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Abstract

We present a method to correct intensity variations and voxel shifts caused by

non-linear gradient fields in Magnetic Resonance Images. The principal sources of

distortion are briefly exposed, as well as the methods of correction currently in use. The

implication of the gradient fields non-linearities on the signal equations are described in

a detailed way for the case of 2D and 3D Fourier imagery. A model of these non-

linearities, derived from the geometry of the gradient coils, is proposed and then applied

in post-processing to correct any images regardless of the acquisition sequence. Initial

position errors, as large as 4 mm (i.e. 4 voxels of 1x1x1.4 mm3 ) before correction, are

reduced to less than the voxel sizes after correction.
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INTRODUCTION

Magnetic Resonance Imaging has entered clinical practice about fifteen years

ago, and has become one of the most widely used imaging modalities (i, ii). Its capacity

to produce high-resolution images of superior tissue contrast within a few minutes

makes it more attractive than other modalities for clinical applications such as

stereotactic neurosurgery. More recently, MR Angiography and Functional MRI also

gained increasing interest as cerebral imaging tools (iii , iv, v). MRI, however, suffers

from important geometric distortions, leading to pixel shifts and intensity variations in

the acquired images (vi, vii). Many reports underlined the importance of these



variations, reaching several milli meters in certain areas of the field of view, thus

showing the diff iculty of precisely locating the anatomic internal structures (viii , ix).

Machine-dependent and patient-dependent effects are both at the origin of the most

important distortions. The main effects are the chemical shift, the magnetic

susceptibil ity, eddy currents, B0 inhomogeneity and gradient non-linearity. Chemical

shift arises when a voxel is composed of several tissues with different precession

frequencies (e.g., water and fat). With a different response from each tissue to the

different RF pulses, this physically unique voxel is imaged in several voxels of the

reconstructed volume. Applying a selective saturation before the acquisition in order to

extract unwanted tissue from MR signal can minimize chemical shift effects (x).

Magnetic susceptibil ity effects occurs at the interface of tissues with different magnetic

susceptibil ities (and especially air/tissue interfaces). A local gradient field is created that

is superimposed on the main B0 field, disturbing spatial encoding of the voxels (xi).

This effect usually requires a particular treatment that often increases the acquisition

time (xii, xiii ). Eddy currents are induced in the main structure of the magnet by rapid

switching of the current in the gradient coils. A fine calibration and the use of shielded

coils usually gets rid of eddy currents and other B0 offsets (xiv, xv). Gradient fields, that

depend on the coils geometry, are usually specific to each MR scanner. Their effect on

the accuracy of the reconstructed MR images is the only one considered in this study.

We propose in this article a method to correct gradient field non-linearities for the case

of Fourier transform imaging. A theoretical model is first proposed for 2D and 3D

imagery. A phantom-based method is then presented to obtain the analytical expressions

of three correction functions. Voxel shifts and intensity variations are adjusted in post-

processing using the correction functions. The method is validated by comparing



corrected images with theoretical images of the phantom, with images processed with

another correction scheme (GRAD WARP) and finally, with a CT scan of the phantom..

 

Partial List of Symbols

B0 Static magnetic field

ω0 = γ B0 Larmor frequency

Fe Sample bandwidth

M(x) Sample magnetization at time t = 0. It includes the

dependence on the spin density and the acquisition

sequence with the flip angle and the TR/T1 decay

FOVx, FOVy, FOVz Selected fields of view in the x, y, z directions

Nx , Ny , Nz Number of samples, repetitions, slices

∆x , ∆y , ∆z Voxel sizes, given by  
N
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  i
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selection gradients

Gl(t) Theoretical strength of the readout gradient, given by
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THEORY

One dimension : principle of the correction

   The acquired MRI signal can be expressed in one dimension as (xvi, xvii)
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In the ideal case of a homogeneous B0 field, the phase at time t due to B0 superimposed

on a constant readout gradient is given by
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where Grx(x) is the physically applied (i.e. non-linear) gradient. Signal demodulation

leads to the temporal signal
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where Gx(x) is here the theoretical gradient used for the reconstruction, given by

Gx(x) = x Gl.

The real gradient is characterised in our model as the product of the theoretical gradient

strength and a function of the position only: Grx(x) = f(x) Gl.

The expression of the intensity becomes:
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where H(x) represents the Fourier transform of the rectangular gradient Gl, given by :

x 

)
x

x
 sin(

  )x(H
π

∆
π

= (6)

The variable change X = f(x’)  in the last expression of the intensity gives :
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Using the same convolution notation, the undistorted theoretical image (X=x’ ) is :
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The expression of I(x) shows that the non-linearities act on the position as well as on the

intensity of the theoretical signal I t(x), by changing the shape of the function H(x).

