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Abstract

We present a method to correct intensity variations and voxel shifts caused by
non-linear gradient fields in Magnetic Resonance Images. The principal sources of
distortion are briefly exposed, as well as the methods of correction currently in use. The
implicaion of the gradient fields non-linearities on the signal equations are described in
a detalled way for the cae of 2D and 3D Fourier imagery. A model of these non-
lineaities, derived from the geometry of the gradient coils, is proposed and then applied
in post-processing to correct any images regardless of the aquisition sequence. Initial
position errors, as large @ 4 mm (i.e. 4 voxels of 1x1x1.4 mm®) before rrection, are

reduced to lessthan the voxel sizes after corredion.
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INTRODUCTION

Magnetic Resonance Imaging hes entered clinical pradice about fifteen yeas
ago, and has beacme one of the most widely used imaging modalities (i, ii). Its cgpacity
to produce high-resolution images of superior tissue ntrast within a few minutes
makes it more dtradive than other modalities for clinicd applicaions sich as
stereotadic neurosurgery. More receitly, MR Angiography and Functional MRI also
gained increasing interest as cerebral imaging tools (iii, iv, v). MRI, however, suffers
from important geometric distortions, leading to pixel shifts and intensity variations in

the aquired images (vi, vii)). Many reports underlined the importance of these



variations, reading several millimeters in certain areas of the field of view, thus
showing the difficulty of precisely locating the anatomic internal structures (viii, ix).

Machine-dependent and patient-dependent effects are both a the origin of the most
important distortions. The main effects are the demicd shift, the magnetic
susceptibility, eddy currents, By inhomogeneity and gradient non-lineaity. Chemical
shift arises when a voxel is composed of several tissues with different precession
frequencies (e.g., water and fat). With a different response from each tissue to the
different RF pulses, this physicdly unique voxel is imaged in several voxels of the
reconstructed volume. Applying a selective saturation before the a@uisition in order to
extrad unwanted tissue from MR signal can minimize chemical shift effeds (x).
Magnetic susceptibil ity effeds occurs at the interfaceof tissues with different magnetic
susceptibilities (and especially air/tissue interfaces). A local gradient field is creaed that
is superimposed on the main By field, disturbing spatial encoding of the voxels (xi).
This effed usually requires a particular treament that often increases the aquisition
time (xii, xiii). Eddy currents are induced in the main structure of the magnet by rapid
switching of the arrent in the gradient coils. A fine cdibration and the use of shielded
coils usually getsrid of eddy currents and other By offsets (xiv, xv). Gradient fields, that
depend on the wils geometry, are usually specific to eady MR scanner. Their effed on
the acarracy of the recmnstructed MR images is the only one cnsidered in this gudy.

We propose in this article amethod to correct gradient field non-lineaities for the cae
of Fourier transform imaging. A theoretical model is first proposed for 2D and 3D
imagery. A phantom-based method is then presented to adbtain the analytical expressions
of three orrection functions. Voxel shifts and intensity variations are aljusted in post-

processing using the orrection functions. The method is validated by comparing



correded images with theoretical images of the phantom, with images processed with

another correction scheme (GRAD WARP) and finally, with a CT scan of the phantom..
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THEORY
Onedimension : principle of the correction

The aguired MRI signal can be expressed in one dimension as (xvi, xvii)

_TE
S(t)= [M(x)e!?*Ve T2Xdgx 1)

FOVX

In the ideal case of a homogeneous By, field, the phase & timet due to By superimposed

on a constant readout gradient is given by

B(xt)=y[B(xt)dt =y (B +G,(x)) @

where Gx(X) is the physicdly applied (i.e. non-linea) gradient. Signal demodulation

leads to the temporal signal

t+TE

S(t) = JM(X)eJ’Ver(X)te_TZ(X) dx 3)
Fi

VX

A Fourier transform of St) gives the spatial signal

1Tx|j ) _ t+TE D -
|(X):—‘!’D M (X )eJVer(*)te TZ(X‘)dXDe—Jny(x)t dt (4)
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where Gy(X) is here the theoretical gradient used for the reconstruction, given by
Gu(X) = xG.

