N

N

Fixed points of dictionary learning algorithms for sparse
representations
Boris Mailhé, Mark D. Plumbley

» To cite this version:

Boris Mailhé, Mark D. Plumbley. Fixed points of dictionary learning algorithms for sparse represen-
tations. 2013. hal-00807545

HAL Id: hal-00807545
https://inria.hal.science/hal-00807545

Preprint submitted on 3 Apr 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00807545
https://hal.archives-ouvertes.fr

Fixed points of dictionary learning algorithms for
sparse representations

Boris Mailhé, Member IEEE,SPS and Mark D. Plumbley, Senior Member, IEEE,SPS

Abstract—This work provides theoretical arguments to
compare dictionary learning algorithms for sparse rep-
resentations. Three algorithms are considered: Sparsenet,
MOD and K-SVD. The main theoretical result is that the
fixed points of the Sparsenet and MOD dictionary update
stages are the critical points of the residual error energy
function (i.e. points with null gradient, not necessarily local
minima), whereas the set of K-SVD fixed points is strictly
included in the critical point set of the error energy. An
example of a point is also provided where Sparsenet and
MOD would stop whereas K-SVD can reach a solution with
lower residual error. Further experiments show that the
result of Sparsenet is a very good starting point for K-SVD.
The combination of Sparsenet followed by K-SVD provides
a significant improvement in terms of exact recovery rate
and approximation quality.

Index Terms—Machine learning algorithms, Dictionar-
ies, Optimization, Sparse coding

I. INTRODUCTION

In the method of sparse decompositions, a signal is
represented by the linear combination of a few vectors
named atoms chosen from a large set named a dictionary.
Such representations are useful for many applications
such as audio compression [1], image denoising [2],
image and audio inpainting [3] or [4]. There is no
finite universal dictionary that can represent every signal
sparsely, so a dictionary has to be chosen according to
the signals to be represented.

If a good candidate dictionary is not already known,
then the dictionary can be learnt from training exam-
ples. Several dictionary learning algorithms have been
proposed in the literature such as Sparsenet [5], the
Method of Optimal Directions (MOD) [6] and K-SVD

Boris Mailhé and Mark Plumbley are with the Queen Mary
University of London (QMUL), School of Electronic Engineer-
ing and Computer Science (EECS), Centre For Digital Mu-
sic (C4DM), E1 4NS London, United Kingdom (e-mail: first-
name.name @eecs.qmul.ac.uk).

This work was supported by the EPSRC Project EP/G007144/1
Machine Listening using Sparse Representations and by the EU FET-
Open project FP7-ICT-225913-SMALL.

This work was presented in part at the Workshop on Signal Pro-
cessing with Adaptive Sparse Structured Representations (SPARS’11)
in Edinburgh, Scotland.

[7]. However it is not always clear how these algorithms
behave and compare to each other. In the present paper
we provide a theoretical comparison between the be-
haviors of these algorithms, and in particular we will
investigate their fixed points. To gain insight on the
asymptotic behavior at convergence we will consider a
simplified problem where a given gives the support of
the decomposition.

Our main result is that K-SVD has strictly fewer fixed
points than Sparsenet and MOD. The global minima are
fixed points for all three algorithms, so K-SVD therefore
has strictly fewer suboptimal points (i.e. those that are
not global minima) to converge to. It also follows that
Sparsenet or MOD could be used to initialize K-SVD,
and indeed we find the combination of Sparsenet fol-
lowed by K-SVD outperforms any one of the algorithms
used alone.

II. PROBLEM AND ALGORITHMS

Let Y be a D x N matrix of training data and M < N
a dictionary size. The dictionary learning problem is that
of finding a dictionary ® of size D x M and sparse
coefficients X of size M x N such that Y ~ ®X. In
this work we use the following problem statement.

Problem 1 (Dictionary learning). Given a training ma-
trix Y, a dictionary size M and a sparsity level K,
minimize the Frobenius energy cost function

f(@,X) = [[Y — X% (1)
under the constraints

Vm € [LM]’ ”Qom”Q =1 2)
Vn € [1, N], ||xnllo < K 3)

where @, is the m'"" column of ® and |x,|o is the

number of non-zero coefficients in X, the n'* column of
X.

Sparsenet, MOD and K-SVD all minimize the cost
function (1) by cycling through 2 steps. Those steps can
roughly be described as:

1) a sparse approximation step to update X ,

2) a dictionary update step to update P .

The sparse approximation step 1 is common to all
algorithms, while the dictionary update step 2 is different
for each.

A. Sparse approximation

Sparse approximation has been widely studied and any
existing algorithm can be used in that step, for example
Matching Pursuit (MP) [8], Orthogonal Matching Pursuit
(OMP) [9] or ¢; penalization, also known as Basis
Pursuit Denoising (BPDN) [10]. OMP in particular offers
useful theoretical guarantees: after the decomposition the
support always has a sparsity of K or less, the sub-
dictionary selected to represent each signal has full rank
and the residual is orthogonal to all selected atoms [9].
We therefore use OMP for the sparse approximaiton step
in this work.