The correction is based on a property of the point spread function H(x), which is

invariant with the convolution. This can be expressed by :

)x(H))x(f(H))x(f(H)x(H)x(H =⊗=⊗ (9)



The relation between the undistorted theoretical image and the acquired image is

therefore :

))x(f(H ))x(f(I)x(I tt ⊗= (10)

A corrected image I t(x) can be obtained at the point x by the convolution of the acquired

image with the function H, both shifted of an amount f(x).

 

Application to 2D and 3D imagery

   As outlined in appendix, non-linear gradient fields act in 2D on the actual

magnetization as soon as its creation by the selective RF pulse. However the slice

profile can be corrected, knowing the non-linearity function fz(x,y,z) of the slice

encoding direction z, by using the relation between the theoretical magnetization Mt and

the received magnetization Mr :
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The slice profile can be corrected in 2D imagery by shifting each point of the acquired

image by the amount fz(x,y,z) in the z direction. Intensity misregistration is corrected by

the moderation factor ∂fz(x,y,z)/∂z.

The various steps of the reconstruction process under the action of non-linear gradient

fields bring to the relationship between corrected and acquired images Ic and Ia :
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where Hx(x) and Hy(y) represent respectively the Fourier transforms of the readout and

phase encoding gradient profiles, and the variables X, Y and Z are given by the system :
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The functions fx(x,y,z) and fy(x,y,z) account for the non-linearity of the readout and

phase encoding directions. We notice that in 2D imagery, the correction must be carried

out in a given order ( X and Y being related to Z ), since slice profile variations must be

corrected before applying planar shifts.

In 3D imagery the RF pulse, applied in 2D in order to select a specific slice, is now

applied so as to select the entire volume at the same time. The relationship between

corrected and acquired image is then :
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The difference with 2D acquisitions lies in the fact that the correction functions X and Y

do not depend on function Z any more. The correction can thus be applied in the three

directions in any order.

MATERIALS AND METHODS

Most of the current distortion correction methods are based on precomputed

displacement tables. These techniques generally involve imaging a phantom of known

dimensions, or require knowledge of the mathematical equations of the current in the

gradient coils (xviii ). The advantage of the phantom-based methods is that the

measurements performed take into account the non-linearity of the gradient fields as

well as the static variations of the B0 field. The main disadvantage lies in the limited

accuracy due to the discrete aspect of the correction, which often implies an

interpolation of several points of the table to compute only one displacement.



Our objective is here to define the expressions of the non-linearities fi(x,y,z) which

connect the real gradients to their theoretical values used during the reconstruction

process. The discrete approximation is avoided by using the analytical expressions in

the correction functions. These expressions are chosen with respect to the cylindrical

geometry of present MR magnets. The field produced along the z axis of the opposed

Helmoltz pair is given by (xix) :
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where a is the radius of the coils, b is the distance between the opposed coils and I is the

current applied. Using the cylindrical symmetry of the device, the field produced in

every point of the space inside the cylinder can be expressed by :
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where  A'
i and  B'

i are some constant parameters. The ideal gradient Gz used during the

reconstruction process is given by Gz =  B A '
0

'
0 . The general expression of Bz(z) is thus :
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A Golay arrangement is used to encode each of the x an y directions. The field produced

in the plane (xOz) in order to encode the direction x is given by :
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The general expression of the field, including the ideal value Gx of the gradient, is

developed from the last expression and the symmetry with :
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It can be seen from equations (18) and (20) that for the three sets of coils, the non-

linearity functions appear as infinite sums of polynomials in (x,y,z) of the general

expression :
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The variables x, y and z do not represent here the acquisition directions, but set up a

static coordinate system whose directions follow the coils axes.

Estimation of the correction functions

   A simple cubic phantom was designed in order to estimate the values of the

parameters Ai and Bij of the correction functions. Fil led with a homogeneous substance

(oil), the effects of magnetic susceptibil ity and chemical shifts simply involve constant

voxel shifts along the slice selection and frequency encoding directions. Phantom

dimensions were chosen in order to cover a large cerebral volume without exceeding the

limits imposed by the receiver (head coil). The edges of the phantom are extracted from

the images using an edge detection algorithm that ensures subvoxel precision. The

principle, described in figure 1, is to fit the row profile of the gradient image with a

gaussian model. Subvoxel accuracy is achieved through the floating point precision of

the gaussian means accounting for edges positions.

