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Abstract

This paper completes the classification of bifurcation diagrams for H-planforms in the Poincaré
disc D whose fundamental domain is a regular octagon. An H-planform is a steady solution of a
PDE or integro-differential equation in D, which is invariant under the action of a lattice subgroup Γ
of U(1, 1), the group of isometries of D. In our case Γ generates a tiling of D with regular octagons.
This problem was introduced as an example of spontaneous pattern formation in a model of image
feature detection by the visual cortex where the features are assumed to be represented in the space of
structure tensors. Under ”generic” assumptions the bifurcation problem reduces to an ODE which is
invariant by an irreducible representation of the group of automorphisms G of the compact Riemann
surface D/Γ. The irreducible representations of G have dimension one, two, three and four. The
bifurcation diagrams for the representations of dimension less than four have already been described
and correspond to already well known goup actions. In the present work we compute the bifurcation
diagrams for the remaining three irreducible representations of dimension four, thus completing the
classification. In one of these cases, there is generic bifurcation of a heteroclinic network connecting
equilibria with two different orbit types.

Keywords: Equivariant bifurcation analysis; neural fields; Poincaré disc; heteroclinic network.

1 Introduction

Pattern formation through Turing mechanism is a well-known phenomenon [28]. For a system of reaction-

diffusion equations defined in R
p, with p = 2 or 3 say, it occurs when a neutrally stable linear mode

is selected as a basic, homogeneous state, when a bifurcation parameter reaches a critical value. For

the analysis of this phenomenon, the assumption that the system is invariant under Euclidean transfor-

mations in the plane is essential. Any Fourier mode whose wave vector has critical length is a neutral

stable mode and a consequence of the rotational symmetry of the system is that the kernel of linearized

problem at the bifurcation point is infinite dimensional. However in experiments as well as in numerical

simulations it is often seen that the patterns which emerge above threshold, although they have a wave

number equal or close to the critical one, are associated with a finite (and small) number of wave vectors

which generate a spatially periodic pattern in the plane. This pattern is invariant under the action of
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a discrete translation subgroup Γ of R
p. By looking at the class of Γ-periodic states, or by looking at

the system projected onto the torus R
p/Γ, one renders the spectrum of the linearized problem discrete:

the critical wave vectors are finite in number, hence the critical eigenvalue has finite multiplicity and

standard methods of equivariant bifurcation theory (see [11, 23]) can be applied to compute bifurcated

solutions within the class of Γ-periodic states. Such solutions are called ”planforms”.

In a recent paper [14], a similar problem arose, but instead of being posed in the Euclidean plane, it

was posed on the hyperbolic plane or, more conveniently, on the Poincaré disc. The problem originates

from modeling the cortical perception of visual features, which we now briefly describe.

Neuronal representations of the external world are often based on the selectivity of the responses

of individual neurons to external features. It has been well documented that neurons in the primary

visual cortex respond preferentially to visual stimuli that have specific features such as orientation,

spatial frequency, etc. Subgroups of inhibitory and excitatory neurons tuned to a particular feature of

an external stimulus form what is called a Hubel and Wiesel hypercolumn of the visual area V1 in the

cortex, in roughly 1 mm2 of cortical surface. Modeling the processing of image orientations has led Wilson

and Cowan [43, 44] to derive a nonlinear integro-differential description of the evolution of the average

action potential V in the hypercolumns. In an attempt to extend this model to other features (edge and

corner detection, contrast...), it was proposed by [13] to assume that hypercolumns are sensitive to a

nonlinear representation of the image’s first order derivatives called the structure tensor [6, 32]. Hence

the average action potential is now a function of the structure tensor and time. Structure tensors are

essentially 2 × 2 symmetric, positive definite matrices. They therefore live in a solid open cone in R
3,

which is a Riemannian manifold foliated by hyperbolic planes. By a suitable change of coordinates,

the hyperbolic plane can be further identified with the Poincaré disc D = {z ∈ C | |z| < 1}. There is

therefore an isomorphism between the space of structure tensors and the product space R
+
∗ × D, the

distance on which being given by

d(δ, z; δ′, z′) =

√

log2(
δ

δ′
) + arctanh

|z − z′|
|1 − z̄z′|

2

(1)

where the second term under the radical is the usual “hyperbolic” distance in D.

The Wilson-Cowan equation on the space of structure tensors has the form

∂tV (δ, z, t) = −V (δ, z, t) +

∫

R
+
∗ ×D

W (δ, z, δ′, z′)S(µV (δ′, z′, t))dm(δ′, z′) + Iext(δ, z, t) (2)

The nonlinearity S is a smooth sigmoidal function (S(x) → ±1 as x → ±∞) with S(0) = 0. Note

that V = 0 is always solution (trivial state) when Iext = 0. The parameter µ describes the stiffness
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of the sigmoid. In the function Iext we englobe the information coming from the lateral geniculate

body (directly linked to the image seen in the visual field), but also feedbacks coming from other visual

areas such as MT,V 2 and V 4. The coupling function W (δ, z, δ′, z′) expresses interactions between

populations of neurons of types (δ, z) and (δ′, z′) in the hypercolumn. It is natural to assume that

the connectivity function W does in fact only depend upon the distance between (δ, z) and (δ′, z′) :

W (δ, z, δ, z′) = w(d(W (δ, z; δ, z′)). Under this hypothesis, W is invariant by any isometric transformation

in the space of structure tensors. If in addition Iext = 0 (no input), Equation (2) itself is equivariant by

any isometric transformation. Thus U(1, 1) is the symmetry group of (2) when Iext = 0.

We shall assume from now on that W has the above invariant form and that Iext = 0. We look at

possible bifurcations from the fully symmetric state V = 0 as the stifness parameter µ is varied. Remark

that for all µ, the symmetric state V = 0 is a solution of equation (2) and its uniqueness has been

discussed in [18]. As was shown in [14], we are able to neglect the dependence on δ ∈ R
+
∗ as it does not

play a significant role in the analysis that follows. Therefore Equation (2) is posed on the 2D hyperbolic

surface D from now on.

Spectral analysis in D requires the tools introduced by Helgason to perform Fourier analysis with

respect to the coordinates in the Poincaré disc, namely the expansion of the solutions of the linearized

system in elementary eigenfunctions of the Laplace-Beltrami operator [27]. These elementary eigenfunc-

tions eρ,b(z) depend on the “wave number” ρ ∈ R and point b on the boundary of the unit disc, and

correspond to eigenvalues 1/4 + ρ2. Note that the eigenvalues are independant of the angle b. The

function eρ,b corresponds to a wavy pattern in D which is invariant along horocycles1 with base point b

and of wave type along the geodesics with direction b. These functions are the hyperbolic counterparts

of the elementary wavy eigenfunctions of the Laplacian in R
2. As shown in [13], a critical value µc exists,

but the same kind of rotational degeneracy occurs in this bifurcation problem as in Euclidean space: if ρc

is the critical wave number, any eρc,b is a neutrally stable eigenfunction, independently of the value of b.

Moreover the spectrum is continuous. In order to apply equivariant bifurcation theory, we therefore need

to look at a class of solutions which are periodic in D, that is, solutions which are invariant under the

action of a discrete subgroup Γ of U(1, 1) whose fundamental domain is a polygon. Such a subgroup is

called a cocompact Fuchsian group and we can restrict further to look for such groups which contain no

elliptic elements nor reflections2. Tilings of the Poincaré disc have very different properties from tilings

of the Euclidean plane. In particular tilings exist with polygons having an arbitrary number of sides,

while in R
2 only rectangular, square and hexagonal periodic tilings exist. Now the problem comes back

to looking for bifurcated solutions of the equation defined on the quotient space D/Γ, which is a compact

1A horocycle with base point b is a circle in D, tangent at b to ∂D.
2These subgroups of SU(1, 1) contain only hyperbolic elements and are the exact counterparts of discrete translation

subgroups of R
p. They are called ”torsion-free” cocompact Fuchsian groups, see [29].
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Riemann surface; i.e. the spectrum of the linearized operator is discrete and consists of eigenvalues with

finite multiplicity.

This approach to the problem was presented in [14] and an example was studied, namely the case

where the group Γ corresponds to a tiling of D with regular octagons. This particular choice was initially

motivated and explained in [13] where families of subgroups of U(1, 1) were identified to naturally arise

from the retinal input to the hypercolumns in the visual area V1 such as the group Γ. In this case

Γ is generated by four hyperbolic transformations which are rotated from each other by angles kπ/4

(k = 1, 2, 3), and D/Γ is a double torus (genus 2 surface). Moreover the group of automorphisms G

of D/Γ is known and has 96 elements. Restricting to the class of Γ-periodic functions, our bifurcation

problem is now reduced to an equation that is invariant under the action of G. By standard center

manifold reduction, this equation can be projected onto the critical eigenspace of the linearized operator.

In our case the critical eigenvalue is 0 (“steady state” bifurcation) and its eigenspace is an absolutely

irreducible representation space of the group G.

In the same paper we listed and described the 13 irreducible representations of G which we name

χ1, · · · , χ13: representations χ1, · · · , χ4 have dimension one, χ5, χ6 have dimension two, χ7, · · · , χ10 have

dimension three and χ11, · · · , χ13 have dimension four. Each of these cases leads to a different bifurcation

diagram. We listed all maximal isotropy subgroups and showed that their fixed point subspaces are

one dimensional, hence we found all branches of equilibria with maximal isotropy types by applying the

Equivariant Branching Lemma [23]. Moreover it was shown that the bifurcation problems for the 2D cases

is equivalent to problems with triangular symmetry, and in the 3D cases, to problems with octahedral

symmetry. It follows that the bifurcation diagrams in these cases are known and show generically no

other bounded dynamics than the trivial ones associated with the equilibria with maximal isotropy.

There is no such identification in the 4D case. The aim of this paper is to fill this gap, by studying

the bifurcation diagrams and local dynamics in the 4D irreducible representation spaces of G. This will

require a precise knowledge of these representations and of the Taylor expansion of vector fields which

are equivariant by these representations (up to a sufficient order).

The structure of the paper is as follows:

• In section 2 we introduce the octagonal lattice and its symmetries, we recall the structure of the

group G of automorphisms of D/Γ and its irreducible representations. We also recall the main

result of [14] about the bifurcation of H-planforms in this case.

• In section 3, we study the case of the 4-dimensional irreducible representations χ12, χ13 and show

that the system is locally “gradient-like”, implying that the only ω-limit sets are equilibria. The

main results of this section are stated in theorems 2 and 3. We include this case for completeness
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although it does not show more complex phenomena than bifurcation of equilibria with maximal

isotropy. Computations are sketched.

• In section 4, we focus on the analysis of the 4-dimensional irreducible representations χ11. The

computation of quintic equivariant vector fields is necessary to get a complete bifurcation diagram in

the fixed point planes. We show that for some open range of the coefficients of quintic order terms,

bifurcation with submaximal isotropy does occur. The main results are presented in theorems 4

and 5.

• In section 5, we both show the existence of a heteroclinic network and adress the question of its

asymptotic stability, which we illustrate with numerical simulations.

2 Basic facts and results

In this section we recall some basic facts about the Poincaré disc and its isometries and we summarize

results of [14] which will be useful in subsequent analysis.

2.1 The regular octagonal lattice and its symmetries

We recall that the direct (orientation preserving) isometries of the Poincaré disc D form the group

SU(1, 1) of 2 × 2 Hermitian matrices with determinant equal to 1. Given

γ =




α β

β̄ ᾱ


 such that |α|2 − |β|2 = 1,

the corresponding isometry in D is defined by:

γ · z =
αz + β

β̄z + ᾱ
, z ∈ D (3)

Orientation reversing isometries of D are obtained by composing any transformation (3) with the reflec-

tion κ : z → z̄. The full symmetry group of the Poincaré disc is therefore:

U(1, 1) = SU(1, 1) ∪ κ · SU(1, 1)

Transformations in SU(1, 1) can be of three types: elliptic (those belong to the conjugacy class of usual

rotations centered at the origin of the disc), parabolic (those have a unique fixed point which lies on the

boundary of D) and hyperbolic (two fixed points on ∂D).
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Figure 1: Tesselation of the hyperbolic octagon O with congruent triangles.

The octagonal lattice group Γ is generated by the following four hyperbolic transformations (boosts),

see [5]:

g0 =




1 +
√

2
√

2 + 2
√

2
√

2 + 2
√

2 1 +
√

2


 (4)

and gj = rjπ/4g0r−jπ/4, j = 1, 2, 3, where rϕ indicates the rotation of angle ϕ around the origin in D.

The fundamental domain of the lattice is a regular octagon O as shown in Figure 1. The opposite sides

of the octagon are identified by periodicity, so that the corresponding quotient surface D/Γ is isomorphic

to a ”double doughnut” (genus two surface) [5]. The fundamental octagon O can be further decomposed

into 96 congruent triangles (see Figure 1) with angles π/2, π/3 and π/8. By applying reflections through

the sides of one triangle (like the purple one in Figure 1) and iterating the process, applying if necessary

a translation in Γ to get the resulting triangle back to O, one fills out the octagon. The set of all these

transformations (mod Γ) is isomorphic to the group of automorphisms of D/Γ, we call it G. Let us call

P , Q, R the vertices of the red triangle in Figure 1 which have angles π/8, π/2 and π/3 respectively.

Definition 1. We set :

(i) κ, κ′ and κ′′ the reflections through the sides PQ, PR and QR respectively (mod Γ);

(ii) ρ the rotation by π/4 centered at P , σ the rotation by π centered at Q and ǫ the rotation by 2π/3

centered at R (mod Γ).

Note that ρ = κ′κ, σ = κ′′κ and ǫ = κ′′κ′. Moreover ρσǫ = Id. Any two of these ”rotations” generate

the subgroup G0 of orientation-preserving automorphisms of G. It can be seen that G = G0 ∪ κ · G0, and

moreover G0 can be identified with GL(2, 3), the group of invertible 2 × 2 matrices with entires in the

field Z3.
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Tables 1 and 2 list the conjugacy classes of elements in G0 and G \ G0 respectively. In table 2 we

class number 1 2 3 4 5 6 7
representative Id ρ ρ2 −Id σ ǫ −ǫ

order 1 8 4 2 2 3 6
# elements 1 12 6 1 12 8 8

Table 1: Conjugacy classes of G, orientation preserving transformations

class number 8 9 10 11 12 13
representative κ κ′ σ̂κ ρσ̂κ ǫκ −ǫκ

order 2 2 8 4 12 12
# elements 6 12 12 2 8 8

Table 2: Conjugacy classes of G, orientation reversing transformations

simplify expressions by using the notation σ̂ = ǫσǫ−1. We also define σ̃ = ρ2σρ−2. Note that σ̂ is the

rotation by π centered at the point Ŝ (mod Γ) and σ̃ is the rotation by π centered at S̃ (mod Γ) in

Figure 1.

