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Résumé — Analyse de données RMN : une approche paramétrique basée sur une décomposi-
tion en sous-bandes adaptative — Dans ce papier, nous proposons une méthode rapide d’analyse
de signaux de spectroscopie de Résonance Magnétique Nucléaire (RMN), dans le cas Lorentzien,
fondée sur une décomposition adaptative en sous-bandes. Cette dernière est obtenue par une succession
d’étages de filtrage/décimation aboutissant à un arbre de décomposition. À chaque noeud de l’arbre,
les paramètres du signal correspondant à la sous-bande sont estimés par une méthode haute-résolution.
Puis l’erreur d’estimation est utilisée dans un test d’arrêt qui permet de décider si la décomposition
doit être poursuivie ou non dans cette branche. Ainsi, cette approche permet la sélection automatique
du niveau de décimation ce qui conduit la décomposition à s’adapter au contenu fréquentiel du signal.
De plus, la méthode entraîne une réduction du temps de calcul et facilite le choix des paramètres libres
comparativement à une analyse globale du signal. Son efficacité est illustrée au travers d’exemples de
signaux RMN 13C 1-D et 2-D.

Abstract — NMR Data Analysis: A Time-Domain Parametric Approach Using Adaptive Subband
Decomposition — This paper presents a fast time-domain data analysis method for one- and two-
dimensional Nuclear Magnetic Resonance (NMR) spectroscopy, assuming Lorentzian lineshapes, based
on an adaptive spectral decomposition. The latter is achieved through successive filtering and decima-
tion steps ending up in a decomposition tree. At each node of the tree, the parameters of the correspond-
ing subband signal are estimated using some high-resolution method. The resulting estimation error is
then processed through a stopping criterion which allows one to decide whether the decimation should
be carried on or not. Thus the method leads to an automated selection of the decimation level and
consequently to a signal-adaptive decomposition. Moreover, it enables one to reduce the processing
time and makes the choice of usual free parameters easier, comparatively to the case where the whole
signal is processed at once. The efficiency of the method is demonstrated using 1-D and 2-D 13C NMR
signals.

INTRODUCTION

Since its discovery in 1945, the Nuclear Magnetic Reso-
nance (NMR) spectroscopy has become a powerful and very
successful tool to study chemical structures and molecular

interactions [1]. The multidimensional NMR widens the
field of investigation to the study of macromolecular
structures by allowing the detection and interpretation of
interactions that are impossible to analyze along a single
dimension (see e.g. [2, 3]). This paper considers the general
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problem of determining the parameters of one-dimensional
(1-D) and two-dimensional (2-D) NMR signals. Theoret-
ically, the spectra of these signals exhibit Lorentzian line-
shapes (corresponding to exponentially decaying signals)
([4], pp. 69-71) but, in some cases, because of acquisition
conditions, the lineshapes may be broadened [5] and thus
modeled by Gaussian or Voigt shapes [6]. For example,
this is often the case in 1H spectroscopic data in which the
deviation is due to residual eddy currents and magnetic field
inhomogeneities [7]. Here, we propose an efficient method-
ology based on subband decomposition to deal with intricate
NMR signals and we focus on Lorentzian lineshapes though
our approach may be easily adapted to other model func-
tions. Hence, the model considered here for a 1-D NMR
signal is the normal one; i.e. the superposition of K damped
exponentials (also called modes or resonances) in noise:

x(n) =
K∑

k=1

Ake−αkneı(ωkn+φk) + e(n) =
K∑

k=1

akzn
k + e(n) (1)

for n = 0, . . . ,N − 1. Here, zk = exp(−αk + ıωk) is a signal
mode (ωk = 2π fk) and ak = Ak exp(ıφk) is the complex
amplitude, where αk, Ak ∈ R+ and ωk,φk ∈ [−π,+π]. N is
the number of samples and ı :=

√−1 stands for the imag-
inary unit. Note that the sampling period is included in αk

and ωk for notation simplicity. The term e(n) is assumed to
be complex white noise. Similarly, a 2-D NMR signal can
be written as:

x(n,m) =
K∑

k=1

akzn
kw

m
k + e(n,m) (2)

for n = 0, . . . ,N − 1 and m = 0, . . . ,M − 1. In this
case, zk = exp(−α1,k + ıω1,k) and wk = exp(−α2,k + ıω2,k)
are the components of the mode (zk, wk) with amplitude
ak = Ak exp(ıφk). The parameters ω•,k,α•,k, Ak and φk are in
the same ranges as before. Note that these models are com-
mon to many other applications such as sonar, radar, mobile
communications and mechanical vibrations, making the pro-
posed approach not restricted to NMR signal analysis.