Thereal gradient is charaderised in our model as the product of the theoreticd gradient
strength and a function of the position only: Gix(X) = f(x) G.

The epression of the intensity becomes:

1T>‘D _ _ t+TE D _
|(X):—IDJM(X )eJyf(x)Gﬂe T2(x) dXDe_”’XG't dt
Tx 0@ VX E

= [M(%)e ") H(x- f(x'))dx

FOVX

(%)

where H(X) represents the Fourier transform of the redangular gradient G, given by :

: X
sm(rrE)
H(X):T (6)

The variable change X = f(X') in the last expression of the intensity gives:

AN 1xy Mg
I(x)=i‘!’D [ M (£ (X)) I XD givxat o T2l00) g riveat gy
Ty 0 F+Fow dX H @)

_TE

=M(x)e T OH(f(x))

Using the same convolution notation, the undistorted theoretical image (X=Xx) is:

TE

1.(x)=M(x)e 2% OH(x) ®

The epression of I(X) shows that the non-linearities ad on the position as well as on the
intensity of the theoretical signal 1(x), by changing the shape of the function H(x).

The orrection is based on a property of the point spread function H(x), which is
invariant with the cnvolution. This can be expressed by :

HO)OH(X)=H(F(x))TH(f(x))=H(x) 9)



The relation between the undistorted theoreticd image and the aquired image is
therefore :

L (x)=1,(f(x))DH(T(X)) (10)
A corrected image 1(x) can be obtained at the point x by the convolution of the aquired

image with the function H, both shifted of an amount f(Xx).

Application to 2D and 3D imagery

As outlined in appendix, non-linea gradient fields ad in 2D on the adua
magnetization as on as its creaion by the seledive RF pulse. However the slice
profile an be orrected, knowing the non-lineaity function f,x,y,z2) of the slice
encoding direction z, by using the relation between the theoretical magnetization M; and

the received magnetization M; :

AL63.2) ¢

Y (XY, 11
> XY, f,(X,Y,2)) (12)

M(x,y,z)=

The dlice profile an be orrected in 2D imagery by shifting each point of the aquired
image by the amount f(x,y,2) in the z diredion. Intensity misregistration is correded by
the moderation fador of(x,y,2)/oz

The various 4eps of the reconstruction processunder the adion of non-linea gradient

fields bring to the relationship between corrected and aaquired images|ic and |5 :
_ oz
|c(x,y,2)—la(X,Y,Z)EDHX(X)D H,(Y) (12)
where Hy(X) and Hy(y) represent respedively the Fourier transforms of the readout and

phase encoding gradient profiles, and the variables X, Y and Z are given by the system :

(X =f,(x,y,2)
=f,(xy,Z2) (13
7 = f,(xy.2)



The functions fx(x,y,2) and fy(x,y,2) acount for the non-lineaity of the readout and
phase encoding diredions. We noticethat in 2D imagery, the crrection must be caried
out inagiven order ( X and Y being related to Z ), since slice profile variations must be
correded before gplying planar shifts.
In 3D imagery the RF pulse, applied in 2D in order to seled a specific slice, is now
applied so as to seled the etire volume & the same time. The relationship between
correded and acquired image is then :

(X, y,2)=1,(X,Y,Z)OH,(X)OH,(Y)OH,(Z) (14)

where here the variables X, Y and Z are given by :

(X = f,(xy.2)
=f,(xy,2) (15)
7= 1,(xy.2)

The differencewith 2D aqquisitions lies in the fact that the corredion functions X and Y
do not depend on function Z any more. The crrection can thus be gplied in the three

diredionsin any order.

MATERIALSAND METHODS

Most of the aurrent distortion correction methods are based on precomputed
displacement tables. These techniques generally involve imaging a phantom of known
dimensions, or require knowledge of the mathematical equations of the aiurrent in the
gradient coils (xviii). The alvantage of the phantom-based methods is that the
measurements performed take into acount the non-lineaity of the gradient fields as
well as the static variations of the By field. The main disadvantage lies in the limited
acaracy due to the discrete aped of the wrredion, which often implies an

interpolation of several points of the table to compute only one displacement.