There are 13 conjugacy classes and therefore 13 complex irreducible representations of G, the char-

acters of which will be denoted χj , j = 1, ..., 13. The character table, as computed by the group algebra

software GAP is shown in table 3 (GAP, http://www.gap-system.org/). The character of the identity

is equal to the dimension of the corresponding representation. It follows from table 3 that there are 4

irreducible representations of dimension 1, 2 of dimension 2, 4 of dimension 3 and 3 of dimension 4. In

the following we shall denote the irreducible representations by their character: χj is the representation

with this character. The following lemma is proved in [14].

Lemma 1. All the irreduclible representations of G are real absolutely irreducible. In other words, any

matrix which commutes with such a representation is a real scalar multiple of the identity matrix.

2.2 Steady-state bifurcations with G symmetry: earlier results

We shall assume throughout the paper that a center manifold reduction has been performed for a steady-

state bifurcation problem with G symmetry as can arise from Equation (2) restricted to Γ-periodic

patterns in D, where Iext = 0 (no external input). This means that a linear stability analysis of the

trivial solution has led to finding a critical parameter value µc at which, in the class of Γ-periodic

functions, 0 is an eigenvalue of the linear part. The existence of such critical points is discussed in [14]

and [13]. It is a generic fact that the corresponding eigenspace X be an irreducible representation space

of G, and any irreducible representation can be involved, depending on the form of the function w defined

in the introduction in (2). Then the center manifold theorem reduces the initial problem to an ODE

7
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Class # 1 2 3 4 5 6 7 8 9 10 11 12 13
Representative Id ρ ρ2 −Id σ ǫ −ǫ κ κ′ σ̂κ ρσ̂κ ǫκ −ǫκ

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 -1 1 1 -1 1 1 1 -1 -1 1 1 1
χ3 1 -1 1 1 -1 1 1 -1 1 1 -1 -1 -1
χ4 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
χ5 2 0 2 2 0 -1 -1 -2 0 0 -2 1 1
χ6 2 0 2 2 0 -1 -1 2 0 0 2 -1 -1
χ7 3 1 -1 3 -1 0 0 -1 -1 1 3 0 0
χ8 3 1 -1 3 -1 0 0 1 1 -1 -3 0 0
χ9 3 -1 -1 3 1 0 0 1 -1 1 -3 0 0
χ10 3 -1 -1 3 1 0 0 -1 1 -1 3 0 0
χ11 4 0 0 -4 0 -2 2 0 0 0 0 0 0

χ12 4 0 0 -4 0 1 -1 0 0 0 0
√

3 −
√

3

χ13 4 0 0 -4 0 1 -1 0 0 0 0 −
√

3
√

3

Table 3: Irreducible characters of G

posed in X, which is invariant under the action of the irreducible representation of G in X. See [26] for a

complete and rigorous exposition of the method and [11] for an exposition in the context of equivariant

bifurcations.

Here it may be useful to recall some basic facts about bifurcations with symmetry. We write the

bifurcation equation in X

dx

dt
= α(λ) x + f(x, λ) (5)

where λ = µ−µc and α is a real Ck function (k ≥ 1) with α(0) = 0, f : X ×R → X has order ‖x‖o(‖x‖)

and commutes with the action of G in X: if we denote by (g, x) 7→ g ·x the action (representation) of the

group in X, then f(g · x, λ) = g · f(x, λ) for all triples (g, x, λ). Moreover α′(0) = µ−1
c > 0 (see [42]) so

that the trivial solution looses stability when λ > 0. This implies that after a suitable change of variable

we can replace α(λ) by λ in (5).

The problem is now to find the non trivial solutions (x(λ), λ) of (5) such that x(0) = 0 and to analyze

the local dynamics. Let H be an isotropy subgroup of G: H = {g ∈ G | g · x = x} for some point x ∈ X.

We define the fixed point subspace of H, or subspace of H symmetry, as

XH = {x ∈ X | H · x = x}.

Then for all h ∈ H we have that h · f(x, λ) = f(h · x, λ) = f(x, λ). Hence XH is invariant under the

flow generated by (5): if x(0) ∈ XH , then x(t) ∈ XH for all t. We shall later use the notation Fix(H)

instead of XH for convenience. It follows that by restricting ourselves to the search of solutions with a

given isotropy H, we just need to solve (5) in the fixed point subspace XH . The case when dim XH = 1
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is of particular interest. In this case looking for solutions with isotropy H reduces to solving a scalar

bifurcation equation. Under the above assumptions, this equation always has a branch of non trivial,

bifurcated equilibria. By group equivariance of the problem any solution generates new solutions by

letting G act on it. There is a one to one correspondance between the number of elements in this G-orbit

of solutions and the number of elements in the quotient G/H (number of subgroups conjugate to H in

G). We call the conjugacy class of an isotropy subgroup H the isotropy type of H. Moreover, writing

N(H) to represent the normalizer of H in G, if N(H)/H ≃ Z2, the branch is generically a pitchfork:

x(λ) = ±O(
√

|λ|). The above results when dimXH = 1 are known as the Equivariant Branching Lemma,

see [23], [11]. We may therefore say that if the hypotheses of the Equivariant Branching Lemma are

satisfied for a subgroup H, then the isotropy type of H is symmetry-breaking.

Note that, when restricted to the invariant axis XH as above, the exchange of stability principle holds

for these solutions. Indeed let the axis of symmetry be parametrized by a real coordinate u, the equation

on this axis at leading order has the form u̇ = λu + Cuk where C is a real coefficient and k ≥ 2. The

bifurcated branch is parametrized (at leading order) by λ = −Cuk−1, so that the radial eigenvalue is

(k − 1)Cuk−1 = −(k − 1)λ (at leading order). It therefore changes sign with λ. This eigenvalue is called

radial. The other eigenvalues for the Jacobian matrix J of (5) evaluated at the solutions are transverse

(the eigenvectors point orthogonally to the axis of symmetry). The bifurcated equilibria are stable in X

if the eigenvalues of J all have a negative real part. The exchange of stability principle does not hold in

general when considering stability in the full space X.

Equilibria with isotropy not satisfying the condition dimXH = 1 or other types of bounded solutions

may also exist. However their analysis requires knowledge of the equivariant structure of the vector field

f or at least of its Taylor expansion up to an order large enough to fully determine the bifurcation

diagram. We shall see in the next sections that solving the bifurcation equation (5) when dimX = 4

requires computing the equivariant terms in the expansion of f(·, λ) up to order 3, 5 or 7 depending on

the problem treated.

We now come back to our specific problem with G symmetry. We can see from the character table

3 that there are 13 possible cases for the irreducible representations. The dimension of X for each

representation χj (j = 1, . . . , 13) is given by the corresponding character evaluated at the identity. We

see that dim(X) = 1 for χ1, . . . , χ4, dim(X) = 2 for χ5, χ6, dim(X) = 3 for χ7, . . . , χ10 and dim(X) = 4

for χ11, χ12 and χ13. In order to give a complete description of the bifurcation diagrams with G symmetry

we have to consider all these 13 cases.

For the representations χ1 to χ10 in Table 3, it has been established in [14] that the bifurcation

diagrams are identical to those of classical bifurcation problems with symmetry in R, R
2 or R

3. Let

us summarize these cases in the following theorem. We recall that the octahedral group O, the direct
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symmetry group of the cube, possesses two irreducible representations of dimension three. In order to

differentiate these two irreducible representations we adopt the convention “natural” and “non natural”

as used in [37].

Theorem 1. For generic steady-state bifurcation diagrams with G symmetry the following holds.

(i) χ1: transcritical bifurcation (trivial symmetry, exchange of stability holds);

(ii) χ2, χ3, χ4: pitchfork bifurcation (Z2 symmetry, exchange of stability holds);

(iii) χ5: same as bifurcation with hexagonal D6 symmetry in the plane;

(iv) χ6: same as bifurcation with triangular D3 symmetry in the plane;

(v) χ7: same as bifurcation with natural octahedral O symmetry in R
3;

(vi) χ8: same as bifurcation with natural full octahedral O ⋉ Z2 symmetry in R
3;

(vii) χ9: same as bifurcation with the (unique) non natural full octahedral symmetry in R
3;

(viii) χ10: same as bifurcation with the (unique) non natural octahedral symmetry in R
3.

Moreover in all cases, bifurcated solutions satisfy the Equivariant Branching Lemma and their isotropies

are listed in Theorem 5 of [14].

Theorem 5 of [14] gives also the isotropy types of representations χ11, χ12 and χ13 which have one

dimensional fixed-point subspace. Hence by application of the Equivariant Branching Lemma, we know

that branches of solutions with these isotropies exist (in a generic sense). However bifurcation diagrams

cannot be deduced from already known bifurcation problems. Our aim in the remainder of this paper is

to fill this gap. In the next proposition we list these isotropy subgroups which give bifurcated solutions

by the Equivariant Branching Lemma. We introduce the following subgroups which will be relevant in

the remainder of the paper. We use the notation σ̃ = ρ2σρ−2 (see Table 1).

Definition 2.

C̃2κ = 〈σ, κ〉 = {Id, σ, κ, κ′′}

C̃ ′
2κ = 〈σ̃, κ〉 = {Id, σ̃, κ,−ρ2κ′′ρ−2}

C̃3κ′ = 〈ǫ, κ′〉 = {Id, ǫ, ǫ2, κ′, ǫκ′ǫ2, ǫ2κ′ǫ}

D̃3 = 〈σ̃, ǫ〉 = {Id, ǫ, ǫ2, σ̃, ǫσ̃ǫ2, ǫ2σ̃ǫ}

Proposition 1. For the 4D representations of G, the isotropy subgroups with one dimensional fixed point

subspace are the following:
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• χ11: C̃2κ, C̃ ′
2κ;

• χ12: D̃3, C̃3κ′ , C̃2κ, C̃ ′
2κ;

• χ13: D̃3, C̃3κ′ , C̃2κ, C̃ ′
2κ.

These isotropy types are therefore symmetry-breaking.

2.3 Octagonal H-planforms

In order to illustrate our purposes, we numerically compute the octagonal H-planforms associated to

the isotropy groups given in proposition 1. We recall that these planforms are eigenfunctions of the

Laplace-Beltrami operator in D which satisfy certain isotropy conditions: (i) being invariant under a

lattice group Γ and (ii) being invariant under the action of an isotropy subgroup of the symmetry group

of the fundamental domain D/Γ (mod Γ).

Lemma 2. The Laplace-Beltrami operator in D in z1, z2 coordinates is

∆D =
(1 − z2

1 − z2
2)2

4

[
∂2

∂z2
1

+
∂2

∂z2
2

]
for z = z1 + iz2 ∈ D

In the last section of [14], we tackled the problem of computing octagonal H-planforms and we

described the required numerical and geometrical methods. The computations of the four planforms as-

sociated to the one-dimensional irreductible representations have been performed using the finite element

method (see [15] for a review) on “desymmetrized” domains of the hyperbolic octagon with a mixture

of Dirichlet and Neumann boundary conditions as in [5, 4, 41]. The principles of desymmetrization in

the context of dihedral symmetry can be found in the book of Fässler and Stiefel [17]. For the two and

three dimensional representations, we implemented the finite element method with periodic boundary

conditions in the octagon and afterward, identified the corresponding planforms. In this section, we com-

plete this study for the four-dimensional case and we illustrate it with a selection of images of octagonal

H-planforms.

We first explain how to recover the desymmetrized domain and the associated boundary conditions

for isotropy group C̃3κ′ in Figure 2(a). The group C̃3κ′ has six elements among them are ǫ the rotation

by 2π/3 centered at R and the reflections κ′, κ′′through the side PR and QR respetively, where P,Q

and R are the vertices of the purple triangle in Figure 1. Each reflection implies Neumann boundary

conditions on their respective edges. The Dirichlet boundary conditions prevent an additional 3-fold

rotation. The last Neumann boundary condition is obtained by translating the desymmetrized domain

with the four boosts (4).
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(a) eC3κ′ (b) eC2κ

(c) C
′

2κ
(d) Action of the boost g3 on the desymmetrized domain

corresponding to isotropy groups eC2κ and C
′

2κ
, see text.

Figure 2: Desymmetrized domain in red and associated boundary conditions corresponding to isotropy

groups C̃3κ′ , C̃2κ and C
′
2κ. Letters N and D mean respectively Neumann and Dirichlet boundary

conditions.
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In order to better illustrate the intrinsic differences of planforms with isotropy types C̃2κ and C̃ ′
2κ,

we decide to work with C
′
2κ = {Id,−σ,−κ, κ′′}, a conjugate of C̃ ′

2κ. Indeed, isotropy groups C̃2κ and

C
′
2κ share the same desymmetrized domain but have different boundary conditions depending on their

symmetries, see Figure 2(b) and 2(c). As we apply finite element method to compute the eigenvalues and

eigenvectors of the Laplace-Beltrami operator, it is more convenient to work with a connected domain.

This is why the desymmetrized domain of isotropy groups C̃2κ and C
′
2κ has the particularity of a part

outside the octagon, however by the action of the boost g3 one can translate this part inside the octagon,

see Figure 2(d). Indeed, domain delimited by edges V 4 − V 5 − V 6 − V 7 is translated into the domain

delimited by edges B4−B5−B6−B7 by the boost g3. For isotropy group C̃2κ, the reflection κ imposes

Neumann boundary condition on edges V 1, B5 and κ′′ on V 8, V 6. The action of g−1
3 implies Neumann

boundary condition on edge V 5 = g−1
3 (B5). We have to impose Dirichlet boundary condition on edge

V 2 to prevent the action of −κ, which does not belong to C̃2κ and further implies Dirichlet condition

on B4 and thus on V 4. Finally, reflection κ combined with boost g2 which translates edge V 3 to the

opposite side of the octagon, gives Neumann boundary condition on edge V 3. The same method applies

to isotropy group C
′
2κ and we find the boundary conditions presented in Figure 2(c). For isotropy

group D̃3, we do not find any simple desymmetrized domain as in the other cases and we use the finite

element method on the full octagon with periodic boundary conditions: opposite sides of the octagon

are identified by periodicity. To identify planforms with isotropy group D̃3, we first select eigenvectors

with eigenfunctions of multiplicity 4 and then check the symmetries.