Detected edges, representing the internal faces of the phantom after an acquisition, are

placed in a real coordinate system given by the gradient isocenter and the three

acquisition directions. Theoretical internal faces are supplied by the physical

dimensions of the phantom. They are analytically described with the equations of two



planes per acquisition direction, defined in the same coordinate system than the detected

faces. According to the symmetry of the correction functions, those planes can be

computed using detected edges positions and the physical phantom dimensions as

shown in figure 2. The resulting cube, entirely characterised by the equations of six

planes x =3i(y, z) defining its surface, represents then the theoretical undistorted image

of the phantom. Since the edges of the cube and detected edges in the images are

equally affected by the same constant errors due to both chemical shifts and magnetic

susceptibil ity, we assume that the differences in their positions only come from gradient

fields non-linearities. Therefore, the operations that transform the set of detected edges

into the perfect cube are defined by the three correction functions. The parameters Ai

and Bi j can be computed in order to minimise the distance between detected edges and

their corresponding theoretical positions.

The matching between any detected edge M(xd, yd, zd) and its theoretical position

N(xc, yc, zc) in the corresponding face of the cube is achieved through successive

approximations of the correction function parameters, using the following algorithm:

- Parameters are initialized with null values. The correction functions at this step

are fx0(x, y, z) = x, fy0(x, y, z) = y and fz0(x, y, z) = z.

- For each slice z of the acquired volume

    For each row y of slice z

  Each detected point M(xd, yd, zd) is matched to a theoretical point

N(xc0, yc0, Zc0) located in the theoretical plane. Ordinates yc0 and zc0 are

given by ( )dddyc zyxfy ,,1
00
−=  and ( )dddzc zyxfz ,,1

00
−= . Corrected

abscissa is then calculated with the plane equation xc0 = Pi (yc0,  zc0).



  The minimisation of the distance between points M and N, according to the

general li near least squares criterion (xx), evaluates the parameters of a first

correction function fx1 such as xd = fx1(xc0, yc0, zc0) and ( )dddxc zyxfx ,,1
10
−= .

This step, repeated twice with two circular permutations, leads to the two other

functions fy1 such as yd = fy1(xc0, yc0, zc0) / ( )dddyc zyxfy ,,1
10
−= , and fz1 such as

zd = fz1(xc0, yc0, zc0) / ( )dddzc zyxfz ,,1
10
−= . In this way the correction functions

set up, in each step, the theoretical positions that will be used to estimate those

functions during the next step. This process is iterated as long as the positions of

the theoretical points fluctuate, i.e. is stopped when :
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Finally the application of the functions fxn, fyn and fzn on all the points M(xd, yd, zd) of the

initial volume ensures the replacing of these points on their theoretical locations

N(xc, yc, zc).

This algorithm was written in C language and was tested on a SUN utltrasparc2 300Mhz

workstation under Unix. The time required for post processing is about 2 mn 20 s on a

3D MRI (124x256x256 voxels).

 

RESULTS

Parameters

  Images were acquired on a 1.5T Signa GE scanner (General Electric Medical Systems,

Milwaukee, WI) with a generic 3D spoiled GRASS sequence (TR=22 ms, TE=3 ms,



bandwith=16 Khz). A matrix of 256x256 pixels is used for a field-of-view of 256x256

mm2, and 124 slices of thickness 1.7 mm cover the phantom.

For an optimal correction, the theoretical expression of the correction functions, given

by equation (21), indicates that the order of the functions, and so the number of

parameters, is supposed to be infinite. However, the limited accuracy of the physical

dimensions (± 0.1 mm) and the detected edges positions (± 03 mm) allows a consequent

reduction to the number of significant parameters. In practice the functions are

developed using an increasing order, starting from one. For each order, the parameters

are computed and compared to their corresponding values from the previous

developments. This process showed that at the order three, most of the 11 parameters

estimated in each direction where not important enough to bring significant changes in

the values of the correction functions. So the choice of the order is settled to 2, leading

to 5 parameters per acquisition direction. Each function is estimated under the reduced

form:
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A first set of parameters Kij resulting from the estimation is given in table 1.

The similarity of the parameters Kxi and Kyi is explained by the identical geometry of the

x and y gradient coils, which differ in theory only by their orientations. Moreover, the

order 2 seems to be sufficient to modelize the non-linearities, since the higher order

parameters Kx3, Kx4, Ky3, Ky4 from the two most distorted directions are the less

significant. For example, a point located 100 mm from the isocenter is shifted from less

than 0.05 mm under the action of those parameters only.