Our objective is here to define the expressons of the non-lineaities fi(x,y,2) which
connect the red gradients to their theoretical values used duing the reconstruction
process The discrete gproximation is avoided by using the analytical expressions in
the arrection functions. These expressons are dosen with resped to the cylindrical
geometry of present MR magnets. The field produced along the z &is of the opposed

Helmoltz pair is given by (xix) :

| ZH 1 1 H
Bz(z)=“°2a G - 0 (19

Ekaz+(z-b/2)2)g (a® +(z+b/2)*)2 H

where a is the radius of the wils, b is the distance between the opposed coilsand | is the
current applied. Using the cylindricd symmetry of the device, the field produced in

every point of the spaceinside the cylinder can be expressd by :
B.(xy.2)=Y A (¢ +y*)" 3 B, 2" (17)
2 2,5

where A and B are some constant parameters. The ideal gradient G, used during the

recongtruction processis given by G, = A, B, . The general expression of B,(2) isthus:

B,(x.y.2)=G,z(1+Y A p* $ B, 2207) (18
AP 2.5
A Golay arrangement is used to encode eat of the x an y diredions. The field produced

in the plane (xO2) in order to encode the diredion x is given by :

! H b/2- z .\ b/2+ 2 H
am(x+a) H(b/2- z¢ +(x+a)’ /(b/2+2) +(x+a) H

B.(Xx,z)=

(19

4 Ko H b/2-z N b/i2+z
am(x-a)H(o/2- z¢ +(x-ay 4/(b/2+zf +(x-a)* H

The general expresson of the field, including the ided value Gx of the gradient, is

developed from the last expression and the symmetry with :



B,(X,y,2)=G, x( 1+ S A p? S B Z207)) (20)
]
| = 1=

It can be seen from equations (18) and (20) that for the three sets of coils, the non-
lineaity functions appea as infinite sums of polynomials in (x,y,z2) of the general

expresson:

f(xy,2)=a(l+ S A (x*+y?) S B, 22/, a=xy,z (21)
a J
= J:

The variables x, y and z do not represent here the aquisition diredions, but set up a

static coordinate system whose diredions follow the il s axes.

Estimation of the correction functions

A simple abic phantom was designed in order to estimate the values of the
parameters A; and B;; of the arredion functions. Filled with a homogeneous substance
(oil), the dfects of magnetic susceptibility and chemica shifts simply involve constant
voxel shifts along the slice selection and frequency encoding directions. Phantom
dimensions were dhosen in order to cover alarge ceebral volume without exceeding the
limits imposed by the receiver (hea coil). The edges of the phantom are extraded from
the images using an edge detection algorithm that ensures subvoxel precision. The
principle, described in figure 1, is to fit the row profile of the gradient image with a
gaussian model. Subvoxel accuracy is achieved through the floating point precision of
the gaussian means acounting for edges positions.
Detected edges, representing the internal faces of the phantom after an aqquisition, are
placed in a real coordinate system given by the gradient isocenter and the three
aqquisition diredions. Theoretical internal faces are supplied by the physicd

dimensions of the phantom. They are analytically described with the equations of two



planes per acquisition diredion, defined in the same wordinate system than the detected
faces. According to the symmetry of the arrection functions, those planes can be
computed uwsing deteded edges postions and the physica phantom dimensions as
shown in figure 2. The resulting cube, entirely charaderised by the ejuations of six
planes x = A(y, 2) defining its surface represents then the theoretical undistorted image
of the phantom. Since the elges of the aibe and deteded edges in the images are
equally affected by the same nstant errors due to both chemicd shifts and magnetic
susceptibility, we assume that the differences in their positions only come from gradient
fields non-lineaities. Therefore, the operations that transform the set of detected edges
into the perfed cube ae defined by the three orrection functions. The parameters A
and B;j can be computed in order to minimise the distance between deteded edges and
their corresponding theoreticd positions.
The matching between any deteded edge M(X4, Va, Z3) and its theoretical position
N(X, Yo, Z) in the rresponding face of the aibe is achieved through successive
approximations of the arrection function parameters, using the following algorithm:

