An algorithm approach to bounding aggregations of multidimensional Markov chains

Abstract : We analyze transient and stationary behaviors of multidimensional Markov chains defined on large state spaces. In this paper, we apply stochastic comparisons on partially ordered state which could be very interesting for performance evaluation of computer networks. We propose an algorithm for bounding aggregations in order to derive upper and lower performance measure bounds on a reduced state space. We study different queueing networks with rejection in order to compute blocking probability and end to end mean delay bounds. Parametric aggregation schemes are studied in order to propose an attractive solution: given a performance measure threshold, we vary the parameter values to obtain a trade-off between the accuracy of bounds and the computation complexity.
Type de document :
Article dans une revue
Theoretical Computer Science, Elsevier, 2012, 452, pp.12-20. 〈10.1016/j.tcs.2012.05.030〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00807451
Contributeur : Médiathèque Télécom Sudparis & Institut Mines-Télécom Business School <>
Soumis le : mercredi 3 avril 2013 - 15:31:04
Dernière modification le : jeudi 17 mai 2018 - 12:52:03

Lien texte intégral

Identifiants

Collections

Citation

Hind Castel-Taleb, Lynda Mokdad, Nihal Pekergin. An algorithm approach to bounding aggregations of multidimensional Markov chains. Theoretical Computer Science, Elsevier, 2012, 452, pp.12-20. 〈10.1016/j.tcs.2012.05.030〉. 〈hal-00807451〉

Partager

Métriques

Consultations de la notice

98