The problem is to estimate the parameters K, ak and
more specifically zk (and wk for 2-D signals) from data sam-
ples. The classical way to obtain these parameters con-
sists in using the Fourier Transform (FT) whose calculation
is indeed simple and fast but the corresponding estimator
suffers from the so-called Rayleigh resolution limit (1) ([8],
p. 46) and presents a poor variance ([9], p. 69). Moreover,
due to the frequent overlaps of nearby modes, amplitudes
cannot be well estimated by simple numerical integration,
and it is necessary to resort to some nonlinear optimization
procedures resulting in highly time consuming algorithms

(1) The spectral resolution of spectral estimators based on the FT is
approximately equal to the reciprocal of the signal duration in the
noiseless case.

along with their convergence problems [10]. Consequently,
several alternative approaches have been proposed in the
last 20 years. They are based on different concepts such
as linear prediction, signal and noise subspace separation,
maximum likelihood [11], Bayesian inference [12], etc.
For damped/undamped sinusoidal signals in noise, the most
used methods are those related to the concept of signal or
noise subspaces, also called eigenanalysis methods. For 1-D
signals, we can cite the Kumaresan and Tufts method [13],
state-space methods [14] and matrix pencil [15]. These
methods and their variants have been applied successfully
to NMR data, often using other acronyms such as LPSVD
(Linear Prediction-Singular Value Decomposition), HSVD
(Hankel-Singular Value Decomposition) and so on [16-20]
(see also the review paper by Poullet et al. [21] and the refer-
ences therein for more details). Several methods have been
also proposed for 2-D and multidimensional modal signals.
They are often extensions of 1-D approaches, such as 2-
D IQML [22], 2-D MUSIC [23], TLS-Prony [24], Matrix
Enhancement and Matrix Pencil (MEMP) [25], etc. Other
have been specifically developed for 2-D signals such as
MultiDimensional Folding (MDF) [26], MultiDimensional
Embedding (MDE) [27] and 2-D ESPRIT [28].

All these methods present several advantages over the
FT in terms of resolution and detection, and what is more,
most of them are non-iterative schemes able to yield directly
the relevant parameters. However, at the present time, the
FT still remains the standard procedure for NMR signal
analysis. This is probably due to some of the drawbacks
of these estimators. Firstly, all of them generally require
some trial-and-error adjustment, especially concerning the
choice of the number of pertinent parameters (i.e. the model
order K). Secondly, although several criteria have been pro-
posed for the estimation of the number of modes, e.g. the
Minimum Description Length (MDL) [29], none are fully
reliable. Thirdly, the time spent for the computation is gen-
erally much longer than that of the FT. Finally, when the sig-
nals are of high complexity, i.e. made up of numerous data
samples (over 10 000) and/or containing a very large number
of modes, all the problems are becoming much more crucial
leading to a sensible degradation of the overall performance.
In some situations, the problem may even become numeri-
cally untractable because of the prohibitive computation cost
and memory capacities requested.

The last two aforementioned problems have moti-
vated, last years, a renewed interest for subband-based
approaches [30-34] that have been known for a long time
in the signal processing community. The idea is to process
a signal by splitting it into several small spectral windows.
In the NMR literature, this concept has been initially pro-
posed in 1988 by Tang and Norris with the LP-ZOOM
approach [35]. The subband approach may be seen as
a pre-processing of the signal, and thus is independent
from the method used for the estimation. In addition to
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their computational efficiency, these techniques present
several other advantages comparatively to a fullband esti-
mation [32, 36, 37]. In particular, it is known that data
decimation (or downsampling) may increase the resolution
capabilities of the estimator considered [38] and enables one
to process signals at low signal-to-noise ratios [39]. Several
subband methods have been proposed in the NMR literature
(see e.g. [36, 40-45]). Recently, Sandgren et al. [46] pro-
posed a survey of the main subband methods and discussed
their estimation performances. All these techniques share
two features that make them efficient with high-complexity
signals: high robustness against out-of-band interferences
and low computational burden. In practice, it is often desir-
able to perform an analysis of the whole spectral band. In
this case, without a priori information, the problem remains
of how to select the spectral subbands, their width and their
location, or equivalently the depth of the decomposition.

One solution to the problem of choosing the depth of the
decomposition is given by adaptive approaches. For exam-
ple, in the best basis paradigm involving wavelet packet
expansions [47-50], the idea is to select the collection of
nodes that minimize a given criterion. At each node of the
decomposition tree, the cost is compared with the cost of
the union of its two children’s nodes and if the node’s cost
is smaller than the children’s costs, the node is retained; oth-
erwise, the children nodes are retained instead of the node
itself. For spectral analysis, most of the decompositions are
based on the MDL principle [51, 52]: the decomposition is
stopped if the estimated number of modes in a particular
node is greater than the one obtained in its children. The
problem which arises with such an approach is that it does
not ensure that all the spectral information has been retrieved
because the decision is taken before the subband estimation.
Thus the resulting partition does not take into account the
fact that an isolated mode may be estimated without needing
a deeper decomposition. Here, we propose a method using
another stopping rule in order to circumvent this problem.
The adaptive partition is achieved through successive deci-
mation/estimation stages each followed by a test procedure

which is based on a local spectral flatness measure of the
estimation residuals, in order to decide whether or not the
process should continue. This criterion reflects the quality
of the estimation in a given subband, so the decomposition
is stopped only if the residuals are close to white noise,
i.e. all local modes are retrieved. The resulting approach
not only selects automatically the subbands where spectral
peaks are present and reject the others but also allows the
algorithm to stop the decomposition on the bands where all
modes may be easily extracted without the need of a deeper
decomposition [39]. Moreover, the measure of flatness may
be easily extended for multidimensional signals.