- Parameters are initialized with rull values. The crrection functions at this gep

arefo(X,y, 2 = X fox, y, 2 = yandfo(X, y, 2 = z

- For ead dlice z of the aquired volume

For eadh row y of slice z
Eadh deteded point M(X4, Va, Zg) IS matched to a theoretical point

N(Xco, Yeo, Zco) locaed in the theoreticd plane. Ordinates yo and zo are
given by y,="fyq (X4, ¥e.24) and z,=fg (Xd ' Y1 Zq ) Corrected

abscissais then calculated with the plane equation X0 = Pi (Yeo, Z0).



The minimisation of the distance between points M and N, acording to the

general linear least squares criterion (xx), evaluates the parameters of a first
corredion function fx; such as xg = fya(Xeo, Yoo, Zeo) and X, = .21 (Xy, Yy 24 )-
This gep, repeated twice with two circular permutations, leads to the two ather

functions fy; such as ya = fy1(Xo, Yeo, Z0) / Yeo = fy7t (X4, Ya 24 ), and f such as

24 = fa(Xc0, Yoo, Ze0) | Zog = .1 (Xy» Yy 24 )- I this way the wrrection functions

set up, in each step, the theoreticd positions that will be used to estimate those
functions during the next step. This processis iterated as long as the positions of

the theoreticd points fluctuate, i.e. is $opped when :

D Xc(n—l) _ch <&

D| Yener) = Yen | <€ UX4,¥4,24
Il

E Zc(n—l) _ch <&

Finally the gplicaion of the functions fx,, fyn and fz, on all the points M(xq, Y4, Z4) of the

initial volume ensures the repladng of these points on their theoretical locaions

N(Xe, Ye, Z).

This algorithm was written in C language and was tested on a SUN utltrasparc2 30Mhz
workgtation under Unix. The time required for post processing is about 2 mn 20 son a

3D MRI (124x256x256 voxels).

RESULTS
Parameters
Images were aquired on a 1.5T Signa GE scanner (General Electric Medicd Systems,

Milwaukee WI) with a generic 3D spoiled GRASS sequence (TR=22 ms, TE=3 ms,



bandwith=16 Khz). A matrix of 256x256 pixels is used for a field-of-view of 256x256
mm?, and 124slices of thickness1.7 mm cover the phantom.
For an optimal corredion, the theoretical expression of the crrection functions, given
by equation (21), indicates that the order of the functions, and so the number of
parameters, is supposed to be infinite. However, the limited acaracy of the physicd
dimensions (+ 0.1 mm) and the detected edges positions (£ 03 mm) allows a mnsequent
reduction to the number of significant parameters. In practice the functions are
developed using an increasing order, starting from one. For ead order, the parameters
are omputed and compared to their corresponding values from the previous
developments. This process $iowed that a the order threg most of the 11 parameters
estimated in each diredion where not important enough to bring significant changes in
the values of the rrection functions. So the doice of the order is sttled to 2, leading
to 5 prameters per aqquisition diredion. Ead function is estimated under the reduced
form:
£ (092 =0 (1 Kp (6 37 )+ Ky 27 4K, 22 (67 37 e Ko (67 )+ K0 2')
(22

A first set of parameters K;; resulting from the estimation is given in table 1.

The similarity of the parameters K,; and Ky; is explained by the identical geometry of the
x and y gradient coils, which differ in theory only by their orientations. Moreover, the
order 2 seems to be sufficient to modelize the non-lineaities, since the higher order
parameters Kys, Ku, Kys, Kya from the two most distorted diredions are the less
significant. For example, a point locaed 100mm from the isocenter is shifted from less

than 0.05 mm under the adion of those parametersonly.