We show in Figure 3 four H-planforms with isotropy groups C̃2κ, C
′
2κ, C̃3κ′ and D̃3 with eigenvalue

λ = 5.3537 and in Figure 4 two H-planforms with isotropy groups C̃2κ, C
′
2κ. Planform with isotropy

group D̃3 is the only one which does not possess any reflection, it is then easy to distinguish it from other

planforms, see Figure 3(d). We notice that patterns of planforms with isotropy C̃2κ (in Figure 3(a)) and

C̃3κ′ (in Figure 3(c)) appear to be similar up to a rotation, despite the fact that the two cooresponding

groups are different. On the contrary, it is easy to distinguish patterns of groups C̃2κ, Figures 3(a) and

4(a), and C
′
2κ, Figures 3(b) and 4(b).

In Figures 3 and 4, we have plotted for convenience, the corresponding H-planforms in the octagon

only. Nevertheless, H-planforms are periodic in the Poincaré disc and in Figure 5, we plot the H-planform

with C̃3κ′ isotropy type of Figure 3(c). As the octagonal lattice group Γ is generated by the four boosts

of Equation (4), then once an H-planform is computed, we report it periodically in the whole Poincaré

disc by the action of these boosts and obtain Figure 5.
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(a) eC2κ (b) C
′

2κ

(c) eC3κ′ (d) eD3

Figure 3: The four H-planforms associated to the eigenvalue λ = 5.3537.

(a) eC2κ (b) C
′

2κ

Figure 4: Two H-planforms corresponding to isotropy group C̃2κ right and C
′
2κ left for eigenvalue λ =

42.3695.
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Figure 5: Extension of the C̃3κ′ H-planform on the Poincaré disc of Figure 3(c).

2.4 Bifurcation with submaximal isotropy

We briefly recall some basic results on bifurcation with submaximal isotropy which will be used in sections

3 and 4. The condition dimXH = 1, required by the Equivariant Branching Lemma, implies that H

is maximal (there no isotropy subgroup between H and G) and moreover in the case of representations

χ11, χ12 and χ13 there are no maximal isotropy subgroups with fixed-point subspaces of dimension

greater than 1. However it is well-known that solutions with non maximal isotropy can occur in generic

bifurcation problems. It follows that the Equivariant Branching Lemma does not account for all the

bifurcating equilibria and that the study of bifurcation with submaximal isotropy is an important issue.

Here we adopt the approach of [12], see also [11].

The key for the analysis of bifurcation with submaximal isotropy is the determination of the number

of copies in Fix(Σ) of subspaces Fix(∆) for the isotropy subgroups ∆ containing Σ. Let [Σ] be the

conjugacy classe of Σ and write [Σ] < [∆] if only if [Σ] 6= [∆] and γ−1Σγ ⊂ ∆ for some γ ∈ G. We call

isotropy type the conjugacy class of an isotropy subgroup. Let [∆1], . . . , [∆r] be the isotropy types which

satisfy the former condition. Let aj the number of solution branches with isotropy ∆j (aj may be equal

to 0). Then the total number of nontrivial solution branches in Fix(Σ) with higher isotropy is

NΣ =
r∑

j=1

ajn(Σ,∆j)

where n(Σ,∆j) is the number of conjugate copies of Fix(∆) inside Fix(Σ).

We denote fΣ the restriction to Fix(Σ) of f given in Eq. (5). Then, if fΣ has N0 zeroes in a

neighborhood of the origin, there are precisely N0 − NΣ − 1 branches of equilibria with isotropy Σ.

If we set N(Σ) = {g ∈ G | g−1Σg = Σ} (normalizer of Σ in G) and N(Σ,∆) = {g ∈ G | Σ ⊂ g∆g−1},
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the quotient set
N(Σ,∆)

N(∆)
is well-defined even though N(Σ,∆) is not a group in general [12]. Moreover

we have that

n(Σ,∆) =

∣∣∣∣
N(Σ,∆)

N(∆)

∣∣∣∣

This formula allow us to compute the numbers n(Σ,∆), hence to determine the number of solutions with

isotropy ∆ in Fix(Σ).

Now note that the maximal isotropy subgroups for the representations χ11, χ12 and χ13 which are

listed in Definition 2, have only cyclic subgroups generated by elements σ, ǫ, κ or κ′ (or conjugates).

The following lemmas give the informations when ∆ is maximal.

Lemma 3. The normalizers of the isotropy subgroups of proposition 1 are listed in table 4.

∆ N(∆) |N(∆)|
D̃3 〈D̃3,−Id〉 12

C̃3κ′ 〈C̃3κ′ ,−Id〉 12

C̃2k 〈C̃2k,−Id〉 8

C̃ ′
2κ 〈C̃ ′

2κ,−Id〉 8

Table 4: Isotropy subgroups of G and their normalizer. The last column provides the cardinal of the
normalizer.

Proof. Let us consider, for example, Σ = C̃2k = 〈σ, κ〉. The only conjugate of κ in C̃2k is κ itself, and the

same holds for σ and σκ = κ′. Therefore N(C̃2k) = N(〈κ〉) ∩ N(〈σ〉) ∩ N(〈σκ〉). Now for any element

h ∈ G, we have that |N(〈h〉)| = 96
|[h]| . Tables 1 and 2 show that |[κ]| = 6 while |[σ]| = |[κ′]| = 12. It

follows that |N(〈κ〉)| = 16 while |N(〈σ〉)| = |N(〈κ′〉)| = 8. Hence |N(Σ)| ≤ 8. But Σ ⊂ N(Σ) and

|Σ| = 4, moreover −Id commutes with any element in G and therefore belongs to N(Σ). It follows that

the group 〈Σ,−Id〉 = N(Σ). The same rationale applies to the other isotropy subgroups.

Lemma 4. The values of n(Σ,∆) for the maximal isotropy subgroups ∆ (see Definition 2) are given in

table 5.

Proof. • Case Σ = 〈κ〉: we have N(Σ, C̃2k) = N(Σ, C̃ ′
2k) = N(Σ) as κ is not conjugate to σ nor

to σκ. Moreover, |N(Σ)| = 16 (see proof of Lemma 3) and |N(C̃2k)| = |N(C̃ ′
2k)| = 8, hence

n(Σ, C̃2k) = n(Σ, C̃ ′
2k) = 2.

• Case Σ = 〈σ〉: we have N(Σ, Ĉ2k) = N(Σ, C̃ ′
2k) = N(Σ) with |N(Σ)| = 8 (see proof of Lemma

3), hence n(Σ, Ĉ2k) = n(Σ, C̃ ′
2k) = 1. By definition N(Σ, D̃3) = {g ∈ G | gΣg−1 ⊂ D̃3} = {g ∈

G | gσ̃g−1 ∈ D̃3}. There are three conjugates of σ̃ in D̃3. Therefore |N(Σ, D̃3)| = 3|N(〈σ〉)|. As

shown in the proof of Lemma 3), |N(〈σ〉)| = 8, hence N(Σ, D̃3) = 24 and n(Σ, D̃3) = 2.
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[Σ] [∆] n(Σ,∆)

〈σ〉 C̃2k 1

〈σ〉 C̃ ′
2k 1

〈σ〉 D̃3 2

〈ǫ〉 D̃3 2

〈ǫ〉 C̃3κ′ 2

〈κ〉 C̃2k 2

〈κ〉 C̃ ′
2κ 2

〈κ′〉 C̃2κ 1

〈κ′〉 C̃ ′
2κ 1

〈κ′〉 C̃3κ′ 2

Table 5: Values of n(Σ,∆).

• The proof for the other cases uses the same arguments as above.

3 Bifurcation diagrams in the case of the representation χ12

The character table 3 shows that the two 4D representations χ12 and χ13 are almost identical, the only

difference coming from the fact that the characters of the group elements ǫκ and −ǫκ have opposite

signs. It follows that the general bifurcation analysis in the case of χ13 is identical to the case of χ12 and

does not introduce any novelty. In the following we shall therefore only describe the χ12 case.

3.1 Equivariant structure of the equations on the center manifold

We need to know the form of the asymptotic expansion of the G equivariant map f(·, λ) in Equation

(5). The dimension of the space of equivariant polynomials can be computed using Molien series (see

[11]). This computation is shown in appendix B and the results are presented in table 12. The Molien

series tells us that there are two independant equivariant homogeneous polynomial maps of order 3. The

computation of these terms will prove to be sufficient to fully determine the bifurcation diagram under

generic conditions.

We first need to choose a system of coordinates in R
4. In the remaining part of this paper we shall

use the same notation for an element in G and for its representation when there is no ambiguity. The

following lemma is proved in Appendix C.1.
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Lemma 5. For the representation χ12 the diagonalization of the 8-fold symmetry matrix ρ has the form

ρ =




exp( iπ
4 ) 0 0 0

0 exp(− iπ
4 ) 0 0

0 0 exp( 3iπ
4 ) 0

0 0 0 exp(− 3iπ
4 )




We note (z1, z̄1, z2, z̄2) the complex coordinates in the corresponding basis.

The following theorem gives the form of the bifurcation equations on the center manifold .

Theorem 2. For the representation χ12, Equation (5) expressed in the coordinates (z1, z̄1, z2, z̄2) admits

the following expansion

ż1 =
[
λ + a(|z1|2 + |z2|2)

]
z1 + b

[√
3

(
3z2

1 + z̄2
2

)
z̄1 − i

(
z2
2 + 3z̄2

1

)
z2

]
+ h.o.t. (6)

ż2 =
[
λ + a(|z1|2 + |z2|2)

]
z2 + b

[√
3

(
3z2

2 + z̄2
1

)
z̄2 + i

(
z2
1 + 3z̄2

2

)
z1

]
+ h.o.t. (7)

where (a, b) ∈ R
2. Moreover the cubic part is the gradient of the G invariant real polynomial function

a

2

[(
|z1|2 + |z2|2

)2
]

+ b ·
[√

3

2

(
3

(
z2
1 z̄2

1 + z2
2 z̄2

2

)
+ z2

1z2
2 + z̄2

1 z̄2
2

)
+ i

(
z3
1 z̄2 + z̄3

2z1 − z3
2 z̄1 − z2z̄

3
1

)
]

Proof. We postpone to appendix C.1 the computation of the two cubic equivariant maps. The check of

the gradient form is straightforward.

3.2 Isotropy types and fixed points subspaces

Lemma 6. The lattice of isotropy types for the representation χ12 is shown in Figure 6. The numbers

in parentheses indicate the dimension of corresponding fixed-point subspaces.

Proof. We apply the trace formula: if H is a subgroup and χ is the character of the representation, then

dim(XH) =
1

|H|
∑

h∈H

χ(h) (8)

By applying (8) for χ12 (see Table 3), one finds that the only cyclic subgroups of G (subgroups generated

by one element) with a fixed-point subspace of positive dimension are those listed in the diagram of Figure

6, and this dimension is equal to 2. The result follows. Note that the isotropy types with one-dimensional

fixed-point subspace have been determined in [14], see Proposition 1.
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The next lemma gives expressions for the fixed-point subspaces of two-element groups in the (z1, z̄1, z2, z̄2)

coordinates, which will be usefull for the bifurcation analysis of (5) in the planes of symmetry. There

are four types of these planes but we express the fixed-point planes for the conjugates σ̃ of σ and κ′′ of

κ′ for later convenience.

Lemma 7. Fixed-point subspaces associated with the isotropy groups in the diagram 6 have the following

equations.

- Fix(σ) = {(z1, z̄1, z2, z̄2) | z2 = (
√

2 − 1)(
√

2z1 − i
√

3z̄1)};

- Fix(σ̃) = ρ2Fix(σ) = {(z1, z̄1, z2, z̄2) | z2 = (1 −
√

2)(
√

2z1 + i
√

3z̄1)};

- Fix(ǫ) = {(z1, z̄1, z2, z̄2) | z2 = (1 + i)z1 +
√

3z̄1};

- Fix(κ) = {(z1, z̄1, z2, z̄2) | z1 = iz̄1 and z2 = iz̄2};

- Fix(κ′) = {(z1, z̄1, z2, z̄2) |
√

2z1 = (−1 + i)z̄1)} and
√

2z2 = −(1 + i)z̄2)}.

- Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = (
√

3 −
√

2)(−
√

2z1 + iz̄1)}.

Proof. Given in Appendix D.1.

The one dimensional fixed point subspaces are the intersections of planes of symmetry. This allows

to easily obtain expressions for these axes from the expressions listed in Lemma 7. For example we can

write

Fix(C̃2κ) = {(z1, z2) ∈ C
2 | z1 = iz̄1 and z2 = (

√
2 − 1)(

√
2 −

√
3)z1}.

3.3 Bifurcation analysis

Theorem 3. Provided that (a, b) ∈ P = {(a, b) ∈ R
2 | 3a + 2b

√
3 < 0 and 3a + 10b

√
3 < 0} (see Figure

7), the following holds for Equations (6)-(7).

Figure 6: The lattice of isotropy types for the representation χ12.
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Figure 7: Region P = {(a, b) ∈ R
2 | 3a + 2b

√
3 < 0 and 3a + 10b

√
3 < 0} for the value of the parameters

(a, b) is colored in blue.

(i) No solution with submaximal isotropy bifurcates in the planes of symmetry.

(ii) The branches of equilibria with maximal isotropy (as listed in Proposition 1) are pitchfork and

supercritical.

(iii) If b > 0 (resp. b < 0), the equilibria with isotropy type C̃3κ′ (resp. D̃3) are stable in R
4. Branches

with isotropy C̃2κ and C̃ ′
2κ are always saddles.