B. Dictionary update

The main difference between the algorithms studied
here is the way that they update the dictionary. Both
Sparsenet and MOD perform the dictionary update with
fixed values of the coefficients, while K-SVD simulta-
neously updates an atom and the values of its non-zero
sparse coefficients.

1) Sparsenet: Sparsenet [5] updates each atom of the
dictionary successively using a projected fixed step gra-
dient descent. The gradient of the cost function (1) with
respect to the atom ¢,, is Rx"T with R = Y — ®X
the residual and x™ the m'* line of X that contains
the coefficients of the atom ¢,,,. The projection on the
£5 sphere to satisfy the constraint (2) simply consists in
renormalizing the atom. Overall, the update sequence for
one atom is:

R=Y - ®X (4)

O — P+ aRx™T ¥ € [1, M] 5)

@, — —2m_ Ym e [1, M] ©6)
[emll2

where « is the fixed step size.

2) MOD: MOD [6] updates the whole dictionary in
one step with the solution of the unconstrained least-
square problem followed by the same renormalization
of each atom as in Equation (6).

®— YXT (7
@, — P ym e [1, M])
lemll2

where X7 is the pseudo-inverse of X.

3) K-SVD: K-SVD update each atom iteratively same
as Sparsenet, but when updating an atom, it also updates
the value of its corresponding non-zero coefficients [7].
The atom update problem then becomes a principal
component problem. For the m!" atom ¢, and the corre-
sponding coefficient line x™, the estimated contribution
matrix E(,, is defined as

,Vm e[, M]. (9

Then the atom ¢,,, is updated with the principal com-
ponent of its estimated contribution, and its non-zero
coefficients x[!) with the correlation of the new

. upp(xm)
atom with the contribution:

E(m) = [R + (pmxm]supp(xm)

©,, < argmax VTE(m)E?m)V, Vm € [1, M]
v [lvil,=1
(10)
X p(xm) OB, Ym € [1,M]. (11)

III. LEARNING WITH A KNOWN SUPPORT

Each of the algorithms considered use an iteration
split into two steps, but the location of the split differs
between K-SVD and the other two algorithms. To fit
all the algorithms in a common framework we need to
consider that each algorithms has three tasks to perform,
not only two:

1) estimate the support of X,
2) estimate the non-zero values of X,
3) estimate the dictionary ®.

Sparsenet and MOD perform the first and second tasks
together, then the third, while K-SVD performs the first
task, then the second and third together. With everything
else fixed, the steps 2 and 3 are both simple quadratic
problems. On the other hand, the sparse representation
problem (i.e. the sequence of steps 1 and 2) is known
to be NP-Hard [11]. Therefore the step 1 itself is NP-
Hard because if one can solve it in polynomial time,then
one can solve the whole NP-Hard sparse representation
problem in polynomial time by finding the best support
first, then the best coefficients for this support. One
can then speculate whether dictionary learning would
become a simple problem if the support were known.
Forcing an algorithm to keep the same support is
also a way to investigate its asymptotic behavior in the
general case: since the support is a discrete variable, if
it converges, then it reaches its final value after a finite
number of iterations then does not change anymore.

A. Problem formulation

When learning with a given coefficient support I' €
{0, 1}M*N guch that ™ = 0 = 2 = 0, the cost

function to minimize remains the function f defined in
Equation (1) The sparsity constraint (3) is replaced by a
support constraint on X. The problem can now be written
as:

Problem 2 (Dictionary learning with a known support).
Given a training matrix Y and a support matrix T,
minimize the cost function

f(@,X) = min|[Y - ®X|# (12)

under the constraints
vm € [1, M], [[¢,,lla =1 (13)
supp(X) C supp(T’) . (14)

The I' matrix can also be used to express the support
of the n'" signal and the co-support of the m'* atom
supp(x'™) as respectively =, and y™.

The support constraint (14) reduces the dimension of
the problem: the scalar unknowns of Problem 2 are each
entry ¢ of ® and the non-zero entries of X only, i.e.
each entry z]' of X with m and n such that ;" = 1. One
could rewrite the cost function f using those variables
only:

N
f((I)a X) = Z ”yn - q)"/”xz" H% : (15)
n=1
Then the constraint (14) would not be needed anymore
since the zero coefficients would not appear in the
problem. However the notation (15) is less convenient
since the matrix product X in (12) has been broken
into pieces. So we keep the current notation (12) with
the whole X matrix but notice that its zero coefficients
only serve as placeholders to preserve the shape of the
matrix.

Problem 2 is easier than the original Problem 1 in
Section II since it does not contain the non-convex
sparsity constraint (3). However the cost function f
remains a non-convex fourth degree multivariate poly-
nomial because both and X are unknown.