Stability

Several aqquisitions of the phantom with different sequences (2D, 3D, Gradient Echo,
Spin Echo) and pearameters (matrix size field-of-view, bandwidth and encoding
diredions) have been used to estimate the wrrection functions. The results, partially
illustrated by figure 3, exhibited no significant differences in the parameters values,
showing the stability of the @rredion functions with the imaging sequences. This also
confirms that the voxel shifts induced by the gradient non-linearities only depend on the
voxel gpatial locaion. The parameters of the correction can be estimated once and used

to correct any further acquisition.

Validation

A basic set of parameters, estimated using the generic 3D SFGR sequence, was used to
corred several other aqquisitions of the phantom. Corrected edge positions were first
compared to their theoretical values, which exhibited a mean difference of less than
0.1% of the voxel size (figure 4). A manufadurer provided correction method (GE
‘Grad Warp 2D’) was used for the validation. Also based upon the gradient coils
geometry, it only ads on the first phase and frequency encoding diredions, leaving the
dlice seledion diredion uncorrected. A mean difference of 0.5% was found in the right-
left and antero-posterior diredions between the two correction schemes, and 0.9% in the
superior-inferior diredion. The first differenceis corresponding to avariation of 0.5 mm
between the crrections of a point locaed 100 mm from the enter. This small value
confirms the equivalence of the two correction schemes and validates the model of the

corredion functions. However, the more important difference found in the superior-



inferior diredion doesn’'t confirm this equivalence In order to tet the validity of the
methods, we used a CT scan of the phantom as another reference for the @rrections.
The previous edge detedion algorithm enabled extradion of both internal and external
faces of the phantom from the CT volume. A set of 3D MR aayuisitions were performed
using two dfferent orientations of the phantom in the heal coil. For ead aayuisition,
the reconstructed volume is corrected in post-processing, using Grad Warp and the
corredion functions. The dimensions of the phantom, extraded from MR images, are
compared to the physical dimensions and also to the dimensions extraded from the CT

scan. The results are presented in table 2.

Aswe can see in the first column, the length of the phantom given by Grad Warp after
the first aqquisition is nealy approacding the theoretical dimension, which is confirmed
by the dimension given by the CT scan. The length was oriented in the right-left
diredion. For the second aqquisition, where the length corresponded to the superior-
inferior diredion, the measurement given by Grad Warp is underestimated by about 2
mm (2 voxels) on a distance of 180 mm. This problem doesn’'t occur in the function-
correded images, since the parameters are computed in order to register the physical
dimensions with the distorted dmensions. The CT scan measurements, compared to the
physicd and function-correded dimensions, exhibit no significant variations. These
results clealy demonstrates the better performance of the @rrection functions in the

superior-inferior diredion.

Experimental results



The first application of the @rrection scheme was to correct the images of the aibic
phantom. Figure 5 shows a sagittal and coronal views of the phantom before and after
the oorrection of a sagittal aaquisition. As expeded, the initial convex shapes are

brought badk to their original form in every aaquisition diredions.

A spherical phantom, filled with a dilution of copper sulfate and from an internal
diameter of 1000 mm was also used for the crredion. Figure 6 shows a sagittal and
axial views of a sagittal acquisition. We @an see asmall variation of the edges positions
in the right-left diredion of the sagitta view. The maximum deviation of 0.7 mm
corresponds to a shift of 1.4 pixel. The superior-inferior direcion doesn’'t seem to be
affeded by gradient non-lineaities a such a small distance of the alges from the
gradient isocenter. In the other view, both misplaced left-right and antero-posterior
edges are rreded from nealy the same shift.

Figure 7 shows an application of the method to the correction of a T1-weighted sagittal
aqquisition of a healthy voluntee. There is no significant differences between the
function-corrected areas (in red) and Grad Warp-corrected areas (green) in the
aquisition plane. In the coronal view, distortions from up to 4.2 mm (4 voxels) in the

right-left diredion are wrreded with the functions but unchanged with Grad Warp

DISCUSSION

The analyticd expressons of the orrection functions, derived from the wils geometry,
limit the method to a specific magnet design. The knowledge of the mils geometry
implemented on other imaging systems, such as open magnets, is required to define a
more suitable set of analytical expression. However, the same method can be used for

the correction of images obtained from such scanners.