Remark 1. We have numerically checked that the domain P coincides with the existence of an attracting,

flow invariant sphere homeomorphic to S3 in R
4. By a theorem due to Field [19, 11], a condition for the

existence of such a sphere is that 〈q(ξ), ξ〉 < 0 for all ξ 6= 0, where ξ = (z1, z̄1, z2, z̄2), q is the cubic part

in the equations (6), (7) and 〈 , 〉 denotes the inner product ℜ(z1z̄
′
1 + z2z̄

′
2). Since q is an homogeneous

polynomial map, it is sufficient to check the condition for (z1, z2) ∈ S3, which does not present any

difficulty.

Remark 2. The theorem doesn’t rule out the possibility that equilibria with trivial isotropy could bifurcate.

We conjecture this is not the case. This is supported by the fact that under the ”generic” hypotheses of

the theorem: (i) no other solution than those with maximal isotropy bifurcates in the planes of symmetry,

(ii) the stability of these solutions is determined at cubic order and one of these types is always stable,

(iii) the system is gradient at cubic order, (iv) admitting the existence of an invariant sphere (previous

remark), the conjecture doesn’t contradict Poincaré-Hopf formula [25]: one can check that the sum of

indices of equilibria with maximal isotropy is equal to 0, the Euler characteristic of S3.
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Proof. We first compute the branches with maximal isotropy, then we examine bifurcation in the invari-

ant planes and finally we provide the eigenvalues of the bifurcated equilibria to complete the stability

diagrams.

1. Branches with maximal isotropy. Notice that, since −Id acts non trivially in R
4 − {0} for χ12,

equilibria have to occur via pitchork bifurcations. The maximal isotropy subgroups are C̃2κ, C̃ ′
2κ, C̃3κ′

and D̃3. By Lemma 7 one can easily find the following parametrizations. Pluging this into the system

(6)-(7) we obtain scalar equations which we solve for the bifurcated branches:

• Fix(C̃2κ) = {z1 = (1 + i)x, z2 = (
√

2 − 1)(
√

2z1 − i
√

3z̄1)}.

Bifurcated branch: λ = −4K1

(
a + 2b(1 +

√
3)

)
x2 +O(x4), where K1 = 8−3

√
6−5

√
2+4

√
3 > 0.

• Fix(C̃ ′
2κ) = {z1 = (1 + i)x, z2 = (1 −

√
2)(

√
2z1 + i

√
3z̄1)}.

Bifurcated branch: λ = −4K2

(
a + 2b(

√
3 − 1)

)
x2 +O(x4), where K2 = 8+3

√
6−5

√
2−4

√
3 > 0.

• Fix(C̃3κ′) = {z1 = (1 + i(1 +
√

2))x, z2 = (1 + i)z1 +
√

3z̄1}.

Bifurcated branch: λ = −4K3

(
a
√

3 + 10b
)
x2 + O(x4), where K3 = −2 +

√
6 − 2

√
2 + 2

√
3 > 0.

• Fix(D̃3) = {z1 =
(
1 + i 1+

√
6−

√
3

−3+
√

2+
√

3

)
x, z2 = (1 + i)z1 +

√
3z̄1}.

Bifurcated branch: λ = −4K4

(
a
√

3 + 2b
)
x2 + O(x4), where K4 = 6

√
3 + 4

√
6 + 10 + 7

√
2 > 0.

From the formulas for the branches we deduce the direction of branching of the equilibria, hence their

stability along their axes of symmetry. For example the equilibria with C̃2κ isotropy bifurcate supercrit-

icaly if a + 2b(1 +
√

3) < 0, and therefore the principle of exchange of stability (between the trivial state

and the bifurcated one) holds against perturbations with the same isotropy.

2. Bifurcation in the planes of symmetry. In each of the planes of symmetry there are precisely

4 axes of symmetry. This immediately follows from Table 5. For example Fix(〈σ〉) contains one copy

of Fix(C̃2κ), one copy of Fix(C̃ ′
2κ) and two copies of Fix(D̃3). Let us choose real coordinates (x, y) in a

plane of symmetry P and write the equations in P

ẋ = λx + q1(x, y) + h.o.t. (9)

ẏ = λy + q2(x, y) + h.o.t. (10)

where q1 and q2 are the components of the cubic part in the Taylor expansion of f restricted to P . If

(x(λ), y(λ)) is a branch of equilibria of this system, then the equation

Q(x, y) = yq1(x, y) − xq2(x, y) = 0 (11)
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admits an axis of solutions ǫ(x0, y0) where (x0, y0) represents the leading order in the Taylor expansion

of the solution. If Q is not degenerate the number of such axes is bounded by the degree of Q which is

equal to 4. Now, there are 4 axes of symmetry in P and each of them corresponds to an axis of solutions

of the above equation. Therefore if Q is not degenerate, there are no other invariant axes for Equation

(11). To prove that there are no submaximal branches of solutions in the planes of symmetry it remains

to check the non degeneracy of Q.

Calculations with Maple have shown that in all cases the form Q in non degenerate, hence there are no

generic bifurcations of solutions with submaximal isotropy in these planes.

Remark. The stability of the bifurcated equilibria in the planes of symmetry is determined by the

sign of the eigenvalues of the Jacobian matrix




∂xẋ ∂yẋ

∂xẏ ∂y ẏ


 evaluated at the equilibria. One eigenvalue

is radial with leading part −2λ (since q1 and q2 are cubic), the other one is transverse (see Section 2.2).

Calculations lead to the Table 6 for the transverse eigenvalues.

3. Stability in R
4.

Table 6 shows the leading part of the transverse eigenvalues for the two types of bifurcated equilibria.

Each equilibrium lies at the intersection of three planes. The four constants (Ci)i=1...4 in Table 6 are

given by:

C1 = 10 + 6
√

3 − 4
√

6 − 7
√

2 > 0 C2 = −10 + 6
√

3 − 4
√

6 + 7
√

2 > 0

C3 = 2 + 2
√

3 − 2
√

2 −
√

6 > 0 C4 = −2 + 2
√

3 + 2
√

2 −
√

6 > 0

For those with C̃2κ and C̃ ′
2κ isotropy, the planes are Fix(κ), Fix(σ) and Fix(κ′). The equilibria with

C̃3κ′ isotropy lie in Fix(ǫ) and Fix(κ′). The action of ǫ ”rotates” Fix(κ′) by an angle 2π/3 around the

axis Fix(C̃3κ′), hence a transverse eigenvalue is double and has eigenvectors in Fix(κ′) and its copies by

ǫ and ǫ2. Similarly, equilibria with D̃3 isotropy have a double transverse eigenvalue with eigenvectors in

Fix(σ) and its copies by ǫ and ǫ2.

C̃2κ C̃ ′
2κ C̃3κ′ D̃3

Fix(κ) −32K1bX
2 32K2bX

2 no no
Fix(ǫ) no no −64K3bX

2 64K4bX
2

Fix(σ) −16C1bX
2 −16C2bX

2 no 16K4bX
2 (2)

Fix(κ′) 16C3bX
2 16C4bX

2 −16K3bX
2 (2) no

Table 6: Transverse eigenvalues of bifurcated equilibria in R
4.

Now, Table 6 shows that equilibria with isotropies C̃2κ and C̃ ′
2κ are never stable. Indeed their

transverse eiganvalues in the planes Fix(σ) and Fix(κ′) have opposite signs (we assume the generic
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condition b 6= 0 to be true). Now suppose that the solutions with isotropy D̃3 are supercritical, a

condition which is fulfilled if a
√

3 + 2b < 0. Their transverse eigenvalues have the same sign as b. It

follows that if b < 0 these solutions are stable (while all other equilibria are unstable).

The same argument applies to solutions with isotropy C̃3κ′ : if a
√

3 + 10b < 0 (supercritical branch) and

b > 0, these solutions are stable in R
4 while all other equilibria are unstable.

It remains to check the domain P in the theorem. One can easily show that all bifurcated branches are

supercritical if the inequalities a
√

3+2b < 0 and a
√

3+10b < 0 are satisfied. This finishes the proof.

4 Bifurcation diagrams in the case of the representation χ11

4.1 Equivariant structure of the equations on the center manifold

As for representation χ12, we also need to know the form of the asymptotic expansion of f(·, λ) in

Equation (5). Table 12 of appendix B, given by the computation of Molien series, shows that there are

only one equivariant homogeneous polynomial map of order 3 and four linearily independant equivariant

maps of order 5. The bifurcation diagrams are fully determined, under generic conditions, by the

computations of these terms. However, it turns out that these computations are not anymore sufficient

if one wants to study some specific dynamics of Equation (5) as depicted in section 5.

We first need to choose a system of coordinates in R
4. The following lemma is proved in Appendix

C.2.

Lemma 8. For the representation χ11 the diagonalization of the 8-fold symmetry matrix ρ has the form

ρ =




exp( iπ
4 ) 0 0 0

0 exp(− iπ
4 ) 0 0

0 0 exp( 3iπ
4 ) 0

0 0 0 exp(− 3iπ
4 )




We note (z1, z̄1, z2, z̄2) the complex coordinates in the corresponding basis.

Remark 3. The diagonal matrix is the same as in Lemma 5, however the corresponding bases differ for

the two representations χ12, χ11. Indeed, from Propositions 2 and 3 of Appendix A, one can check that

the presentation given by biquaternions of ρ for representation χ12 and χ11 are different.

The bifurcation equations of the center manifold is given by the following theorem.

Theorem 4. For the representation χ11, Equation (5) expressed in the coordinates (z1, z̄1, z2, z̄2) admits

the following expansion
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ż1 = λz1 + Az1

(
|z1|2 + |z2|2

)
+ az1

(
|z1|2 + |z2|2

)2
+ b

(
z4
1 z̄2 + 4z3

2 |z1|2 − z3
2 |z2|2

)

+ c
(
3z̄2

1z2|z2|2 − z2
1 z̄3

2 − 2z̄2
1 |z1|2z2

)
+ d

(
−5z̄4

1 z̄2 + z̄5
2

)
+ h.o.t (12)

ż2 = λz2 + Az2

(
|z1|2 + |z2|2

)
+ az2

(
|z1|2 + |z2|2

)2
+ b

(
−z̄1z

4
2 − 4z3

1 |z2|2 + z3
1 |z1|2

)

+ c
(
−3z1z̄

2
2 |z1|2 + z̄3

1z2
2 + 2z1z̄

2
2 |z2|2

)
+ d

(
5z̄1z̄

4
2 − z̄5

1

)
+ h.o.t (13)

where (A, a, b, c, d) ∈ R
5.

Proof. There is one G-equivariant cubic map, hence necessarily equals to E3(z) = z‖z‖2 with z =

(z1, z̄1, z2, z̄2). We postpone to Appendix C.2 the computation of the four quintic equivariant maps.

4.2 Isotropy types and fixed points subspaces

Lemma 9. The lattice of isotropy types for the representation χ11 is shown in Figure 8. The numbers

in parentheses indicate the dimension of corresponding fixed-point subspaces.

Figure 8: The lattice of isotropy types for the representation χ11.

Proof. The only cyclic subgroups of G with a fixed-point subspace of positive dimension are given in

the diagram of Figure 8 and determined by applying (8) for χ11 (see Table 3). The isotropy types with

one-dimensional fixed-point subspace have been determined in [14], see Proposition 1.

The next lemma gives expressions for the fixed-point subspaces of two-element groups in the (z1, z̄1, z2, z̄2)

coordinates, which will be usefull for the bifurcation analysis of (5) in the planes of symmetry. There

are three types of these planes. We also express the fixed-point plane for the conjugate κ′′ of κ′ for later

convenience.
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Lemma 10. Fixed-point subspaces associated with the isotropy groups in the diagram 8 have the following

equations.

- Fix(σ) = {(z1, z̄1, z2, z̄2) | z2 = i(1 +
√

2)z1};

- Fix(κ) = {(z1, z̄1, z2, z̄2) | z1 = iz̄1 and z2 = −iz̄2};

- Fix(κ′) = {(z1, z̄1, z2, z̄2) | z1 =
√

2
2 (i − 1)z̄1 and z2 =

√
2

2 (i + 1)z̄2};

- Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = iz1 −
√

2z̄1}.

Proof. Given in Appendix D.2.

The one dimensional fixed point subspaces are the intersections of planes of symmetry. This allows

to easily obtain expressions for these axes from the expressions listed in Lemma 10. For example we can

write

Fix(C̃2κ) = {(z1, z2) ∈ C
2 | z1 = iz̄1 and z2 = i(1 +

√
2)z1}.

4.3 Bifurcation analysis

(a) In Fix(σ), bifurcation of submaximal so-
lutions occur for values of coefficients (b, c, d)
in the blue regions II and IV . We have set
x = b + c and y = d.

(b) In Fix(κ′), bifurcation of submaximal solu-
tions occur for values of coefficients (b, c, d) in
the regions II and IV . We have set x = c and
y = b + d.

Figure 9: Conditions on coefficients (b, c, d) of existence of submaximal solutions in the planes Fix(σ)
and Fix(κ′′) (in blue).

Theorem 5. Provided that A < 0, there exists an attracting, flow invariant, sphere homeomorphic to

S3 in R
4 and branches of equilibria with maximal isotropy (as listed in Proposition 1) are pitchfork and

supercritical. The bifurcation diagrams in each fixed-point planes are as follows.

(i) Fix(κ) contains two copies of each type of isotropy axes. Moreover,

• No solution with submaximal isotropy bifurcates in Fix(κ).
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• If b < d (resp. b > d) the equilibria with isotropy C̃2κ are stable (resp. saddles) and C̃ ′
2κ are

saddles (resp. stable).

(ii) Fix(σ) contains one copy of each type of isotropy axes. Moreover,

• If b + c + 9d > 0 (resp. b + c + 9d < 0) equilibria with isotropy C̃2κ are stable (resp. saddles)

and C̃ ′
2κ are saddles (resp. stable), see regions I and IV (resp. II and III) in Figure 9(a).

• If d(3d − b − c) < 0 or (b + c − 15d)(b + c + 9d) > 0, no solution with submaximal isotropy

bifurcates in fixed-point plane Fix(σ), see regions I and III in Figure 9(a).

• If d(3d−b−c) > 0 and (b+c−15d)(b+c+9d) < 0, regions II and IV in Figure 9(a), solutions

with submaximal isotropy bifurcate form equilibria C̃2κ and C̃ ′
2κ in Fix(σ). The corresponding

phase diagram is shown in Figure 10.