B. Algorithms

The studied algorithms can be adapted to Problem 2
by replacing the sparse decomposition by a simple least-
square optimization of the non-zero coefficients:

X" By, (16)

where x," is the column containing the non-zero coef-
ficients of the decomposition of the signal y,, over the
selected sub-dictionary ®. . In this work we will refer
to the known support versions of the studied algorithms

as Sparsenet, MOD and K-SVD. Those algorithms are
fully described in Algorithms 1, 2 and 3.

The projection (16) ensures that the decomposition
of each signal over its sub-dictionary is orthogonal: for
each signal y, and each atom ¢, if x]' # 0, then
(rn,,,) = 0. As a consequence the residual R is
orthogonal to the contributions of each atom for the
Frobenius inner product (A, B) = Tr(ATB):

vm € [1,M], (R, p,,x™) =0 . (17)

Algorithm 1 (®, X) = Sparsenet (Y, I'), Sparsenet with
a known support

while not converged do
for all n € [1, N] do
X" 4 @,J;nyn

end for
for all m € [1, M] do
R« Y -®X

P < P+ aRX™T
Pon
Pm < To T,
end for
end while

Algorithm 2 (®,X) = MOD (Y,I'), MOD with a
known support
while not converged do
for all n € [1, N] do
Xy @,J;nyn
end for
® <+ YXT
for all m € [1, M] do
P < T2 T
end for
end while

IV. FIXED POINTS OF MOD AND SPARSENET

In this section we study the fixed points of Sparsenet
and MOD under the known support constraint, i.e. the
points that remain the same after one iteration of the
Algorithms 1 and 2. We show that the fixed points of
Sparsenet and MOD are the same as the critical points
of the cost function f.

A. Critical points of the cost function

The critical points of a smooth real valued function
are the points where its gradient is zero. The gradient is

Algorithm 3 (®,X) = K-SVD (Y,T'), K-SVD with a
known support

while not converged do
for all n € [1, N] do
X" 4 <I>jy'nyn

end for
for all m € [1, M] do
R+Y-®X

E(m) < [R + Qomxm]'ym
@, < argmax vTE(m) E(Tm)v

vivll,=1
X5 4= P E)
end for
end while

obtained by differentiation of (12) with respect to both
® and X:

df (®,X) =f(® + d®, X + dX) — f(®,X)

=Y — (@ +d®)(X + dX) [- Y — ®X|F
— 2(RXT, d®) — 2(®TR, dX)
+O(|dX|§ + [[d®]IF) -

where R =Y — &X.

With a slight abuse of the partial derivative notation,
we write the gradient components relative to ® and X
in matrix form as

of T

& = —2RX (18)
of T

ox — 2®'R (19)

The critical points of f are the points where both of these
components are zero. Moreover, Equation (19) is written
with a full X matrix for ease of notation and to preserve
the shape of the problem, but not all its coefficients are
variables. So for Problem 2, the X gradient only has to
be considered for the coefficients allowed to change by
the constraint (14). So the critical points of f are defined
by the conditions

RXT =0

=0.

(20)

[(I)TR]supp(l") (21)

B. Fixed point condition for the least-square coefficient
update

Under the known support constraint, the update rule
for the amplitude is given by Equation (16). The least-
square coeffcient update is the first step of each iteration
of all algorithms 1, 2 and 3. The condition for the

coefficient matrix X to remain the same before and after
that step is expressed as

Vn € [1, N],xp" = qﬁﬂyn) (22)

Lemma 1. If all the sub-dictionaries ®~ have full rank,
then the critical point condition (21) is equivalent to the
fixed point condition (22).

Proof: Let us consider the signal y,,. If the sub-
dictionary ®., has full rank K, then its pseudo-inverse
-1
+ + T T
¢ can expressed as &7 <<I>,Yn <I>7n) ., . The
fixed point condition (22) can then be expanded:

Xy =@ y, (23)
-1
X" = (@5"@,") oy, ¥
el &, <" =@l y, (25)
&7 (v, — @y, x1") =0 (26)
@ r, =0 27)

which is the zero gradient condition (21) for the nth

column x, of X. The previous equations can also be
read from bottom to top to complete the equivalence
proof. |

The full-rank hypothesis is not restrictive in the com-
plete learning case: if ®, does not have full rank,
then there is a support strictly included in «,, that gives
an approximation of y, with the same error as -y,
Therefore ~,, is not a good support and the sparse
approximation step should not select it. For example,
OMP is proven to always select sub-dictionaries with
full rank.

C. Fixed points for Sparsenet

The dictionary update for Sparsenet is a fixed step
projected gradient descent. An atom ¢, is fixed for
one Sparsenet iteration if it remains the same after one
gradient descent (5) followed by one renormalization (6),
i.e. if the gradient descent preserves the direction of the
atom. This can be written:

IAm > 0,0, + aRx™ = X\, . (28)

We can now investigate the link between the fixed point
condition (28) and the critical point condition (20).

