the first five masses, T56(ω) increases 

sharply. A sharp increase in T23(ω) occurs at 

a higher frequency, around 80 rad/s 

corresponding to the first eigenfrequency of 

the subsystem consisting of the first two 

masses. For this reason, between 50 and 80 

rad/s, localization is not possible. This type 

of frequency behavior was also observed in 

[33] in which the authors have noted that the 

results of damage localization tended to 

deteriorate when increasing the frequency 

band. They also noted that one should stay 

below the first resonance or anti-resonance of 

the TF which is coherent with the results 

presented above.  

In general, if the position of the force 

is not known, it is safe to consider the first 

eigenfrequency of the whole system as an 

upper limit for the computation of the 

damage indicator. In the example considered, 

this first eigenfrequency is equal to 39.01 

rad/s. 

 

Figure 13 and Figure 14 show the 

damage indicators, for two different 

frequency ranges. In Figure 13, the damage 

indicator uses the whole frequency range 

[0,300] rad/s. Localization is not possible. 

Figure 14 shows that by restricting the 

frequency band to [0,39] rad/s (below the 

first eigenfrequency of the system), 
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localization can be achieved, although as 

discussed earlier, the damage indicators 

corresponding to undamaged zones are not 

equal to zero.  

 

3.4.2   Effect of added masses on 

transmissibility functions 

 

From equation (15), it is clear that a 

change of mass will have a different effect on 

Tij(ω)  than a stiffness change. The main 

difference is that there will not be any change 

in the gain due to the stiffness terms. The 

mass change will however modify the poles 

and zeros of Tij(ω). We saw in the previous 

section that good localization was possible at 

low frequencies thanks to the change in the 

gain of Tij(ω)  so that we should expect to 

lose the localization capability for a mass 

change. This is an important issue, as it is 

quite common in practical experimental 

validation exercises, to replace the damage 

by added masses in order to avoid actually 

damaging the test structure (see for example 

[22]). The primary justification for such a 

procedure is that an added mass will shift the 

eigenfrequencies down, in a similar way that 

a stiffness reduction will do. The 

developments below show that this ’fake 

damage’ technique should not be used to test 

a damage localization method using 

transmissibilities, especially if one uses the 

TFs at low frequencies. 

 

Let’s consider the system presented in 

Figure 15. The system is constructed with 13 

masses and the displacements on masses 

1,3,5..,13 are measured. It is then possible to 

introduce a mass change between two 

measurement points. In the next simulations 

an increase of 30% of mass 4 is introduced. 

 

Figure 16 shows the evolution of the six 

damage indicators for an increase of mass 

(+30%) on mass 4, corresponding to the case 

of a modification between measurement 

points 3 and 5 for the 13 dofs system. One 

sees clearly that localization is not possible at 

low frequencies. At high frequencies (Figure 

17), localization seems improved, but it is 

never as good as for a stiffness change when 

considering the damage indicator at low 

frequencies. The first eigenfrequency of the 

system is 22rad.s-1. In order to compare this 

kind of damage with previous section, Figure 

18 shows the damage indicators for 

 0,21  rad.s-1. It clearly appears that a 

mass variation cannot be localized. 

 

Of course, localization could still be possible 

if one restricts the frequencies of interest for 

the computation of the damage indicator to 

some specific frequencies at which the 

damage indicator over the damaged region is 

much higher than in the other regions. Let us 

consider the ’single frequency’ damage 

indicator Dsf given by : 

( ) ( )
( )

( )

h d

ij ij

ij h

ij

T T
Dsf

T

 





  

 

 

(17) 

 

For the same example with 13 masses, Figure 

19 and Figure 20 show the value of Dsf(ω) 

when respectively the mass addition is 

located on m4 and the stiffness reduction is 

on k4, both between measurement points 3 

and 5. It can be seen from the figure that 

localization is possible only in very limited 

frequency bands. This emphasizes again the 

importance of the choice of frequency bands 

for damage localization, and the fact that 

these frequency bands cannot be determined 

a priori without any knowledge on the 

damaged state. It can also be seen that there 

is no evidence that a mass change has a 

somehow similar effect on Dsf(ω) than a 

stiffness change. 