 

Stability

  Several acquisitions of the phantom with different sequences (2D, 3D, Gradient Echo,

Spin Echo) and parameters (matrix size, field-of-view, bandwidth and encoding

directions) have been used to estimate the correction functions. The results, partially

il lustrated by figure 3, exhibited no significant differences in the parameters values,

showing the stabil ity of the correction functions with the imaging sequences. This also

confirms that the voxel shifts induced by the gradient non-linearities only depend on the

voxel spatial location. The parameters of the correction can be estimated once and used

to correct any further acquisition.

Validation

  A basic set of parameters, estimated using the generic 3D SPGR sequence, was used to

correct several other acquisitions of the phantom. Corrected edge positions were first

compared to their theoretical values, which exhibited a mean difference of less than

0.1% of the voxel size (figure 4). A manufacturer provided correction method (GE

‘Grad Warp 2D’) was used for the validation. Also based upon the gradient coils

geometry, it only acts on the first phase and frequency encoding directions, leaving the

slice selection direction uncorrected. A mean difference of 0.5% was found in the right-

left and antero-posterior directions between the two correction schemes, and 0.9% in the

superior-inferior direction. The first difference is corresponding to a variation of 0.5 mm

between the corrections of a point located 100 mm from the center. This small value

confirms the equivalence of the two correction schemes and validates the model of the

correction functions. However, the more important difference found in the superior-



inferior direction doesn’t confirm this equivalence. In order to test the validity of the

methods, we used a CT scan of the phantom as another reference for the corrections.

The previous edge detection algorithm enabled extraction of both internal and external

faces of the phantom from the CT volume. A set of 3D MR acquisitions were performed

using two different orientations of the phantom in the head coil . For each acquisition,

the reconstructed volume is corrected in post-processing, using Grad Warp and the

correction functions. The dimensions of the phantom, extracted from MR images, are

compared to the physical dimensions and also to the dimensions extracted from the CT

scan. The results are presented in table 2.

As we can see in the first column, the length of the phantom given by Grad Warp after

the first acquisition is nearly approaching the theoretical dimension, which is confirmed

by the dimension given by the CT scan. The length was oriented in the right-left

direction. For the second acquisition, where the length corresponded to the superior-

inferior direction, the measurement given by Grad Warp is underestimated by about 2

mm (2 voxels) on a distance of 180 mm. This problem doesn’t occur in the function-

corrected images, since the parameters are computed in order to register the physical

dimensions with the distorted dimensions. The CT scan measurements, compared to the

physical and function-corrected dimensions, exhibit no significant variations. These

results clearly demonstrates the better performance of the correction functions in the

superior-inferior direction.

Experimental results



The first application of the correction scheme was to correct the images of the cubic

phantom. Figure 5 shows a sagittal and coronal views of the phantom before and after

the correction of a sagittal acquisition. As expected, the initial convex shapes are

brought back to their original form in every acquisition directions.

A spherical phantom, fil led with a dilution of copper sulfate and from an internal

diameter of 100.0 mm was also used for the correction. Figure 6 shows a sagittal and

axial views of a sagittal acquisition. We can see a small variation of the edges positions

in the right-left direction of the sagittal view. The maximum deviation of 0.7 mm

corresponds to a shift of 1.4 pixel. The superior-inferior direction doesn’t seem to be

affected by gradient non-linearities at such a small distance of the edges from the

gradient isocenter. In the other view, both misplaced left-right and antero-posterior

edges are corrected from nearly the same shift.

Figure 7 shows an application of the method to the correction of a T1-weighted sagittal

acquisition of a healthy volunteer. There is no significant differences between the

function-corrected areas (in red) and Grad Warp-corrected areas (green) in the

acquisition plane. In the coronal view, distortions from up to 4.2 mm (4 voxels) in the

right-left direction are corrected with the functions but unchanged with Grad Warp

DISCUSSION

The analytical expressions of the correction functions, derived from the coils geometry,

limit the method to a specific magnet design. The knowledge of the coils geometry

implemented on other imaging systems, such as open magnets, is required to define a

more suitable set of analytical expression. However, the same method can be used for

the correction of images obtained from such scanners.



The loss of quality involved by the numerous interpolations of the voxels can’ t be

avoided when correcting the images. Nevertheless, the correction functions can also be

used to correct some topological characteristics of structures without quality loss,

instead of correcting the structures themselves.