Theorem 1. A point (®,X) is a fixed point of Sparsenet
if and only if it is a critical point of the cost function
and it satisfies the normalization constraint (13).

Proof: The amplitude coefficients X are only up-
dated during the least-square coefficient update, so the
Lemma 1 can be applied directly and we only need to

study the link between the critical point condition (20)
and the fixed point condition (28).

The <« way of the proof is easy: if a point is critical
for f, then the gradient for each atom is O so the atom
remains the same after the gradient descent. If the atom
is also normalized, then it is invariant for the whole
Sparsenet iteration.

For the = way, we need to check that the gradient
descent and renormalization cannot cancel each other.
Assume that the Criterion (28) holds for every atom ¢,,,.
By multiplying by ¢! and taking the trace, one gets:

(29)
(30)

2 2
lemllz + AR, @, xX™) = A [l 5
Am =1

because ||p,,|l; =1 and (R, ¢,,x™) = 0. One can then
replace \,,, by 1 in Equation (28) and obtain

©,, + aRx™T = @ Vm e [1, M] (31)
Rx™T =0, vYm e [1, M] (32)

RXT =0. (33)

|

That proof can also be interpreted geometrically: in
general, for a smooth constrained optimisation problem,
a fixed point of a projected gradient descent exists on the
boundary of the admissible domain when the gradient of
the cost function and of the constraint are collinear. In
our case, the gradient of the £5 norm constraint is the
atom itself and the gradient of the cost function f is
always orthogonal to the atom, so they can only align
when the gradient of f is 0.

D. Fixed points for the MOD dictionary update

For MOD, the update is performed with a pseudo-
inverse (7) followed by a renormalization (8). A point is
fixed for the MOD dictionary update if all the atoms are
unchanged by the update, which can be expressed as:

YXT =®A (34)

with A a positive definite diagonal matrix. If the coeffi-
cient matrix X has full rank M, then an argument similar
to the one used in the proof of Theorem 1 can be used,
as follows.

Theorem 2. If the coefficient matrix X has full rank,
then a point is fixed for MOD if and only if it is a
critical point of the cost function f that satisfies the
normalization constraint (13).

Proof: As in Theorem 1, we only need to prove
the link between the critical point condition (20) and the
fixed point condition (34) because the coefficient update
equivalence was already proven in Lemma 1.

If X has full rank, then its Pseudo—inverse can be
expressed as X+ = XT(XX”)"". One can easily prove
that if the critical point condition (20) holds, then the
dictionary is invariant for the pseudo-inverse update:

RX" =0 (35)

(Y -@X)X" =0 (36)
XX = yX” (37)
»—vYx"(xx")"" (38
d=YX". (39)

So if a point (®,X) is both critical and normalized,
then its dictionary is invariant for the MOD update
and renormalization. Conversely, we need to prove that
the fixed point condition (34) implies the critical point
condition (20). The proof follows the same structure as
for Theorem 1: first prove that the fixed point condition
(34) implies A = Id, then the result will follow. We
start from the fixed point condition.

YXT =®A (40)

(®X + R)XT (XX7) ' = ®A (41)
& + RX” (XX”) ' = @A (42)
XXT + RX" = dAXX" . (43)

We can now consider each column of Equation (43)
separately. For all m € [1, M], we have:

dXx™T + Rx"T = #AXx™T | (44)

If we multiply by ¢’ to the right and take the trace,
Frobenius inner products appear:

(®X, o, x™) + (R, p, x™) = (BAX, p, x™) (45)
(®X, p,,x") = (PAX, p,,x™) (46)

because (R, p,,x™) = 0 for any m. A = Id is obvi-
ously a solution to the system of M equations (46). To
show that A = Id the only solution, we need to reshape
the system. For all m € [1, M], let v,,, = ¢,,x"". We
then have

M

dX = Z Vin 47)
m=1
M

PAX = Z A Vim (48)
m=1

where the)\, are the diagonal elements of A. Let A =
diag(A) be the column vector of length M containing
those diagonal elements. Let G = ((vi, V)<, i<y
be the Grammian of the (v,,)i1<m<ns family. Then the

system of M equations (46) can be rewritten as one

matrix equation
G = ((®X,Vvin)) 1<menr - (49)

Since G is a Gram matrix, its rank is the same as the
rank of the (Vy,)1<m<nm indexed family. To prove that
the (v,,) family has full rank M, we solve the equation
of m unknown scalars &,

M
Z OmVm =0
m=1

which can also be written #AX = 0 with A an unkown
diagonal matrix. The X matrix has full row rank M so

PAX =0 = A =0 . 1)

(50)

The dicitonary ® has normalized columns so the norm
of each column of ®A is |d,,| and PA =0= A =0.
The (v,,) family and its grammian G both have full
rank M. That proves that if the fixed point condition
(34) holds, then A = Id. That value can now be injected
into Equation (43):

XX + RXT = dXX” (52)
RXT =0. (53)
||

E. The rank deficient case

If X does not have full rank, then the equivalence
in Theorem 2 no longer holds. However the following
lemma shows that in that case, unless the residual error is
already 0, the point (®, X) cannot be a global minimum
because one can construct a strictly better point.