 

 

3.5   Discussion 

 

We have studied the use of TFs for 

damage localization in chain-like mass spring 

systems. Based on a simple formula relating 

the change of TFs to the damage in the mass-

spring system, we have shown that perfect 

localization of damage is only possible when 
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the damage is located directly next to the 

point of application of the force. In all other 

cases, damage localization is not perfect and 

tends to deteriorate when the frequency band 

used for the computation of the damage 

indicator is increased. We have shown 

numerically that for these other cases and 

frequencies lower than the first 

eigenfrequency of the system, the damage 

indicator computed between points i and j is 

maximum when damage is located between 

points i and j. In this case, damage 

localization seems to be possible, although 

there is no guarantee. For higher frequencies, 

localization is much more problematic and 

much care should be taken in the selection of 

the frequency bands of interest for the 

computation of the damage indicator. 

Unfortunately, it does not seem possible to 

determine these frequency bands without a 

priori knowledge on the response of the 

damaged structure. 

 

Based again on the simple formula 

derived, we have compared the effect of a 

stiffness with the effect of a mass change on 

TFs for chain-like mass-spring systems. The 

results show that a mass change has a very 

different impact on the TFs so that 

localization is not guaranteed, even at low 

frequencies. It is therefore advised not to use 

’fake damage’ in experimental setups by 

using added masses when using TFs.   

 

Extreme caution should therefore be 

taken in the use of TFs for damage 

localization. Even for very simple chain-like 

mass-spring systems, perfect localization is 

guaranteed only in very specific conditions 

(the damage is exactly next to the applied 

force), and good localization seems to be 

feasible (but not certain) only by looking at 

Tk
ij(ω) at frequencies below the first natural 

frequency of the system, providing that the 

structural modification is a stiffness change, 

and not a mass change. 

 

4   Dispersive systems 

 

4.1   System characteristics 

 

In previous sections the theory of the 

use of TFs to localize damage has been 

detailed for non dispersive systems. Such 

systems are characterized by the fact that 

only one transfer path is available. 

Unfortunately, this characteristic is rarely 

present in real life structures. Without this 

assumption the independence of the TFs with 

respect to the force location is not valid 

anymore. Liu and Ewins [40] proved it 

mathematically considering two subsystems 

linked by two springs on different DOFs as 

illustrated on Figure 21. 

 

These parallel links represent the fact 

that more than one vibration path is 

available. Physically it can represent the 

coupling between rotational and transverse 

motion in Euler-Bernoulli beams. In this 

work the authors show that if the response of 

system A is measured at two DOFs, j1 and j2, 

the ratio of two FRFs, Hj1k / Hj2k is dependent 

on the input location k. This dependence on 

force location restricts the use of TFs for 

damage detection and localization to cases in 

which the input locations do not change. In 

addition, equation (15) is based on the tri-

diagonal nature of matrices K and M. For 

dispersive systems, the matrices are not tri-

diagonal and such a result does not hold 

anymore, so that even in the ideal case 

(damage next to the excitation location), 

localization cannot be proved. In fact, the 

zeros will be sensitive to all the parameters 

of the structure, and not only to a subset of 

parameters, as it was the case for non-

dispersive systems. 

 

4.2   Damage localization: Illustrative 

example 

 

In order to illustrate this, an Euler 

Bernoulli beam is modeled using the finite 

element method. This class of systems is 
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governed by a fourth order differential 

equation and the discrete representation 

results in matrices which are not tri-diagonal. 

This means that nodes have more than one 

connection to others nodes or that that the 

connections are not only to their nearest 

neighbors (as illustrated Figure 21). 

 

 We consider a cantilever beam of 

length L = 1.12m, rectangular cross section 

of width 1.18cm and height 0.635cm. The 

beam is made of fiberglass which has a 

density 1620kg/m3 and a Young’s modulus 

E = 22.4GPa and is identical to the one used 

in [25]. It is discretized with 16 Euler-

Bernoulli finite elements as illustrated Figure 

22. A transverse force is applied on node 13, 

element 11 is damaged with a bending 

stiffness reduction of 5%, and 8 transverse 

displacements are used as outputs for TF 

computation.  