(iii) Fix(κ′) contains one copy of each type of isotropy axes. Moreover,

• If d + b − 3c < 0 (resp. d + b − 3c > 0) equilibria with isotropy C̃2κ are stable (resp. saddles)

and C̃ ′
2κ are saddles (resp. stable), see regions II and III (resp. I and IV ) in Figure 9(b).

• If (b+d)(b+d− c) < 0 or (5d−3c+5b)(d+ b−3c) < 0, no solution with submaximal isotropy

bifurcates in fixed-point plane Fix(κ′), see regions I and III in Figure 9(b).

• If (b + d)(b + d − c) > 0 or (5d − 3c + 5b)(d + b − 3c) > 0, regions II and IV in Figure 9(b),

solutions with submaximal isotropy bifurcate form equilibria C̃2κ and C̃ ′
2κ in fixed-point plane

Fix(κ′). The corresponding phase diagram is given in Figure 10.

Proof. The assumption A < 0 ensures that 〈q(ξ), ξ〉 = A‖ξ‖4 < 0 for all ξ 6= 0, where ξ = (z1, z̄1, z2, z̄2),

q is the cubic part in the equations (12), (13) and 〈 , 〉 denotes the inner product ℜ(z1z̄
′
1 + z2z̄

′
2) and

‖ ‖ the associated norm. This implies the existence of the invariant sphere homeomorphic to S3 in R
4.

We now examine bifurcation in the invariant planes. We can already note that, since −Id acts non

trivially in R
4 −{0} for χ12, equilibria have to occur via pitchork bifurcations. We proceed as in Section

section:chi12 for the case with representation χ12.

1. Branches with maximal isotropy. Since A < 0 branches of solutions along the axis of symmetry

exist for λ > 0 with leading part λ = −A‖X‖2 where X belongs to the corresponding axis.

2. Bifurcation and stability in Fix(κ). By Lemma 10,

Fix(κ) = {(z1, z2) ∈ C
2|z1 = (1 + i)x and z2 = (1 − i)y, (x, y) ∈ R

2} .
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Figure 10: Changes of phase diagram in Fix(σ) and Fix(κ′) as the coefficients (b, c, d) pass from regions
I − II − III in Figure 9(a) (for Fix(σ)) and in Figure 9(b) (for Fix(κ′)). Σ±

1 and Σ±
2 indicate solutions

with submaximal isotropy. The case II/III corresponds to coefficient values at the boundary between
region II and III ( saddle-node bifurcation of equilibria with submaximal isotropy).

27



By Table 5 this plane contains two axes with isotropy type C̃2κ and two axes with isotropy type C̃ ′
2κ.

We can choose as representative Fix(C̃2κ) = {y = −(1+
√

2)x} and Fix(C̃ ′
2κ) = {y = (1+

√
2)x}.

We change coordinates so that Fix(C̃2κ) is the real axis. With the following choice:




x

y


 =




α−1 β−1

−α−1(1 +
√

2) β−1(
√

2 − 1)







X

Y




where α =
√

4 + 2
√

2 and β =
√

4 − 2
√

2, the equations (12) and (13) read

Ẋ = λX + 2AX(X2 + Y 2) + 4aX(X2 + Y 2)2 + 2bX(−X4 − 2X2Y 2 + 7Y 4)

+ 2cX(X4 − 6X2Y 2 + Y 4) + 2dX(3X4 − 10X2Y 2 − 5Y 4)

Ẏ = λY + 2AY (X2 + Y 2) + 4aY (X2 + Y 2)2 − 2bY (−7X4 + 2X2Y 2 + Y 4)

+ 2cY (X4 − 6X2Y 2 + Y 4) − 2dY (5X4 + 10X2Y 2 − 3Y 4)

and the polynomial map Q defined in Equation (11) is Q(X, Y ) = −16(X − Y )(X + Y )(X2 +

Y 2)XY (b− d). The axes Y = 0 and X = 0 correspond to C̃2κ isotropy type and the axes X = ±Y

correspond to C̃ ′
2κ isotropy type. Therefore if b 6= d there are no submaximal solutions in Fix(κ).

Stability of the solutions. The transverse eigenvalues are computed from these equations and

are summarized in Table 7.

Isotropy type C̃2κ C̃ ′
2κ

Tranverse eigenvalue 16(b − d)X4 −64(b − d)X4

Table 7: Transverse eigenvalues (leading order) of bifurcated equilibria in Fix(κ).

3. Bifurcation and stability in Fix(σ). By Lemma 10,

Fix(σ) = {(z1, z2) ∈ C
2 | z2 = i(1 +

√
2)z1} .

By Table 5 there are two axes of symmetry in this plane: one of type C̃2κ and one of type C̃ ′
2κ.

From Definition 2, a conjugate of C̃ ′
2κ containing σ is C̃ ′′

2κ = ρ−2C̃ ′
2κρ2 = {Id, σ,−κ,−κ′′}.

Let us write z1 = x+ iy. In the (x, y) coordinates, Fix(C̃2κ) = {y = x}, Fix(C̃ ′′
2κ) = {y = −x}. We

change coordinates such that x =
√

2/2(X + Y ), x =
√

2/2(X − Y ). Hence Y = 0 is the equation
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of Fix(C̃2κ) and X = 0 is the equation of Fix(C̃ ′′
2κ). Then

Ẋ = λX + 2E1AX(X2 + Y 2) + 8E2aX(X2 + Y 2)2 − 4E2bX(X2 + Y 2)(X2 − 3Y 2)

+ 4E2cX(X2 + Y 2)2 + 12E2dX(X4 − 10X2Y 2 + 5Y 4)

Ẏ = λY + 2E1AY (X2 + Y 2) + 8E2aY (X2 + Y 2)2 − 4E2bY (X2 + Y 2)(3X2 − Y 2)

− 4E2cY (X2 + Y 2)2 − 12E2dX(5X4 − 10X2Y 2 + Y 4)

where E1 = 2 +
√

2 and E2 = 3 + 2
√

2. For this system we obtain

Q(X, Y ) = 8E2XY
[
(b + c + 9d)X4 + 2(b + c − 15d)X2Y 2 + (b + c + 9d)Y 4

]

We denote H(X, Y ) = (b + c + 9d)X4 + 2(b + c − 15d)X2Y 2 + (b + c + 9d)Y 4.

Study of the polynomial map H(X, Y ). We consider H as a polynomial map of degree two in

X2. When b + c − 15d = 0, then H is simplified as H(X, Y ) = (b + c + 9d)(X4 + Y 4), and there

is no submaximal bifurcation in Fix(σ). In the remaining part of this paragraph, we suppose that

b + c − 15d 6= 0.

• Suppose that d(3d − b − c) > 0 then X2 = ν±Y 2 with

ν± =
−(b + c − 15d) ±

√
48d(3d − b − c)

(b + c + 9d)

and ν+ν− = 1, ν+ + ν− = −2 b+c−15d
b+c+9d . Hence if b+c−15d

b+c+9d < 0, there are four axes X = ±√
ν±Y

which correspond to bifurcated submaximal solutions in Fix(σ). If b+c−15d
b+c+9d > 0 no submaximal

bifurcation can bifurcate in Fix(σ).

• Suppose that d = 0 and b + c 6= 0 then H(X, Y ) = (b + c)(X2 + Y 2)2. This implies that no

submaximal bifurcation can bifurcate in Fix(σ) if d = 0 and b + c 6= 0.

• If 3d = b + c 6= 0 then H(X, Y ) = 12d(X − Y )2(X + Y )2 and the axes X = ±Y correspond

to bifurcated submaximal solutions in Fix(σ).

• If d(3d − b − c) < 0 then H has no other root than (0, 0). By the same argument as before,

this shows that no submaximal solution can bifurcate in Fix(σ) in this case.

Stability of the solutions. The transverse eigenvalues for isotropy types C̃2κ and C̃ ′
2κ are

computed from the above equations and are summarized in Table 8.
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Isotropy type C̃2κ C̃ ′
2κ

Transverse eigenvalue −8(3 + 2
√

2)(b + c + 9d)X4 8(3 + 2
√

2)(b + c + 9d)X4

Table 8: Transverse eigenvalues (leading order) of equilibria with maximal isotropy in Fix(σ).

We now discuss the stability of the bifurcated submaximal solutions found for d(3d − b − c) > 0

and (b + c − 15d)(b + c + 9d) < 0, i.e regions II and IV of Figure 9(a). We denote Σ+
1 (resp.

Σ−
1 ) the branch of solutions with axis X =

√
ν+Y (resp. X = −√

ν+Y ) and Σ+
2 (resp. Σ−

2 ) the

branch of solutions with axis X =
√

ν−Y (resp. X = −√
ν−Y ). When parameters pass from

region I to region II in Figure 9(a), pitchfork bifurcation with submaximal isotropy occurs and

two equilibria Σ±
1 emerge from equilibria with isotropy type C̃2κ and two equilibria Σ±

2 emerge

from equilibria with isotropy type C̃ ′
2κ with exchange of stability: C̃2κ becomes unstable and C̃ ′

2κ

stable, which implies that Σ±
1 are stable and Σ±

2 are saddles, see Figure 10 (upper right). At the

boundary between region II and III, equilibria Σ+
1 (resp. Σ−

1 ) and Σ+
2 (resp. Σ−

2 ) collide and

form only one equilibrium denoted Σ+
c (resp. Σ−

c ), which no longer exists in region III: saddle-

node bifurcation. These two equilibria Σ±
c are saddles, see Figure 10 (lower left). In region III,

equilibria with isotropy type C̃2κ are now unstable whereas equilibria with isotropy type C̃ ′
2κ are

stable, see Figure 10 (lower right). Same phenomena occur when values of the parameters pass

from region III to region I through region IV in Figure 9(a). We summerize the positive section

of the bifurcation diagrams of Figure 10 in Figure 11.

Figure 11: Positive section of the bifurcation diagrams of Figure 10 when parameters pass from regions
I − II − III. Dashed lines represent unstable branches and continuous lines represent stable branches.
�-P stands for pitchfork bifurcation and �-SN for saddle-node bifurcation, see text for notations.
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4. Bifurcation and stability in Fix(κ′). We consider instead Fix(κ′′). By Lemma 10,

Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = iz1 −
√

2z̄1} .

By Table 5 there are two axes of symmetry in this plane: one of type C̃2κ and one of type C̃ ′
2κ. We

have already noticed that a conjugate of C̃ ′
2κ which contains κ′′ is Ĉ ′

2κ = {Id,−σ,−κ, κ′′}. Setting

z1 = x+ iy, the equations for Fix(C̃2κ) and Fix(Ĉ ′
2κ) are respectively y = x and y = −x. With the

change of coordinates x =
√

2/2(X + Y ), x =
√

2/2(X − Y ) the equations become:

Ẋ = λX + 2E1AX(X2 + E2
3Y 2) + 8E2aX(X2 + E2

3Y 2)2

+ 4E2bX(−X2 + 2
√

2E3XY + E2
3Y 2)(X2 + 2

√
2E3XY − E2

3Y 2)

+ 4E2cX(X2 − 5E2
3Y 2)(X − E3Y )(X + E3Y ) + 4E2dX(3X4 + 10E2

3X2Y 2 − 5E4
3Y 4)

Ẏ = λY + 2E1AY (X2 + E2
3Y 2) + 8E2aY (X2 + E2

3Y 2)2

− 4E2bY (−X2 + 2
√

2E3XY + E2
3Y 2)(X2 + 2

√
2E3XY − E2

3Y 2)

− 4E2cY (5X2 − E2
3Y 2)(X − E3Y )(X + E3Y ) + 4E2dY (5X4 − 10E2

3X2Y 2 − 3E4
3Y 4)

where E3 = 1 −
√

2. Then

Q(X, Y ) = −8E2XY
[
(b + d − 3c)X4 − 2E2

3(5d + 5b − 3c)X2Y 2 + E4
3(b + d − 3c)Y 4

]

We set K(X, Y ) = (b + d − 3c)X4 − 2E2
3(5d + 5b − 3c)X2Y 2 + E4

3(b + d − 3c)Y 4.

Study of the polynomial map K(X, Y ). We consider K as a polynomial of degre two in X2.

If 5d + 5b− 3c = 0, then K(X, Y ) = (b + d− 3c)(X4 + E4
3Y 4), and no submaximal bifurcation can

occur in fixed-point plane Fix(κ′′). We now suppose that 5d + 5b − 3c 6= 0.

• If (b + d)(b + d − c) > 0 then X2 = ν±Y 2 with

ν± = E2
3

5d − 3c + 5b ± 2
√

6(b + d)(b + d − c)

(d + b − 3c)
Y 2

where ν+ν− = C2 and ν++ν− = 2E2
3

5d−3c+5b
d+b−3c . This implies that if (5d−3c+5b)(d+b−3c) > 0

there are four axes X = ±√
ν±Y which correspond to bifurcated submaximal solutions in
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Fix(κ′′). And if (5d − 3c + 5b)(d + b − 3c) < 0, no submaximal solution can bifurcate in this

plane.

• If b+d = c and c 6= 0, then K(X, Y ) = −2c(X2 +E2
3Y 2)4. There is no bifurcated submaximal

solution in Fix(κ′′).

• Suppose that d+b = 0 and c 6= 0, then K(X, Y ) = −3c(X2−E2
3Y 2)2 and the axes X = ±E3Y

correspond to bifurcated submaximal solutions in Fix(κ′′).

• Finally, if (b + d)(b + d− c) < 0, then K has no other root than (0, 0). By the same argument

as before, this shows that no submaximal solution can bifurcate in fixed-point plane Fix(κ′′).

Stability of the solutions. The transverse eigenvalues for isotropy type C̃2κ and C̃ ′
2κ are sum-

marized in Table 9.

Isotropy type C̃2κ C̃ ′
2κ

Tranvserse eigenvalue 8(3 + 2
√

2)(d + b − 3c)X4 −8(3 − 2
√

2)(d + b − 3c)X4

Table 9: Transverse eigenvalues (leading order) of equilibria with maximal isotropy in Fix(κ′′).

The bifurcation analysis of submaximal solutions is the same as in fixed-point plane Fix(σ) and

presents no difficulty.

Remark 4. From Tables 7, 8 and 9, we deduce that there always exists a range of parameters such that

equilibria with isotropy type C̃2κ and C̃ ′
2κ are unstable. We also point out that, to leading order, the sign

of transverse eigenvalues for isotropy type C̃2κ is the opposite of the sign of transverse eigenvalues for

isotropy type C̃ ′
2κ.