Lemma 2. For any point (®,X) where the coefficient
matrix X does not have full rank, there exists another
point (‘i>, 5() that achieves the same error with ® con-
taining strictly fewer atoms than ® and each column of
X being at least as sparse as the corresponding column
of X.

Proof: If X does not have full rank, then at least
one of its rows lies in the span of the other ones. Let us
assume with no loss of generality that the last row x™
is one such row. Then it can be decomposed as x™ =
aX[HM=1] where a is a row vector. One can now expand

the signal approximation ®X:

BX = By X 4 xM (54)
= (I)[l,M—l]X[LM_H +ppaX M (ss)
= (®p1,m-1) + Pua) XM (56)
— $X (57)

The dictionary ®1 ,,, 1) + ¢,,a contains m — 1 atoms
and each column of X!"™~1 has either K — 1 or K
non-zero coefficients. |

A strictly better dictionary can then be built using the
following method:

o let n be the index of a training signal with a non-

zero residual,

e set one its non-zero coefficients)" to 0,

« update the residual r,, =y, — $x,,,

e set g, to H:Tn\b and 227 to ||ry |,
This new point has the same residual as the old one for
all training signals except r,, that is now 0, therefore it
is a strictly better point. So the full rank case is the only
one that matters in practice: if the algorithm converges
towards a solution with rank deficient coefficients, then
one should rather build the better dictionary and continue
from there.

V. FIXED POINTS OF K-SVD

We now investigate the fixed points of K-SVD and
how they are related to the fixed points of MOD and
Sparsenet. The analysis of the dictionary update is easier
for K-SVD because each atom is modified only once per
iteration by the update rule (10). Therefore an atom ¢,,
is fixed if and only if it satisfies the condition:

@,, = argmax VTE(m)E(Tm)V (58)

v,llvll,=1
On the other hand, the coefficients X are modified
twice, once during the coefficient update (16) and once
during the dictionary update (11). However the following
Lemma shows that this double update is redundant for
the fixed point analysis we want to perform.

Lemma 3. During one iteration of the K-SVD dictio-
nary update, after updating the m™ atom, if all the
atoms (py, ..., Y,,) updated in the current iteration were
left unchanged, then their corresponding coefficients
(x!,...,x™) did not change in the current dictionary
update either.

Proof: The proof is recursive over m. If m = 1,
then we are updating the first atom. That update happens
just after the least-square coefficient update described in
Equation (16), so each residual is orthogonal to each
atom with a non-zero coefficient. Let us now assume
that the atom ¢, is fixed for this K-SVD update. After
its update, its coefficients xl1 are updated:

!
x5, < @1Eq (59)
= @1 R+ p1x']4, (60)
= @1 Ry, + 01 1%, (61)
xh —x (62)

because ¢ R‘y =0 and ¢l ¢, = 1. So if the first atom
is fixed, then its coefficients do not change either during
the dictionary update.

Let us now assume that the Lemma 3 holds for
up to m atoms and that the first m + 1 atoms are
fixed for the dictionary update. Since the lemma is true
for the first m atoms and they are fixed, then neither
the first m atoms nor their coefficients changed during
the dictionary update. So the residual R, , is still
orthogonal to the atom ¢, and the same reasoning
applied to the first atom ¢, can be applied to ¢, to
show that its coefficients XZY”“ do not change either. W

In particular, if the whole dlctlonary is fixed for the
dictionary update, then the coefficients are also fixed for
the dictionary update. We can now characterize the fixed
points of K-SVD.

Theorem 3. A point (®,X) is a fixed point of K-SVD
if and only if it satisfies Condition (22) and Condition
(58) for each atom.

Proof: Let (®,X) be a point that satisfies Condtion
(22) and Condition (58) for each atom. The point satisfies
Condition (22) so its coefficients X are fixed for the
least-square coefficient update. It also satisfies Condition
(58) for each atom so the dictionary ® is fixed for the
whole K-SVD dictionary update. Because of Lemma 3,
that implies that the coefficients X are also fixed for the
dictionary update, thus for the whole K-SVD iteration.
Conversely, let (®,X) be a fixed point of K-SVD. In
particular, its dictionary is fixed for the dictionary update,
so each atom satisfies Condition (58) and the coefficients
X are also fixed for the dictionary update too because
of Lemma 3. So the coefficients at the end of the whole
K-SVD iteration are the same as the coefficients after
the least-square coefficient update (16) only, and also the
same as at the beginning of the iteration (which is also
the beginning of the coefficient update) since (®,X)
is a fixed point. So the coefficients are fixed for the
coefficient update step, hence they satisfy Condition (22).
|
Although Lemma 3 provides a necessary and sufficient
characterizaiton of the fixed of K-SVD, Condition (58)
is not easy to interpret. The following Lemma shows a
link between it and the critical points of the cost function

f.