Geometric distortions correction is clearly required in stereotactic surgery using

frame-based registrations, but also in the registration of images obtained with different

modalities such as MR-CT for brain anatomy or MR-PET for functional imaging. A

method was presented by which one of the most important sources of distortion can be

analytically estimated and further corrected in the resultant MR images. The position

errors were reduced from several mill imeters or voxels down to below the image

resolution. Correction functions can be estimated once and applied in post-processing

on any acquisition type without changing the acquisition time. It can be used as a full

3D correction in replacement to the actual 2D corrections implemented on most MR

scanners
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APPENDIX

Effect of the non-linearities on the slice profile and slice position in 2D imagery

   The effect of a gradient field Gz(z) = z Gp applied in the z direction is to select tissues

with specific precession frequencies, given by the Larmor frequency of the spin system

p0z G z )z( γωω += .

A selective RF pulse centered on ωα with a length δω, applied while Gz(z) is turned on,

activates the magnetization only within the slice z of thickness δz given by
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The theoretical signal generated at the point (x,y) is then:

∫
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δ

(23)

By introducing the non-linearities fz(x,y,z) into the expression of the slice encoding

gradient, which becomes Gz(x,y,z) = fz(x,y,z) Gp, the real precession frequency becomes

pz0rz G )z,y,x(f )z( γωω += .

The actual magnetization excited by the selective RF pulse is:
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(24)

Equations (18) and (19) show that the theoretical slice (z, δz) is shifted to the real set

(z’ , δz’ ) (Figure 1) fixed by:







−+=

=
−−

−

),,(),,('

),,('
11

1

zyxfzzyxfz

zyxfz

zz

z

δδ

Equation (24) can be rewritten as:
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and, with slight variations of 
'
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z
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 in the slice thickness, as:
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The theoretical magnetisation is thus
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Two dimensions

   Due to T2 decay and the application of two encoding gradients Gl(t) and Gc(t), the

theoretical signal emitted at time t and repetition k after the slice selection process is in

every point of the space:
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With both Gl(t) and Gc(t) independent of time during signal acquisition, Eq.(28)

becomes

[ ]ycl  G k yt G x  j)z,y,x(2T

TEt
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−
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The non-linearities are introduced here by replacing in the signal expression x Gl with

Grx(x,y,z) =  fx(x,y,z) Gl  and y Gc with Gry(x,y,z) =  fy(x,y,z) Gc. The acquired signal from

the selected slice z is :
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A first Fourier transform of Sr(z,t,k) gives:
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A second Fourier transform gives with ∆t = t Fe:
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The T2 decay during the readout is neglected here for more simplicity. The last

expression of the intensity, shifted in both x and y directions, can be seen as the received

magnetisation convolved with the Fourier transforms H of the gradients :
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The expression of an undistorted image is obtained from Eq. (33) where fx(x,y,z) = x and

fy(x,y,z) = y:
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with the system of variables X, Y, Z given by
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the correction of the slice profile, given by equation (27), brings to the relation between

Ic and Ia :
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Three dimensions

   Voxels are discriminated in 3D imagery by a constant readout gradient x.Gl and two

phase encoding gradients y k Gc and z p Gp. The received signal under the action of the

various gradients is expressed by:
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The introduction of the non-linearities in the expressions of the gradients, that become

Gx(x,y,z) =  fx(x,y,z) Gl, Gy(x,y,z) = fy(x,y,z) Gc and Gz(x,y,z) =  fz(x,y,z) Gp, yields in the

sampled signal:
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Three successive Fourier transforms, and the same straightforward algebric calculation

than in 2D, bring to the relationship between corrected and acquired image:
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where here
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Figure 1. Edge localisation principle.

Each image of the volume is computed (a). The profile of each line is extracted from the

images (b). A one dimensional derivative of the profile enables to extract the peaks
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representing the edge positions (c). A gaussian fit on each significant peak gives an

accurate estimation of the edge positions (d).
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Figure 2. Registration of the imaged and physical phantom.

Detected edges are adjusted line by line such as their distances fit the physical width

Wref of the phantom (a). Theoretical planes xi=Ai y+Bi z+Ci are computed using the least

squares criterion on adjusted edges of all slices (b).
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Figure 3. Kx1, Ky1 and Kz1 variations with the acquisition sequences.

Generic parameters are: matrix=256x256 pixels, field-of-view=256x256 mm2, 124

slices of thickness 1.7 mm in the sagittal plane (yOz), bandwith=16 Khz.
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Figure 4. Right edges of a coronal slice of the phantom.

Images are acquired with a 3D SPGR sequence. At 0.6 mm far from the gradient

isocenter, uncorrected abscissae go up to 2.6 mm from their theoretical positions
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Figure 5. Correction of the cubic phantom.

The top left (sagittal) and top right (coronal) images are constructed from an acquisition

without any gradient correction. The bottom images represent the same slices after the

correction with the functions.
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