 

This case corresponds to the ideal one 

for damage localization as illustrated in 

Figure 11 for mass-spring systems. The 

frequency band includes the 8 first flexural 

modes of the beam. Figure 23 shows the 

evolution of the 7 damage indicators 

(computed with (16)) as a function of ω. 

Damage contained between x5 and x6 should 

appear in D56. Clearly, although damage is 

detected, it cannot be localized, except in a 

very small frequency range around 150 rad.s-

1 between the second and the third mode of 

the structure.   

 

5   Conclusions 

 

The first part of this paper was devoted 

to a critical review on the use of TFs for 

damage detection and localization. The 

review highlights the importance of the 

choice of the frequency bands, the effects of 

environment, and the dependency on the 

force location. It also highlights the lack of 

analytical results to determine the practical 

limitations when using TFs for damage 

detection and localization. 

In the second part of the paper, we have 

studied non dispersive systems such as chain-

like mass-spring systems and derived an 

analytical formula linking the TF to the 

properties of four subsystems, defined by the 

boundary conditions, the excitation location, 

and the position of the two points used for 

the computation of the TF. This formula 

shows that damage localization is only 

guaranteed when the excitation force is 

located exactly next to the damage, which is 

very rarely the case in practice. In all other 

cases, although damage localization is not 

guaranteed, it seems to work when restricting 

the frequency band to frequencies lower than 

the first eigenfrequency of the system. The 

study also shows that locally changing the 

mass of the system has not the same impact 

as changing the stiffness, especially at low 

frequencies, so that replacing damage by an 

added mass is not advised when using TFs. 

The analytical results derived for non-

dispersive systems cannot be extended to 

more general dispersive systems such as 

beams or plates. For such systems, damage 

localization is therefore not guaranteed, even 

for the ideal case in which the excitation is 

located next to the damage. This is illustrated 

on a simple beam example in the last section 

of this paper. 

A general conclusion to this study is that 

extreme care should be taken when using TFs 

for damage detection and localization. While 

it is obvious that such functions are sensitive 

to damage, it seems to be difficult to use 

them in an unsupervised manner, i.e. without 

knowing a priori how they will be affected 

by damage, environment, and the excitation 

location. 
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Figure 1: A n DOF mass spring system 

 

 

 
Figure 2:Subsystems of mass spring system zeros 

 

 

 
Figure 3:  Mass spring system, subsystem representation 
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Figure 4: Subsystems involved in TF computation 

 

 

 
Figure 5 :  A 4 DOF mass spring system 
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Figure 6: Transmissibility functions, k3 is damaged  (Black line: Healthy structure, Red dotted line: damaged 

structure) 
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Figure 7:  Damage indicator:  k3 is damaged 

 

 
Figure 8: Subsystem representation for T3

34 
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Figure 9:Transmissibility functions, k2 is damaged    (Black line: Healthy structure, Red dotted 

line: damaged structure) 
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Figure 10: Damage indicator:  k2 is damaged 
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Figure 11: Evolution of the six damage indicators as a function of ω for a stiffness reduction of 

30 % on k6 
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Figure 12: Evolution of the six damage indicators as a function of ω for a stiffness reduction of 

30 % on k3 
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Figure 13: Damage indicator:  k3 is damaged.  0,300  
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Figure 14: Damage indicator:  k3 is damaged  0,39  

 

 

 
Figure 15:  A 13 DOF mass spring system 
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Figure 16: Evolution of the six damage indicators as a function of ω for a mass add 

of 30 % on m4 
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Figure 17: Damage indicator:  m4 is increased  0,300  
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Figure 18: Damage indicator:  m4 is increased  0,21  
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Figure 19:  “Single frequency” Damage indicator (dB):  m4 is increased 
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Figure 20: “Single frequency” Damage indicator (dB):  k4 is damaged 

 

 

 
Figure 21:  Two systems connected with two springs: “=” connection 
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Figure 22:  Cantilever beam discretized with 16 finite elements, element 11 is damaged 
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Figure 23:  Evolution of the seven damage indicators as a function of ω for a bending stiffness reduction of 

5 % on element 11 
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