Lemma 4. If a point satisfies the normalization con-
straint (13) and the fixed point Condition (22) for the
least-square coefficient update, then it is a critical point
of the cost function f if and only if each atom p,, is a
left singular vector of its error matrix E).

Proof: First of all, the principal component of E,,,)

is computed using the Singular Value Decomposition
(SVD): it is the left singular vector associated with the
highest singular value. It is well known that the left
singular vectors of E(,, are also the eigenvectors of
the operator E(m)ETm). Let (®,X) be a critical point
of f. It satisfies the conditions (20) and (21). Let ¢,,
be the m' atom of ®, E(,,) = Rym + ¢, x7% the

Y
corresponding restricted error and ~"* the corresponding
co-support. Then

m \T

E(m)Elm®m = Eim) (Rym + 0,X00)" @, (63)
= E(m) (R m P+ Xmstogﬂn(Pm)

(64)

Thanks to Condition (21) and the normalization of ¢,,,,
we can simplify further:

B By @ = By (0+52.7) (65)
= (Rym + @, X50) x?fmT (66)
=RynxT T + @ xmxm T (67)
=0+ @ X0 xn (68)
Z‘Pmesz (69)

Due to Equation (20). This proves that for any critical
point of f, each atom of the dictionary is an eigenvector
of the frame operator E(m)E(Tm of its restricted error
matrix, with the energy of its coefficients as the associ-
ated eigenvalue.

Conversely, let us assume that the fixed point condition
for OMP (22) is satisfied and that an atom ¢,, is
an eigenvector of the frame operator E(m)EE‘Fm) with
eigenvalue A:

E(m)El@m = A, - (70)

The value of the eigenvalue A can be computed as
follows:

T
=R, +xI. Ts@ﬁ% (72)
=0+x20" = x:,”mT (73)
2
=x0h x0T = X0 [; (75)

Thus the eigenvalue X is the energy of the coefficients.
Now let us expand the Equation (70)

By’ = eIl 7
Ry x0T+, x0xm T = x2. x0T (78)
R,»x2.T =0. (79)

We notice the similarity between Equations (79) and
(20). There are two differences between them. First,
Equation (20) uses the whole coefficient matrix X in-
stead of just a row x". This is just a more compact way
of writing

Rx™T =0, Vm e [1, M]. (80)

More important, Equation (79) is restricted to the co-
support 4. By definition of the co-support, its comple-
mentary 4" contains only indices such that xt_ = 0.
Therefore the left hand sides of Equations (79) and
(80) are equal, thus the equations are equivalent. So
the critical point condition (20) is equivalent to having
all the atoms satisfying Condition (79). If all the atoms
are singular vectors of their restricted errors (thus all
satisfying Condition (79)) and the decomposition is
orthogonal, then the point (®,X) is a critical point. W

We now have all the elements to prove that the
K-SVD stability condition is stricter than the critical
point condition, thus the MOD and Sparsenet stability
conditions.

Theorem 4. Every fixed point of K-SVD is also a fixed
point of MOD and Sparsenet. The opposite is not true
in general.

Proof: The fixed points of MOD and Sparsenet
are the critical points of the cost function f. Lemma
4 shows that the critical points of f are the points
where each atom is a left singular vector of its restricted
error matrix associated with any singular value. The
fixed points of K-SVD are the points where each atom
is the left singular vector of its restricted error matrix
associated with the largest singular value value. So MOD
and Sparsenet can have more fixed points than K-SVD
whenever at least one of the restricted error matrices has
more than one singular value, i.e. the signal dimension
D is at least 2 and at least one of the atoms is used in
the representation of at least 2 signals.

If an atom is an eigenvector not associated with the
highest eigenvalue, it is a fixed point for MOD and
Sparsenet but not for K-SVD. This can easily be done
in dimension D = 2 with a dictionary containing only
M =1 atom and N = 2 training signals. Let us consider
the following training data and point:

Y:<_21 ?) @:(?) X= (-1 1).

For the Sparsenet update, the gradient is given by:
(2 2 of 7 (0
R‘(o o) op "X _<0>'

The gradient is O so the point is fixed for Sparsenet.

Of course the theory tells us that this point is also
fixed for MOD, but let us develop the MOD iteration
anyway:

X+ =X7(xx7) 7 = @2)

YXt = <(1)> =&

Both Sparsenet and MOD would stop at this point with
an error energy ||R|% = 8.

For K-SVD, there is only one atom in the dictionary
so the restricted error E is the same as the orginal signal
Y and the frame operator EE” is equal to:

r_ (80
EE_<O2

which is already in diagonal form. Its two eigenvalues are
8 and 2. One can notice that the current dictionary is the
eigenvalue associated with the eigenvalue 2. In the next
step K-SVD would choose the eigenvecotr associated

with 8 instead:
1 0 0
d <0> X+ (22 R= <_1 1)

which would result in an error of 2 only.]