The loss of quality involved by the numerous interpolations of the voxels can't be
avoided when correcting the images. Nevertheless the arrection functions can also be
used to correct some topological charaderistics of structures without quality loss
instead of correcting the structures themselves.

Geometric distortions correction is clealy required in stereotactic surgery using
frame-based registrations, but also in the registration of images obtained with different
modalities such as MR-CT for brain anatomy or MR-PET for functional imaging. A
method was presented by which one of the most important sources of distortion can be
analytically estimated and further correded in the resultant MR images. The position
errors were reduced from several millimeters or voxels down to below the image
resolution. Correction functions can be estimated once and applied in post-processing
on any acquisition type without changing the aguisition time. It can be used as a full
3D correction in replacement to the adual 2D corrections implemented on most MR

scanners
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APPENDIX
Effect of the non-linearities on the dice profile and dlice position in 2D imagery

The effect of agradient field G,(2) = z G, applied in the zdiredion isto seled tissues
with specific precession frequencies, given by the Larmor frequency of the spin system
w,(z)=w, +y zG,.
A selective RF pulse entered on w, with alength ow, applied while G,(2) isturned on,

adivates the magnetization only within the slice z of thickness dz given by

0_ w,
e
ow
Z:—
y G

The theoretical signal generated at the point (x,y) isthen:

z+0z

M.(Xx,y,z)= IM(x,y,i )dz (23

By introducing the non-lineaities fAx,y,2) into the expresson of the slice encoding
gradient, which beames G(x,y,2) = fAXx,y,2) Gy, thereal precession frequency becwmes
w,(z)=w, +y f,(xYy,2)G,.

The adual magnetizaion excited by the selective RF pulseis:

74 (x.y.z+dz)
M (xy.z)= [M(xy.z)dz (24

£y 2)
Equations (18) and (19) show that the theoretical dice (z, dz2) is shifted to the real set

(Z, oZ) (Figure 1) fixed by:

=1, (xy.2)
§§z'= f(xy,z+d) - (XY, z)|

Equation (24) can be rewritten as.




z+0z

M (xy.2)= [ Myt (xy.2)

z

-1
X, (xy.2)

2
5 (25)

and, with slight variations of

_l 1
9 (X Y.2) i1 the slicethickness, as

W My, 17y )z

=WI\/M(X,% f(xy.2))

M. (x,y,z) =
(26)

The theoretical magnetisation is thus

de(X, Y, Z)

M, (X Y,2)= M, (x,y, f,(X Y,2)) 27)

Two dimensions
Due to T2 decay and the gplication of two encoding gradients Gi(t) and G(t), the
theoretical signal emitted at time t and repetition k after the slice seledion processis in

every point of the space

3 Ty 0
t+TE  jydxG (t )dt‘+£k yG, (t )dt‘%

(X,y,z,t,k)= Mr(x,y,z)e_”‘x’y’z)e . (29)

With both G|(t) and Gg(t) independent of time during signal aaquisition, EQ.(28)

beammes

(x,y,2t, k) =M, (xy,z)e "V ol bxGeyken] 29

The non-lineaities are introduced here by replacing in the signal expresson x G, with
Gix(XY,2) = f(Xy,2 G and y G; with Gy(X,y,2) = fy(x,y,2) Gc. The aquired signal from

the seleded dlicezis:



S(ztk)= c[ 9X,Y,z,t,k)dydx

FOvVy
_ TE (30
= J M. (x,y,z)e T20gl? bOwDkGT, oiy b8 tgy gy
FOVxFOVy
A first Fourier transform of S(zt,k) gives:
Ny/2 ' .
’ FOV, -45>
1 Ny/2 ] wTE ' |
= Z 0 I\/Ir(x,y,z)e T2(x,y,z) ejyfy(x,y,z)kgcry
FOVV k==Ny/ 2 GFOvx FOvy