We can choose coordinates to express fixed-point lines Fix(C̃2κ) and Fix(C̃ ′
2κ) in R

4 as Fix(C̃2κ) =

{(x, x,−(1 +
√

2)x, (1 +
√

2)x) | x ∈ R} and Fix(C̃ ′
2κ) = {(x,−x, (1 +

√
2)x, (1 +

√
2)x) | x ∈ R}. We

summerize in Table 10, to leading order, radial and transverse eigenvalues (denoted tk, k = 1 . . . 3) of

bifurcated branches C̃2κ and C̃ ′
2κ in R

4.

Isotropy type C̃2κ C̃ ′
2κ

Radial eigenvalue 8(2 +
√

2)Ax2 8(2 + 2
√

2)Ax2

t1 128(3 + 2
√

2)(b − d)x4 −128(3 + 2
√

2)(b − d)x4

t2 −32(3 + 2
√

2)(b + c + 9d)x4 32(3 + 2
√

2)(b + c + 9d)x4

t3 32(3 + 2
√

2)(b + d − 3c)x4 −32(3 + 2
√

2)(b + d − 3c)x4

Table 10: Radial and transverse eigenvalues (leading order) of bifurcated branches in R
4.
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5 Bifurcation of a heteroclinic network in the χ11 case

5.1 Existence

We suppose now that the cubic term coefficient A < 0, and by a suitable chage of time scale we can take

A = −1. This implies, as shown in Theorem 5, that a flow-invariant S3 sphere bifurcates for Equations

(12) and (13). The system reads:





ż1 = λz1 − z1

(
|z1|2 + |z2|2

)
+ az1

(
|z1|2 + |z2|2

)2
+ b

(
z4
1 z̄2 + 4z3

2 |z1|2 − z3
2 |z2|2

)

+c
(
3z̄2

1z2|z2|2 − z2
1 z̄3

2 − 2z̄2
1 |z1|2z2

)
+ d

(
−5z̄4

1 z̄2 + z̄5
2

)
+ h.o.t.

ż2 = λz2 − z2

(
|z1|2 + |z2|2

)
+ az2

(
|z1|2 + |z2|2

)2
+ b

(
−z̄1z

4
2 − 4z3

1 |z2|2 + z3
1 |z1|2

)

+c
(
−3z1z̄

2
2 |z1|2 + z̄3

1z2
2 + 2z1z̄

2
2 |z2|2

)
+ d

(
5z̄1z̄

4
2 − z̄5

1

)
+ h.o.t.

(14)

In the sequel we also suppose that coefficients (b, c, d) satisfy the following conditions:

• C1: b − d > 0

• C2: d(3d − b − c) < 0 and b + c + 9d > 0

• C3: (b + d)(b + d − c) < 0 and b + d − 3c < 0

Under these conditions all bifurcated equilibria have maximal isotropy and moreover, according to Re-

mark 4, none of them is stable. More precisely, condition C1 implies that saddle-sink heteroclinic orbits

connect in the plane Fix(κ) equilbria of isotropy type C̃2κ to equilibria with isotropy type C̃ ′
2κ. Condition

C2 implies that saddle-sink heteroclinic orbits connect in the plane Fix(σ) equilibria with isotropy type

C̃ ′
2κ to equilibria with isotropy type C̃2κ (case I in Figure 10). In the same fashion, saddle-sink hetero-

clinic orbits connect in the plane Fix(κ′′) equilibria with isotropy type C̃2κ to eqiulibria with isotropy

type C̃ ′
2κ when condition C3 is satisfied.

These heteroclinic orbits are robust against G-equivariant perturbations. Their G-orbit realizes a

heteroclinic network between the G-orbits of equilibria of types C̃2κ and C̃ ′
2κ.

Notice that under the above hypotheses the equilibria of type C̃2κ have a one dimensional unstable

manifold, while equilibria of type C̃ ′
2κ have a two dimensional unstable manifold which contains the

heteroclinic orbits lying in the planes of type Fix(σ) and Fix(κ′′).

The existence of a heteroclinic network can lead to interesting non trivial dynamics characterized by

long periods of quasi-static state (trajectory approaches an equilibrium of the cycle) followed by a fast

excursion far from equilibrium and relaxation to another quasi-static state, the process being repeated

in an aperiodic way [11, 2, 24]. This point will be considered in Section 5.3, but we first simplify the

problem by proceeding to a suitable orbit space reduction.

33



5.2 Quotient network

The heteroclinic network introduced above has 48 nodes (equilibria) and 144 edges (heteroclinic orbits).

Indeed the isotropy subgroups C̃2κ and C̃ ′
2κ have order 4, hence the orbits of equilibria with these

isotropies have |G|/4 = 24 elements each. To each node of type C̃2κ are associated 2 ”outgoing” edges

and 4 ”incoming” edges. There are 48 nodes but each edge has two ends, hence the result. We can

simplify this structure by projecting the system onto the quotient space (orbit space) S3/G where S3 is

the flow-invariant sphere. This procedure would project the network onto a simpler one in which there

are only two nodes. Moreover the trajectories of the equivariant vector field in S3 project on trajectories

for a smooth vector field defined on the orbit space [11]. However this orbit space is not a manifold (it

would be if the action of G were free) and its geometric, stratified structure is too difficult to compute to

make this method useful in our case. We can however proceed as [1] by identifying a subgroup G0 of G

with a free action on S3 and large enough to allow for a substantial reduction of the number of equilibria

on the 3-dimenisonal manifold S3/G0. This is the aim of the next lemma.

Lemma 11. The group G0 generated by the elements ρ2 and ǫ has 24 elements. It acts fixed-point free

on S3 and the two G-orbits of equilibria on S3 reduce to a pair of equilibria in the manifold S3/G0 for

the projected dynamics.

Proof. In Table 4 of [14], G0 is identified with the 24 element group SL(2, 3), the group of 2×2 matrices

over the field Z3. Since none of its elements appears in the isotropy subgroups of G for the representation

χ11, its elements only fix the origin. For the same reason G0 acts fixed point free on the 24 elements

orbits of equilibria and by taking the quotient by this action these orbits reduce to single equilibria.

It follows that the heteroclinic network “drops down” to a quotient heteroclinic network between the

two equilibria which we denote by A (C̃2κ type) and B (C̃ ′
2κ type) in S3/G0. There are two connections

from A to B and four connections from B to A, as it can be seen in Figure 12. This projected heteroclinic

network can be seen as the union of eight heteroclinic cycles which however belong to two symmetry

classes only: the cycles 1 → 5, 2 → 5, 1 → 6, 2 → 6 are exchanged by reflection symmetries (projected

on S3/G0), same thing for the cycles 3 → 5, 4 → 5, 3 → 6, 4 → 6. We call ν-cycle (resp. µ-cycle) the

cycle 1 → 5 (resp. 4 → 5). We denote νA, νB (resp. µA, µB) the eigenvalues at A and B along the

connection 1 − 2 (resp. 3 − 4).

5.3 Asymptotic stability

The asymptotic stability of heteroclinic cycles has been studied by several authors [33, 34, 3, 35] and

sufficient conditions on the ratio of eigenvalues ”along” the cycle have been provided to ensure this
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Figure 12: Representation of the quotient heteroclinic network between equilibria A (C̃2κ type) and B

(C̃ ′
2κ type) in S3/G0. Heteroclinic connections denoted 1, 2, which link B to A, result of the quotient

in S3/G0 of the heteroclinic connections which connect C̃ ′′
2κ to C̃2κ in Fix(σ). Heteroclinic connections

denoted 3, 4, which link B to A, result of the quotient in S3/G0 of the heteroclinic connections which

connect Ĉ2κ to C̃ ′
2κ in Fix(κ′′). Heteroclinic connections denoted 5, 6, which link A to B, result of the

quotient in S3/G0 of the heteroclinic connections which connect C̃2κ to C̃ ′
2κ in Fix(κ).

property generically. Roughly speaking, the attractiviness property of a heteroclinic cycle is determined

by the relative strength of the contracting and expanding eigenvalues along the cycle, computed at the

equilibria in the cycle. If at an equilibrium in the cycle the unstable manifold has dimension > 1 and

does not realize a saddle-sink connection to other equilibria in some fixed-point subspace, the heteroclinic

cycle can not be asymptotically stable in the usual sense, that is asymptotically attracting for initial

conditions in an open tubular neighborhood of the cycle. As shown by Krupa and Melbourne in [33],

it can still have a weaker attractiviness property which they called essential stability: under certain

conditions on the eigenvalues the heteroclinic cycle is attracting for initial conditions belonging to the

complement of a cuspidal region in a tubular neighborhood of the cycle.

A heteroclinic network is a union of cycles. As observed by Kirk and Silber [31] those cycles can

not be simultaneously essentially stable but conditions can be derived to determine which one is. In

this section we derive sufficient conditions for the essential stability of the two cycles in our heteroclinic

network projected on the orbit space S3/G0.

First we simplify notation by denoting (λA,−νA,−µA) the eigenvalues at equilibrium A and (−λB , νB , µB)

the eigenvalues at equilibrium B. We consider:

λe > 0, νe > 0, µe > 0 e = A,B

The hypotheses of [33] do not apply but we will proceed in the same fashion as in [31]. In the following,
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we suppose without loss of generality that:

νB > µB (15)

We define:

ρµ =
µAλB

λAµB
, σµ =

µA

λA

[
νB

µB
− νA

µA

]
, ρν =

νAλB

λAνB
, σν =

νA

λA

[
µB

νB
− µA

νA

]

Theorem 6. (i) Suppose that ρµ > 1 and ρν > 1.

1. If σν < 0 and σµ > 0, almost all orbits passing through a tubular neighborhood of the µ-cycle escape

this neighborhood in finite time, exceptions being those orbits that lie in the stable manifolds of A

or B. The ν-cycle is essentially asymptotically stable: it attracts almost all trajectories starting in

a small enough tubular neighborhood of it, the only possible exceptions being those orbits that pass

through a cuspoidal region abutting the heteroclinic connection from A to B.

2. If σν > 0 and σµ < 0, almost all orbits passing through a tubular neighborhood of the ν-cycle escape

this neighborhood in finite time, exceptions being those orbits that lie in the stable manifolds of A

or B. The µ-cycle is essentially asymptotically stable: it attracts almost all trajectories starting in

a small enough tubular neighborhood of it, the only possible exceptions being those orbits that pass

through a cuspoidal region abutting the heteroclinic connection from A to B.

(ii) Suppose that 0 < ρµ < 1 (resp. 0 < ρν < 1). Then the µ-cycle (resp. ν-cycle) repels almost all orbits

and the attractivity properties of the ν-cycle (esp. µ-cycle) are determined by σν (resp. σµ) as above.

Figure 13: First return map in S3.
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Proof. We apply the method for stability analysis of heteroclinic cycles as exposed in [33] and [34],

to which we refer for justifications. We first linearize the flow in neighborhoods of A and B by local

C1changes of variables. This requires that a finite set of nonresonance conditions between the eigenvalues

at A and B are satisfied. Such conditions are generic and can be verified numerically in our case. In fact

they can also be removed as shown for example in another context in [21]. We can further choose the local

coordinates such that the local stable and unstable manifolds of A and B are either the horizontal axis

or the vertical plane. Using Euclidean coordinates (v, w) in the vertical plane and u for the horizontal

axis, we have for A:

Wu
loc(A) = {(u, 0, 0) | u ∈ R} W s

loc(A) = {(0, v, w) | (v, w) ∈ R
2}

and for B:

W s
loc(B) = {(u, 0, 0) | u ∈ R} Wu

loc(B) = {(0, v, w) | (v, w) ∈ R
2}

The linearized vector field about A is

u̇ = λAu

v̇ = −νAv

ẇ = −µAw

and about B:

u̇ = −λBu

v̇ = νBv

ẇ = µBw

We now define rectangular cross sections in neighborhoods of e, e = A,B(see Figure 13):

Re = {(u, v, w) | u = 1, −ve ≤ v ≤ ve, −we ≤ w ≤ we}

Rµ
e = {(u, v, w) | w = 1, −ue ≤ u ≤ ue, −ve ≤ v ≤ ve}

Rν
e = {(u, v, w) | v = 1, −ue ≤ u ≤ ue, −we ≤ w ≤ we}

We can then build two first return maps Ψµ : Rµ
A → Rµ

A and Ψν : Rν
A → Rν

A as follows:

Ψµ = Ψµ
BA ◦ Φµ

B ◦ ΨAB ◦ Φµ
A and Ψν = Ψν

BA ◦ Φν
B ◦ ΨAB ◦ Φν

A where

Φµ
A : Rµ

A → RA Φµ
B : RB → Rµ

B Φν
A : Rν

A → RA Φν
B : RB → Rν

B

ΨAB : RA → RB Ψµ
BA : Rµ

B → Rµ
A Ψν

BA : Rν
B → Rν

A
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The local maps Φµ
A and Φν

A are obtained by integrating the equations for the flow linearized about

A:

Φµ
A(u, v, 1) = (1, vu

νA
λA , u

µA
λA ) with u 6= 0

Φν
A(u, 1, w) = (1, u

νA
λA , wu

µA
λA ) with u 6= 0

Same thing for the maps Φµ
B and Φν

B :

Φµ
B(1, v, w) = (w

λB
µB , vw

− νB
µB , 1) with w

νB
µB > v ≥ 0

Φν
B(1, v, w) = (v

λB
νB , 1, wv

−µB
νB ) with v > w

νB
µB ≥ 0

where Cµ
B = {(v, w) ∈ RB | w

νB
µB > v ≥ 0} and Cν

B = {(v, w) ∈ RB | v > w
νB
µB ≥ 0} are complementary

domains in RB of the maps Φµ
B and Φν

B . Note that the point at which a trajectory intersects RB

determines whether the trajectory leaves the vacinity of B in the direction of A through Rµ
B or Rν

B .

Condition (15) implies that Cµ
B is a cuspoidal region of Rµ

B .

By exploiting the equivariance of the vector field, we obtain for the “global” maps ΨAB , Ψµ
BA : and

Ψν
BA:

ΨAB(1, v, w) = (1, αABv, βABw) + h.o.t

Ψµ
BA(u, v, 1) = (αµ

BAu, βµ
BAv, 1) + h.o.t

Ψν
BA(u, 1, w) = (αν

BAu, 1, βν
BAw) + h.o.t

where the α’s and β’s are real coefficients.