VI. EXPERIMENTAL RESULTS

We now investigate whether in practice, the points
towards which Sparsenet and MOD converge are also
fixed points for K-SVD. In that goal we tried to run first
MOD and Sparsenet, then K-SVD. All these experiments
were performed using the SMALLBox toolbox [12]".

These experiments were performed on noiseless syn-
thetic data in dimension D = 64. We generated 1200
training sets of sparse signals over the union of a
Dirac and a Discrete Fourier Transform bases. Each set
contains N = 256 training signals of sparsity K = 8§
with uniform i.i.d. supports and Gaussian i.i.d. values for
the non-zero amplitudes. Those dimensions were tuned
by hand using K-SVD as a reference so that so problem
is neither too easy (a global minimum is always reached)
nor too difficult (a global minimum is never reached).

A. Learning with a known support

For the first experiments, we set the support used
for the synthesis of the signals as the given. Under
these conditions there is potential for the algorithms
to converge towards a global minimum and that can
be detected when the error decreases to 0. We first

"https://code.soundsoftware.ac.uk/projects/smallbox

ran each of the three algorithms for 2000 iterations,
then after each of them we ran K-SVD for another
2000 iterations starting from the point reached by each
algorithm. The executions were initialized with a random
Gaussian dictionary.

The performance of each algorithm is measured with
the approximation SNR defined as

; R[5
Y 1%

SNR = —10log (81)
The global minimum of the error is 0 so the SNR
can increase to infinity. In practice the SNR does not
increase above ~300dB due to numerical precision on
our machine. The exact value of that threshold and the
amplitude of the oscillations generated above it depend
both on the algorithm and the implementation so we set
the decision criterion lower than 300dB: we consider that
an execution has successfully reached a global minimum
if the SNR reaches 250dB. Table I shows the exact
recovery rates achieved by each algorithm after 2000
iterations and after running K-SVD for another 2000
iterations.

K-SVD alone succeeds in recovering the best dictio-
nary in 20% of the cases. MOD only succeeds in 4%
of the cases and the succession of MOD and K-SVD
does not significantly improve the results. Sparsenet
alone only succeeds in 10 cases out of 1200, but the
combination of Sparsenet and K-SVD recovers the best
dictionary 98% of the cases. This is a major improvement
over any of the 3 studied algorithms.

Figure 1 shows the typical evolution of the SNR over
time for the different algorithms and some representa-
tive training sets. The chosen training sets are the 11
quantiles for the area under the SNR curve, i.e. the sets
with the best and worst overall SNR, and every 10% in
between, plus a few handpicked experiments that exhibit
interesting dynamic properties. The actual recovery rates
are presented in Table I. On the Sparsenet plot we can
see a sharp acceleration at 2000 iterations, when we
switch from Sparsenet to K-SVD. This acceleration is
not observed between MOD and K-SVD, suggesting that
MOD converges in practice towards points that are also
fixed for K-SVD.

Besides these plots provide some hindsight about the
dynamic behavior of the algorithms. MOD presents a
strong tendency to evolve by jumps rather than steady
increases. When K-SVD reaches the global minimum,
convergence is quite fast: numerical precision is often
reached in less than 500 iterations. However, when it
does not find a global minimum, convergence is much
slower: the SNR keeps steadily decreasing, albeit at an
very slow rate. We ran longer experiments for a few of

17
.
16 ‘
‘
15F — 1
_14F . 1
S 1 =
E:/ |- . R S -
=z 13 L +
%]
12F - 1
| ——
|
1 ! ‘ 1
|
10F e i
Sparsenet NMOD R=SVD SparsenetvhR-svVD
Figure 2. Repartition of the final SNR over the 100 different

runs for Sparsenet, MOD, K-SVD and Sparsenet/K-SVD. The box
contains 50% of the distribution with the median marked inside and
the whiskers the whole distribution. Sparsenet/K-SVD performs much
better than of the other 3 algorithms taken alone, including K-SVD.

the data and the numerical precision was still not reached
after 40000 iterations. Besides, we also observed in some
rare cases that the SNR can remain almost stationary
for a very long time before the algorithm finally finds
a global optimum. This was observed both for MOD
and K-SVD. So testing whether a dictionary learning
algorithm has converged or not seems to be a hard
problem on its own.

B. Complete learning, including the sparse decomposi-
tion step

We also ran Sparsenet, MOD, K-SVD and Sparsenet
followed by K-SVD on a subset of the same data (only
100 training sets), but this time without the use of a
known support. The algorithms were initialized with a
random 8-sparse coefficient matrix X then started with
the dictionary update. The observed behavior was ho-
mogeneous among all different algorithms and data: the
SNR first improves quickly, then slows down and finally
suffers from small random variations when OMP starts to
fail: at good SNRs, OMP can compute a decomposition
with an error higher than with the previous iteration’s
decomposition.