' ' -jyykG
x @y Loy 2)Gt dy dx]e jyykG.t,
t+TE

= J’ M, (X,y,z)e T2V gV DG TY (yo f (x,y',2))dy dx
FOVx FOVy
(32)
A seaond Fourier transform gives with At = t Fe:
Nx/ 2 L XG At
l.(X,y,2)= l(y,zt)e V™
(X, Y,2) FOV, .- x/zy(y )
1 Nx/2 [] _TZA(tTTl‘E)
= 0 M. (X,Y,z)H,(y- f,(x',y",z)e 7~
FOVX t==NXx/2 @J\/XF Vy ’ ’ (32)
x ejyfx(x‘,y‘,z)Glt dy.dx]e—jqu At
_TE
= J M, (X,y,z)e YA H (y- f(x Y 2)H (- f,(x Y, 2))dy dx’
FOVx FOVy

The T2 deay during the readout is neglected here for more simplicity. The last
expressgon of the intensity, shifted in both x and y diredions, can be seen as the recived

magnetisation convolved with the Fourier transformsH of the gradients :

TE

L (F(0Y,2) £, (%Y,2),2) =M, (X, y,2)e 7099 OH,(£,(x,Y.2))DH,(f,(xY,2))
(33)

The expression of an undistorted image is obtained from Eq. (33) wherefy(x,y,2) = x and

fy(xy,2) =y



TE

(%, Y,2) = M(X,y,2)e 7209 OH (x)OH,(y) (39

with the system of variables X, Y, Z given by

D( = fx(X! y! Z)
= £,(% y,2)
7 =f,(xy.2)

the oorrection of the slice profile, given by equation (27), brings to the relation between

lcand l5:

IC(X,y,Z)=Ia(X,Y,Z)%DHX(X)D H,(Y) (35)

Three dimensions
Voxels are discriminated in 3D imagery by a mnstant readout gradient X.G; and two
phase encoding gadientsy kG¢ and z p Gp. The received signal under the adion of the

various gradientsis expressed by:

_t+TE _
S(X,y,z,t,k) = Mr(X,y,Z)e T2(x,y,z) eJV[XG|t+ychTy+ZDGpTZ] 39

The introduction of the non-linearities in the expressons of the gradients, that become
G(xY,2 = fx(xy,2 G, Gy(Xy,2) = fy(Xy,2) Gc and GAX,y,2) = fAXY,2) Gp, yields in the

sampled signal:

_t+TE

[ [Mxyze
Vy FOV,

S(ztk)= J

VX F

(37
" ej y[fz(x,y,z) PG, 1, +f (xy.2)kG 1, +f,(XyzZ)G t]dzdy dX
Three successive Fourier transforms, and the same straightforward agebric calculation

than in 2D, bring to the relationship between corrected and acquired image:

X Y 3Z
1L(X,y,2)=1,(X,)Y,Z) =222 38
(Xy,2)=1,( )é‘)(&‘y&'z (39



UX = f.(X,y,2)

where here oy = f,(x,y,2)

EZ =f,(x,Y,2)
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Figure 1. Edge localisation principle.
Ead image of the volume is computed (). The profile of each line is extraded from the

images (b). A one dimensional derivative of the profile enables to extract the pegks



representing the adge positions (c). A gaussian fit on each significant pegk gives an

acarate estimation of the alge positions (d).
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Figure 2. Registration of the imaged and physicd phantom.
Detected edges are aljusted line by line such astheir distances fit the physica width
W Of the phantom (@). Theoreticd planes x=A y+B;j z+ C; are computed using the least

sguares criterion on adjusted edges of all slices (b).
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Figure 3. Ky, Ky1 and K4 variations with the aguisition sequences.
Generic parameters are: matrix=256x256 pixels, field-of-view=256x256mm?, 124

slices of thickness 1.7 mm in the sagittal plane (yOz), bandwith=16 Khz.
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Figure 4. Right edges of a wronal slice of the phantom.
Images are aquired with a3D SFGR sequence At 0.6 mm far from the gradient

isocenter, uncorrected abscissaego up to 2.6 mm from their theoretical positions



Figure5

Figure5. Correction of the aubic phantom.

The top left (sagittal) and top right (coronal) images are @nstructed from an acquisition
without any gradient correction. The bottom images represent the same slices after the

corredion with the functions.
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