• Study of the µ-cycle. We consider trajectories that pass through Rµ
A and then travel through a

tubular neighborhood of the µ-cycle before returning to Rµ
A. The behaviour of these trajectories

is modelled by the return map Ψµ and we find to leading order:

Ψµ(u, v, 1) = (c1u
ρµ , c2vu−σµ , 1) with 0 ≤ v < c3u

σµ

The domain of the return map is then defined as Dµ
A = {(u, v) ∈ Rµ

A | 0 ≤ v < c3u
σµ}. A sufficient

condition for Dµ
A to be mapped into itself is σµ < 0. This follows from the observation that the

image under Ψµ of the bounding surface defined by the equation v = c3u
σµ is the boundary defined

by U = c4, where c4 > 0 is some constant. Finally, if ρµ > 1 and σµ < 0 then Ψµ is a contraction

on Dµ
A.

• Study of the ν-cycle. We consider trajectories that pass through Rν
A and then travelonce through
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a tubular neighborhood of the ν-cycle before returning to Rν
A. The behaviour of these trajectories

is modelled by the return map Ψν and we find to leading order:

Ψν(u, 1, w) = (c4u
ρν , 1, c5wu−σν , 1) with 0 ≤ w < c6u

σν

The study is analogous to that for the µ-cycle. If ρν > 1 and σν < 0 then the ν-cycle attracts all

trajectories that cross Rν
A sufficiently close to the origin.

The main difference between the results obtained for the µ-cycle and the ν-cycle comes from the

condition (15). If ρν > 1 and σν < 0 the ν-cycle attracts almost all trajectories that lie near the

heteroclinic connection from A to B, while, if ρµ > 1 and σµ < 0 the µ-cycle attracts just trajectories in

a cuspoidal region emananting from the heteroclinic connection.

It is not possible that both σµ and σν be simultaneously positive:

σµ = − νB

µB
σν

Note that if σµ > 0 when ρν , ρµ > 1, then almost all trajectories near the µ-cycle eventually leave it

in the direction of the ν-cycle. However, since σν < 0 in this case, the trajectories that switch to the

ν-cycle can not at a later time switch back to the µ-cycle.

5.4 Computation of the stability conditions

In principle the stability conditions stated in Theorem 6 are easy to compute. In our case however there

is a difficulty which comes from the fact that for the system (14), which is truncated at order 5, the

expanding and contracting eigenvalues along a given connection have exactly the same magnitude (see

Table 10). It is interesting to observe that this follows from a property of reversibility of the vector field

on the invariant sphere, as the next lemma shows (proof of the lemma is straightforward).

Lemma 12. Let s be the transformation in R
4 defined by s(z1, z̄1, z2, z̄2) = (z2, z̄2, z1, z̄1). Let us rewrite

X = (z1, z̄1, z2, z̄2) and Equation (14) in the form

Ẋ = (λ − ‖X‖2 + b‖X‖4)X + Ec,d(X) with Ec,d(X) = cE5,3(X) + dE5,4(X) (16)

Then Ec,d(sX) = −sEc,d(X) for all X. Moreover, Fix(C̃ ′
2κ) = sFix(C̃2κ).

Remark 5. We recall that E5,3 (resp. E5,4) is the quintic equivariant map in factor of c (resp. d) in

Equations (12) and (13) of Theorem 4, see Appendix C.2 for the computations.
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Now let’s let X = rU , U ∈ S3. The system (14) decouples in a radial part and tangential part:

ṙ = (λ − r2 + br4)r + r5〈Ec,d(U), U〉 (17)

U̇ = r4[Ec,d(U) − 〈Ec,d(U), U〉U ] = r4H(U) (18)

By lemma 12 the tangential part is a reversible vector field. Let X0 = r0U0 be an equilibrium on

Fix(C̃2κ) and X ′
0 = sX0 = r0sU0. Then X ′

0 is also an equilibrium, moreover DH(sU0) = −sDH(U0)s,

which implies that the transverse eigenvalues at X ′
0 are exactly opposite to the tranverse eigenvalues at

X0. This property is conserved by projection of the system on the orbit space S3/G0.

It is therefore necessary to consider the 7th order expansion of the system in order to remove this

degeneracy. There are 12 equivariant terms of order 7 (see Appendix B). We have checked that some of

these terms are not reversible, for example the following vector field which we note E7:

ż1 = z̄7
1 + 7z̄3

1 z̄4
2

ż2 = z̄7
2 + 7z̄3

2 z̄4
1

Numerical simulations have been carried out with Matlab by introducing the term E7 in the system:

Ẋ = (λ − ‖X‖2 + b‖X‖4)X + Ec,d(X) + eE7(X) (19)

We give in Table 11, to leading order, the transverse eigenvalues of bifurcated branches in R
4 de-

pending upon the parameter e of Equation 19. These transverse eigenvalues allow us to compute the

stability conditions of Theorem 6. For the numerical simulations, the coefficient values are λ = 0.1,

a = 0, b = 0.6, c = 1.2 d = 0.55. We set e = −1 and we obtain:

λA = 0.0011 νA = 0.0745 µA = 0.0266

λB = 0.0023 νB = 0.0585 µB = 0.0215

which implies that:

ρµ = 2.6336 > 1 σµ = −1.8221 < 0 ρν = 2.7060 > 1 σν = 0.6686 > 0

Then we are in the second case of Theorem 6. Figure 14 shows one hour runs with an initial condition

close to an equilibrium with isotropy C̃2κ. For the value e = −1 the solution converges to a heteroclinic
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cycle of type µ-cycle, while for e = 3 none of the heteroclinic cycles are stable.

Isotropy type C̃2κ C̃ ′
2κ

t1(e) 128(3 + 2
√

2)(b − d + (2 +
√

2)ex2)x4 −128(3 + 2
√

2)(b − d − (2 +
√

2)ex2)x4

t2(e) −32(3 + 2
√

2)(b + c + 9d + 24(2 +
√

2)ex2)x4 32(3 + 2
√

2)(b + c + 9d − 24(2 +
√

2)ex2)x4

t3(e) 32(3 + 2
√

2)(b + d − 3c − 10(2 +
√

2)ex2)x4 −32(3 + 2
√

2)(b + d − 3c + 10(2 +
√

2)ex2)x4

Table 11: Transverse eigenvalues (leading order) of bifurcated branches in R
4 depending upon the pa-

rameter e of Equation 19.

(a) e = −1. (b) e = 3.

Figure 14: Projection on the plane (x1, y1) of a trajectory of (19) with initial condition near an equilib-

rium of type C̃2κ. Coefficient values in both cases are λ = 0.1, a = 0, b = 0.6, c = 1.2 d = 0.55.

6 Conclusion

In this paper we have completed the bifurcation analysis of periodic patterns, introduced in [14], for neural

field equations defined on the Poincaré disc D. These equations are assumed invariant under the action of

the lattice group Γ of U(1, 1) whose fundamental domain is the regular octagon. We have computed the

bifurcation diagrams for the three irreducible representations of dimension four, henceforth completing

the classification started in [14], in which bifurcation diagrams for the representations of dimension less

than four were obtained and shown to correspond to well known goup actions. We have proved that for

two of the four-dimensional irreducible representations, generically, there always exist stable equilibria

with a given isotropy type. For the third representation we have presented bifurcation diagrams in fixed-

point planes and also shown that: (i) bifurcation of submaximal solutions can be generic, (ii) bifurcation

of a heteroclinic network connecting the equilibria with maximal isotropy type can also occur generically.

In the final section, a stability analysis of this heteroclinic network was presented.
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The existence of the heteroclinic network raises many interesting questions from the neuroscience

point of view. Metastability in neuronal network has been observed in the brains of anaesthetized

animals where the cortex seems to show an intrinsic pattern of activity that evolves over time by switching

among a specific set of states [30, 40, 22]. It has also been shown that metastable states play a key role

in the execution of cognitive functions. Indeed, experimental and modeling studies suggest that most of

these functions are the result of transient activity of large-scale brain networks in the presence of noise

[38, 39]. In our case the spontaneous activity represented by the heteroclinic network corresponds to

switches between multiple states where each state is a specific textural feature. Despite the fact that it

seems unrealistic to investigate experimentally the predicted behaviour, the presence of the heteroclinic

network is nonetheless an interesting mechanism which sould be taken into account for the validation of

our texture model.

The nonlinear integro-differential equation studied in this paper models one hypercolmun of the visual

area V1 and is therefore local: the average action potential V does not depend of the position in the visual

cortex. Another exciting question comes from the direct spatialization of our model. The primary visual

cortex can be partitioned into hypercolumns on a lattice describing the distribution of singularities

or pinwheels in the orientation preference map. Bressloff and Cowan have introduced several models

which take account of this functional architecture of the cortex. Their approach has led to an elegant

interpretation for the occurence of geometric hallucinations [10]. An interesting avenue for future work is

to study the spatio-temporal patterns produced by the spatialized model, where the average membrane

potential now depends on the location in the visual cortex in addition to the structure tensor and time.

Our study raises several questions from the point of view of pattern formation in the Poincaré disk.

As in the Euclidean case of pattern formation, we look for solutions in the restricted class of patterns

which are spatially periodic, this means looking for bifurcating patterns which are invariant under the

action of a discrete subgroup Γ of U(1, 1) whose fundamental domain is a polygon. There are, however

big differences with the Euclidean case. First of all, as explained in the introduction, tilings of the

Poincaré disk exist with polygons having an arbitrary number of sides, while in R
2 only rectangular,

square and hexagonal periodic tilings exist. However, while in the Euclidean case any critical wave

number can be associated with a periodic lattice, in the hyperbolic case this is not true. Indeed, the size

of a regular polygon with a given number of vertices is fixed in hyperbolic geometry as a consequence

of the Gauss-Bonnet formula (Katok [29]). We focused our work on the particular case of an octagon

because of its relatively simple interpretation in term of retinal input [13], but non-octagonal tilings can

also be studied. We think that the methods presented in [14] and in this paper can be applied to each

lattice of the Poincaré disk. Our neural fields equation with a single population of neurons exhibits

at the first bifurcation point only steady-state bifurcation. It could also be interesting to model two
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populations of neurons (excitatory/inhibitory for example) and look for Hopf-bifurcation.
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APPENDIX

A Presentation with biquaternions

It is natural to identify the finite group G to a group of 4× 4 real matrices as dim(χ12) = 4. Lauterbach

and Matthews [36] have successfuly introduced biquaternions to study equivariant dynamical systems

with SO(4) symmetry. Here we also use biquaterions to give a geometric way to describe the group G.

We denote by Q the set of unit quaternions. The set of pairs of such quaternions forms a group, called

the spinor group and denoted by Spin4. We get a map [16]:

Spin4 → SO(4) : (l, r) 7→ [l, r] = {x 7→ l̄xr}

where a vector x ∈ R
4 is identified with a quaternion x ∈ H via

x =




x1

x2

x3

x4




⇔ x = ex1 + ix2 + jx3 + kx4

The two following propositions hold.

Proposition 2. For the irreductible representations χ12, χ13, the group G admits the following presen-

tation with biquaternions:

G = 〈[j, e] ,
[√

2

2
(j + k), j

]
, [e, i] , [i, e] ,

[
1

2
(−e + i + j + k),

1

2
(
√

3e + i)

]
〉
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It is also possible to identify the generators of G in matrix form:

κ =




0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0




, ρ =

√
2

2




0 0 −1 −1

0 0 1 −1

−1 −1 0 0

1 −1 0 0




, σ =

√
2

4




1
√

3 −1
√

3
√

3 −1 −
√

3 −1

−1 −
√

3 −1
√

3
√

3 −1
√

3 1




(20)

Proof. The computer algebra program GAP gives the presentation of G as G = 〈m1,m2,m3,m4,m5〉

with:

m1 = [j, e] ,m2 =

[√
2

2
(j + k), j

]
,m3 = [e, i] ,m4 = [i, e] ,m5 =

[
1

2
(−e + i + j + k),

1

2
(
√

3e + i)

]

We express each endomorphisms (ml)l=1...5 of G in the canonical basis B = (e, i, j, k) and form the

corresponding matrices Ml = MatB,B(ml) for l = 1 . . . 5. A direct calculus shows that trace(M5) = −
√

3

and M5 is of order 12, such that we can write with our notations that (up to a conjugate) M5 = −ǫκ.

Matrices M1,M3,M4 are of order 4 and M2 of order 2. We set κ = −M1M3, such that ǫ = M5M1M3. We

recognize that M2 = κ′ = ρκ then ρ = −M2M1M3 and we verify that ρ is of order 8. A straightforward

calculus shows that ρ2 = −M4 and we finally note σ = ρ−1ǫ−1. The expression of the matrices of

generators of G are given in Eq. (20).

Proposition 3. For the irreductible representation χ11, the group G admits the following presentation

with biquaternions:

G = 〈
[
1

2
(−e + i + j + k), e

]
, [e, j] , [e,−e] , [i, e] ,

[√
2

2
(j + k), i

]
〉

It is also possible to identify the generators of G in matrix form:

κ =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0




, ρ =

√
2

2




0 1 1 0

−1 0 0 −1

1 0 0 −1

0 −1 1 0




, σ =

√
2

2




0 0 −1 1

0 0 1 1

−1 1 0 0

1 1 0 0




(21)

Proof. The proof is exactely the same as the previous one.
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B Molien series

In [11] we find theorems which allow to compute the vector space dimensions of the space of equivariant

and invariant polynomial maps for a group action of a given degree. We recall that the set of G-equivariant

polynomial maps forms a module M over the ring RG of G-invariant polynomial maps. We denote by

rd = dim
−→P d(G) the dimension of the polynomial equivariants of degree d.

Theorem 7 (Equivariant Molien’s theorem). Consider the formal power series

Φρ
M(z) =

∞∑

d=0

rdz
d

It has a representation

Φρ
M(z) =

∫

G

Tr(g)

det(1 − zρ(g))
dg

In our case, G is a finite group, and we can directly apply this theorem together with table 3 to find:

• for χ12:

Φχ12

M (z) =
1

96

[
4

(1 − z)4
− 4

(1 + z)4
+

8

1 − z − z3 + z4
− 8

1 + z + z3 + z4

+
8
√

3

1 − z
√

3 + 2z2 − z3
√

3 + z4
− 8

√
3

1 + z
√

3 + 2z2 + z3
√

3 + z4

]

and Φχ12

M (z) = z + 2z3 + 5z5 + 10z7 + O(z7).