Figure 2 shows the distribution of the SNR reached af-
ter 500 iterations. Sparsenet has a much higher variability
than the other algorithms. However Sparsenet followed
by K-SVD significantly outperforms any of the other 3
algorithms, including K-SVD taken alone. The average
improvement over K-SVD is 2dB.

VII. CONCLUSION

Dictionary learning is a complex problem. In this
work we considered the simplified problem where the

Table 1
EXACT RECOVERY RATES FOR THE DIFFERENT ALGORITHM COMBINATIONS

Algorithm | One algorithm for 4000 iterations | One algorithm for 2000 iterations then K-SVD
K-SVD 20% 20%
MOD 4% 4%
Sparsenet 1% 98%
300 300 300
g g g
e 150 1500 150
Z z z
» n 0
& 2,000 4000 2,000 4,000 % Switch to K—SVD 4,000
Iteration Iteration Iteration
(a) MOD (b) Sparsenet (c) K-SVD
300, 300,
o)
° kel
T 150 = 150
z z
% 7}
G Switch to K-SVD 2000 % Switch to K-SVD 4,000
Iteration lteration
(d) MOD then K-SVD (e) Sparsenet then K-SVD
Figure 1. Some typical plots of the SNR depending on the iteration when running any algorithm for 4000 iterations (upper row), and when

running MOD or Sparsenet for 2000 iterations, then K-SVD for 2000 iterations (lower row).

supports of the decomposition is known in advance. Even
in that case, the remaining optimization problem is still
non-convex, and we observed that existing algorithms
typically fail to solve it. We also proved that K-SVD
has strictly fewer fixed points than MOD and Sparsenet.
Finally we found that running Sparsenet followed by
K-SVD yields substantially better results than any al-
gorithm run alone, and confirmed those results when
solving the actual dictionary learning problem when the
support is unknown.

The proposed results also raise several other questions.
First, there is no clear link so far between the set of the
local minima of f and the set of the fixed points for K-
SVD. The theory developed here also does not explain
the observed difference of behavior between MOD and
Sparsenet. It may be that some critical points of the
cost function are unstable, and that those unstable points
correspond to the steps we observed in the progression
of MOD. On the other hand, since Sparsenet uses a
fixed descent stepsize, it converges much more slowly,
if at all. Despite showing similar performance to MOD
and K-SVD, Sparsenet could compute points that are
different in nature, non-stationary points in the attraction
basin of the global optimum rather than local optima
or other suboptimal stationary points. We have started
investigating that idea [13] and intend to continue that
work.

—

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

REFERENCES

E. Ravelli, G. Richard, and L. Daudet, “Union of MDCT bases
for audio coding,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 16, no. 8, pp. 1361-1372, Nov. 2008.
M. Elad and M. Aharon, “Image denoising via sparse and re-
dundant representations over learned dictionaries,” IEEE Trans-
actions on Image Processing, vol. 15, no. 12, pp. 3736-3745,
Dec. 2006.

J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for
color image restoration,” I[EEE Transactions on Image Process-
ing, vol. 17, no. 1, pp. 53-69, Jan 2008.

A. Adler, V. Emiya, M. Jafari, M. Elad, R. Gribonval, and M. D.
Plumbley, “A constrained matching pursuit approach to audio
declipping,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2011, pp. 329—
332.

B. A. Olshausen and D. J. Field, “Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images,” Nature, vol. 381, pp. 607-609, Jun 1996.

K. Engan, S. Aase, and J. Hakon Husoy, “Method of optimal
directions for frame design,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5,
1999, pp. 2443-2446 vol.5.

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm
for designing overcomplete dictionaries for sparse representa-
tion,” IEEE Transactions on Signal Processing, vol. 54, no. 11,
pp. 4311-4322, Nov 2006.

S. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Transactions on Signal Processing, vol. 41,
no. 12, pp. 3397-3415, Dec 1993.

Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal match-
ing pursuit: recursive function approximation with applica-
tions to wavelet decomposition,” in Conference Record of The

(10]

(1]

(12]

[13]

Twenty-Seventh Asilomar Conference on Signals, Systems and
Computers, 1993., Nov. 1993, pp. 40—44 vol.1.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Review, vol. 43, no. 1,
pp. 129-159, 2001.

B. Natarajan, “Sparse approximate solutions to linear systems,”
SIAM Journal on Computing, vol. 24, pp. 227-234, 1995.

I. Damnjanovic, M. E. P. Davies, and M. D. Plumbley,
“SMALLbox - an evaluation framework for sparse represen-
tations and dictionary learning algorithms.” in Latent Variable
Analysis (LVA/ICA), 2010, pp. 418-425.

B. Mailhé and M. D. Plumbley, “Dictionary learning with
large step gradient descent for sparse representations,” in Latent
Variable Analysis (LVA/ICA), 2012, pp. 231-238.