• for χ11:

Φχ11

M (z) =
1

96

[
4

(1 − z)4
− 4

(1 + z)4
− 16

(1 + z + z2)2
+

16

(1 − z + z2)2

]

and Φχ11

M (z) = z + z3 + 4z5 + 12z7 + O(z7).

An analog of the Equivariant Molien’s theorem holds for invariant polynomial mapsa dn we denote

cd = dimRd the dimension of invariants polynomials of degree d.

Theorem 8 (Invariant Molien’s theorem). Consider the formal power series

P ρ
RG

(z) =
∞∑

d=0

cdz
d

It has a representation

P ρ
RG

(z) =

∫

G

1

det(1 − zρ(g))
dg

Applying this theorem together with tables 1 and 2 yields
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• for χ12:

Pχ12

RG
(z) = z2 + 2z4 + 3z6 + O(z6)

• for χ11:

Pχ11

RG
(z) = z2 + z4 + 3z6 + O(z6)

These results are summerized in the following table:

Character e3 i4 e5 i6 e7
χ11 1 1 4 3 12
χ12 2 2 5 3 10
χ13 2 2 5 3 10

Table 12: The information on the number of invariant/equivariant polynomial maps for the irreductible
representations χ11, χ12 and χ13. Here e stands for equivariant, i for invariant and the number behind
these letters for the degree of the polynomial map. The number in the table gives the dimension of the
space of equivariant/invariant polynomial maps in the given degrees.

C Computation of low-order equivariants

C.1 Computational part of the proof of theorem 2

Proposition 4. For the irreductible representation χ12, the two cubic equivariant maps are:

E1(z) = z
(
|z1|2 + |z2|2

)
and E2(z) =




√
3

(
3z2

1 + z̄2
2

)
z̄1 − i

(
z2
2 + 3z̄2

1

)
z2

√
3

(
3z̄2

1 + z2
2

)
z1 + i

(
z̄2
2 + 3z2

1

)
z̄2

√
3

(
3z2

2 + z̄2
1

)
z̄2 + i

(
z2
1 + 3z̄2

2

)
z1

√
3

(
3z̄2

2 + z2
1

)
z2 − i

(
z̄2
1 + 3z2

2

)
z̄1




(22)

Proof. Let E denote a homogeneous equivariant mapping. We want to deduce the restrictions placed on

the form of E by the symmetry group G. We first choose appropriate coordinates. Thanks to proposition

2 of appendix A we have a presentation of G with 4 × 4 real matrices with generators ρ, σ, κ given by

equation Eq 20. The eigenvalues of ρ are exp(± iπ
4 ), exp(± 3iπ

4 ) (where i2 = −1). And we have the

following decomposition:
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ρP = P−1ρP =




exp( iπ
4 ) 0 0 0

0 exp(− iπ
4 ) 0 0

0 0 exp( 3iπ
4 ) 0

0 0 0 exp(− 3iπ
4 )




with P =




i −i i −i

−1 −1 1 1

−i i i −i

1 1 1 1




Then we can express in this basis the other generators:

σP = P−1σP =

√
2

4




1 i
√

3 1 −i
√

3

−i
√

3 1 i
√

3 1

1 −i
√

3 −1 −i
√

3

i
√

3 1 i
√

3 −1




and κP = P−1κP =




0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0




We denote z = (z1, z̄1, z2, z̄2) the complex coordinates associated to the eigenvectors of ρ i.e the

columns of P . Write E in components as (f1, f̄1, f2, f̄2)
T. We begin by describing the action of ρP on

the equivariant map E.

For all z, the action is given by ρP · z = (e
iπ
4 z1, e

− iπ
4 z̄1, e

3iπ
4 z2, e

− 3iπ
4 z̄2) and the equivariance yields





e
iπ
4 f1(z1, z̄1, z2, z̄2) = f1(e

iπ
4 z1, e

− iπ
4 z̄1, e

3iπ
4 z2, e

− 3iπ
4 z̄2)

e
i3π
4 f2(z1, z̄1, z2, z̄2) = f2(e

iπ
4 z1, e

− iπ
4 z̄1, e

3iπ
4 z2, e

− 3iπ
4 z̄2)

(23)

We are looking for cubic equivariants of the form αzk1

1 z̄l1
1 zk2

2 z̄l2
2 satisfying the relation k1+k2+l1+l2 = 3.

So with the first equation of (23) we simply get

αe
iπ
4 zk1

1 z̄l1
1 zk2

2 z̄l2
2 = αei

π
4
[(k1−l1)+3(k2−l2)]zk1

1 z̄l1
1 zk2

2 z̄l2
2

In order that this is equivariant under the action of ρP we have to impose:

(k1 − l1 − 1) + 3(k2 − l2) = 8n with n ∈ Z

which gives 5 elements in f1.

f1(z1, z̄1, z2, z̄2) = a1z
2
1 z̄1 + a2z1z2z̄2 + a3z

3
2 + a4z̄

2
1z2 + a5z̄1z̄

2
2

47



with (ai)i=1...5 ∈ C
5. In the same fashion the second equation of (23) gives 5 elements in f2.

f2(z1, z̄1, z2, z̄2) = b1z
2
2 z̄2 + b2z1z̄1z2 + b3z

3
1 + b4z1z̄

2
2 + b5z̄

2
1 z̄2

with (bi)i=1...5 ∈ C
5.

The action of κP on z is given by κP · z = (iz̄1,−iz1, iz̄2,−iz2). It is straightforward to see that this

action imposes that a1, a2, a5, b1, b2, b5 are real and that a3, a4, b3, b4 are imaginary numbers. Then we

can rewrite f1 and f2 as:

f1(z1, z̄1, z2, z̄2) = α1z
2
1 z̄1 + α2z1z2z̄2 + iα3z

3
2 + iα4z̄

2
1z2 + α5z̄1z̄

2
2

f2(z1, z̄1, z2, z̄2) = β1z
2
2 z̄2 + β2z1z̄1z2 + iβ3z

3
1 + iβ4z1z̄

2
2 + β5z̄

2
1 z̄2

with (αi, βi)i=1...5 ∈ (R × R)5.

Action of σP :

The action of σP on z is given by

σP · z =




√
2

4

(
z1 + z2 + i

√
3(z̄1 − z̄2)

)

√
2

4

(
z̄1 + z̄2 − i

√
3(z1 − z2)

)

√
2

4

(
z1 − z2 − i

√
3(z̄1 + z̄2)

)

√
2

4

(
z̄1 − z̄2 + i

√
3(z1 + z2)

)




T

and we find:

f1(z1, z̄1, z2, z̄2) = az1(|z1|2 + |z2|2) + b
(
3
√

3z1|z1|2 − iz3
2 − 3iz̄2

1z2 +
√

3z̄1z̄
2
2

)

f2(z1, z̄1, z2, z̄2) = az2(|z1|2 + |z2|2) + b
(
3
√

3z2|z2|2 + iz3
1 + 3iz1z̄

2
2 +

√
3z̄2

1 z̄2

)

with (a, b) ∈ R
2.
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C.2 Computational part of the proof of theorem 4

Proposition 5. For the irreductible representation χ11, the four quintic equivariant maps are:

E5,1(z) = z‖z‖4, E5,2 =




z4
1 z̄2 + 4z3

2 |z1|2 − z3
2 |z2|2

z̄4
1z2 + 4z̄3

2 |z1|2 − z̄3
2 |z2|2

−z̄1z
4
2 − 4z3

1 |z2|2 + z3
1 |z1|2

−z1z̄
4
2 − 4z̄3

1 |z2|2 + z̄3
1 |z1|2




E5,3 =




3z̄2
1z2|z2|2 − z2

1 z̄3
2 − 2z̄2

1 |z1|2z2

3z2
1 z̄2|z2|2 − z̄2

1z3
2 − 2z2

1 |z1|2z̄2

−3z1z̄
2
2 |z1|2 + z̄3

1z2
2 + 2z1z̄

2
2 |z2|2

−3z̄1z
2
2 |z1|2 + z3

1 z̄2
2 + 2z̄1z

2
2 |z2|2




, E5,4 =




−5z̄4
1 z̄2 + z̄5

2

−5z4
1z2 + z5

2

5z̄1z̄
4
2 − z̄5

1

5z1z
4
2 − z5

1




Proof. Let E denote a homageneous cubic equivariant mapping. Thanks to proposition 3 of appendix

A the generators of G are given in matrix form in equation (21). The eigenvalues of ρ are still

exp(± iπ
4 ), exp(± 3iπ

4 ). And we have the following decomposition:

ρP = P−1ρP =




exp( iπ
4 ) 0 0 0

0 exp(− iπ
4 ) 0 0

0 0 exp( 3iπ
4 ) 0

0 0 0 exp(− 3iπ
4 )




with P =




i −i −i i

−1 −1 1 1

i −i i −i

1 1 1 1




Then we can express in this basis the other generators:

σP = P−1σP =

√
2

2




−1 0 −i 0

0 −1 0 i

i 0 1 0

0 −i 0 1




and κP = P−1κP =




0 i 0 0

−i 0 0 0

0 0 0 −i

0 0 i 0




We denote z = (z1, z̄1, z2, z̄2) the complex coordinates associated to the eigenvectors of ρ i.e the

columns of P . Write E in components as (f1, f̄1, f2, f̄2)
T. The action of ρP on a quintic equivariant map

of the form αzk1

1 z̄l1
1 zk2

2 z̄l2
2 with the relation k1 +k2 + l1 + l2 = 5 implies that (k1− l1−1)+3(k2− l2) = 8n

with n ∈ Z, which gives 14 elements in f1.

f1(z1, z̄1, z2, z̄2) = a1z
3
1 z̄2

1 + a2z1z
2
2 z̄2

2 + a3z
2
1 z̄1z2z̄2 + a4z

4
1 z̄2 + a5z̄

2
1z2

2 z̄2 + a6z1z̄1z
3
2 + a7z

3
1z2

2
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+a8z
4
2 z̄2 + a9z

2
1 z̄3

2 + a10z1z̄
2
1 z̄2

2 + a11z̄1z2z̄
3
2 + a12z̄

4
1 z̄2 + a13z̄

5
2 + a14z1z̄

3
1z2

And we also obtain 14 elements in f2 with the same method:

f2(z1, z̄1, z2, z̄2) = b1z
2
1 z̄2

1z2 + b2z1z̄1z
2
2 z̄2 + b3z

3
2 z̄2

2 + b4z
4
1 z̄1 + b5z

3
1z2z̄2 + b6z̄

3
1z2

2 + b7z
2
1z3

2

+b8z̄1z
4
2 + b9z1z2z̄

3
2 + b10z

2
1 z̄1z̄

2
2 + b11z1z̄

3
1 z̄2 + b12z̄

2
1z2z̄

2
2 + b13z̄

5
1 + b14z̄1z̄

4
2

where (aj)j=1...14 ∈ C
14 and (bj)j=1...14 ∈ C

14.

The action of κP implies that the coefficients (aj , bj)j=1...14 are real. The action of σP is σP · z =
√

2
2 (−z1 − iz2,−z̄1 + iz̄2, iz1 + z2,−iz̄1 + z̄2) and we obtain:

f1(z1, z̄1, z2, z̄2) = a(z1|z1|4 + z1|z2|4 + 2z1|z1|2|z2|2) + b(z4
1 z̄2 + 4z3

2 |z1|2 − z3
2 |z2|2)

+c(3z̄2
1z2|z2|2 − z2

1 z̄3
2 − 2z̄2

1 |z1|2z2) + d(−5z̄4
1 z̄2 + z̄5

2)

f2(z1, z̄1, z2, z̄2) = a(z2|z2|4 + z2|z1|4 + 2z2|z1|2|z2|2) + b(−z̄1z
4
2 − 4z3

1 |z2|2 + z3
1 |z1|2)

+c(−3z1z̄
2
2 |z1|2 + z̄3

1z2
2 + 2z1z̄

2
2 |z2|2) + d(5z̄1z̄

4
2 − z̄5

1)

with (a, b, c, d) ∈ R
4. Thus, we find 4 equivariant maps which is in agreement with computation of the

Molien serie of appendix B.

D Fixed-point subspaces

D.1 Proof of Lemma 7

To complete the proof of Lemma 7 we give the matrix of σ, σ̃, ǫ, κ, κ′ and κ′′ in the basis associated to

coordinates (z1, z̄1, z2, z̄2).

σ =

√
2

4




1 i
√

3 1 −i
√

3

−i
√

3 1 i
√

3 1

1 −i
√

3 −1 −i
√

3

i
√

3 1 i
√

3 −1




, σ̃ =

√
2

4




1 −i
√

3 −1 −i
√

3

i
√

3 1 i
√

3 −1

−1 −i
√

3 −1 i
√

3

i
√

3 −1 −i
√

3 −1



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ǫ =
1

4




1 − i
√

3(i − 1) −1 − i
√

3(1 + i)

−
√

3(1 + i) 1 + i
√

3(1 − i) i − 1

1 − i
√

3(1 − i) 1 + i
√

3(1 + i)
√

3(1 + i) 1 + i
√

3(1 − i) 1 − i




, κ =




0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0




κ′ =

√
2

2




0 i − 1 0 0

−1 − i 0 0 0

0 0 0 −1 − i

0 0 −1 + i 0




, κ′′ =

√
2

4




√
3 i −

√
3 i

−i
√

3 −i −
√

3

−
√

3 i −
√

3 −i

−i −
√

3 i −
√

3




D.2 Proof of Lemma 10

To complete the proof of Lemma 10 we give the matrix of σ, κ, κ′ and κ′′ in the basis associated to

coordinates (z1, z̄1, z2, z̄2).

σ =

√
2

2




−1 0 −i 0

0 −1 0 i

i 0 1 0

0 −i 0 1




, κ =




0 i 0 0

−i 0 0 0

0 0 0 −i

0 0 i 0




κ′ =

√
2

2




0 i − 1 0 0

−1 − i 0 0 0

0 0 0 1 + i

0 0 1 − i 0




, κ′′ =

√
2

2




0 −i 0 −1

i 0 −1 0

0 −1 0 −i

−1 0 i 0



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