The sequel of this paper is organized as follows. In
Section 1, we present the principles of 1-D and 2-D sub-
band decompositions and the model of the resulting sig-
nals. Then in Section 2, the adaptive approach is detailed
along with the stopping rule used. Section 3 is dedicated
to the implementation issues and presents the summary of
the algorithms. The procedure to download the MATLAB
code of the method is also given. Finally, results on 1-D and
2-D experimental NMR signals are presented in Section 4.
Conclusion are drawn at the end.

1 PRINCIPLES OF SUBBAND DECOMPOSITION

1.1 1-D Signals

Subband decomposition of 1-D signals is achieved by suc-
cessive filtering and downsampling stages. Frequently, the
downsampling factor between two levels is 2, leading to
the tree illustrated in Figure 1. Notation x(i)

�
(n) stands for

the subband signal at level � representing the spectral band
number i, where i = 0, . . . , 2�−1 corresponds to a frequency
shift. In other words, the original signal x(0)

0 (n) := x(n)
is split at level � into 2� subband signals, each of them
is representative of a specific frequency interval localized
by the index i. We will be more specific on this point in
Section 3.1. The decomposition of any node of the tree is

x (0)
0 (n)

x(0)
1 (n)

x (0)
2 (n) x (1)

2 (n)

x (1)
1 (n)

x (2)
2 (n) x (3)

2 (n)

x(i)(n)

h(0)(n)

↓ 2

x (2i)
+1(n)

h(1)(n)

↓ 2

x (2i+1)
+1 (n)

Figure 1

Principle of subband decomposition of a 1-D signal. x(0)
0 (n) := x(n) and h(i)(n) are the impulse responses of complementary digital bandpass

filters.
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x (0,0)
0 (n,m)

x (0,0)
1 (n,m) x (0,1)

1 (n,m) x (1,0)
1 (n,m) x (1,1)

1 (n,m)

x(i, j)(n,m)

h(0,0)

↓ 2

x (2i,2 j)
+1

h(0,1)

↓ 2

x (2i,2 j+1)
+1

h(1,0)

↓ 2

x (2i+1,2 j)
+1

h(1,1)

↓ 2

x (2i+1,2 j+1)
+1

Figure 2

Principle of subband decomposition of a 2-D signal. x(0,0)
0 (n,m) := x(n,m) and h(i, j)(n,m) are the impulse responses of complementary digital

bandpass filters.

achieved through filtering and decimation and thus can be
expressed as:

x(2i)
�+1(n) =

∑
n′

h(0)(n′)x(i)
�

(2n − n′) (3)

x(2i+1)
�+1 (n) =

∑
n′

h(1)(n′)x(i)
�

(2n − n′) (4)

for n = 0, . . . , [N�/2] − 1, where N� is the length of signal
x(i)
�

(n) and [•] stands for the integer part function. It can
be shown that the resulting signals can still be modeled as
a combination of (a reduced number of) modes [32, 44].
For notation simplicity, let x′(n) be a subband signal and v′
be the subband image of the fullband parameter v, then the
model of the subband signal is:

x′(n) ≈
K′∑

k=1

a′kz′k
n + e′(n) (5)

Hence, the model being of the same form as in Equation (1),
it is possible to use the same methods discussed before to
estimate the parameters z′k and a′k. In practice, it is desir-
able to be able to convert these values to their fullband
counterparts using simple formulae. This point will also
be discussed in details in Section 3.1. The advantages of
estimating the signal parameters from subbands are twofold.
First, each subband signal is expected to contain less modes
than x(n) (i.e. K′ � K). Second, the number of sam-
ples is also reduced because of the downsampling operation.
These two features result in a much less time-consuming
and numerically more tractable estimation procedure. One
could think that the estimation variance should increase as
the number of samples decreases but it should be recalled
that the number of unknown parameters is also prone to
be reduced comparatively to the fullband signal. Anyway,
a maximum decimation depth must be imposed to avoid
critical situations with a very few samples in the subbands,
which could lead to a strong degradation of the estima-
tion variance. One solution to this problem is presented in
Section 2.

1.2 2-D Signals

Subband decomposition of 2-D signals is achieved in a mul-
tilevel way, similar to what was presented before. Here, the
spectral domain is two-dimensional. Hence, four 2-D filters
are necessary to achieve the decimation from level � to level
�+1 as illustrated in Figure 2. The decomposition of a signal
x(i, j)
� (n,m) with size N� × M� is obtained as:

x(2i+i′ ,2 j+ j′)
�+1 (n,m) =

∑
n′ ,m′

h(i′ , j′)(n′,m′)x(i, j)
�

(2n − n′, 2m − m′)

(6)
for i′ and j′ in {0, 1}, n = 0, . . . , [N�/2] − 1 and m =

0, . . . , [M�/2] − 1. The filters are chosen so that their pass-
bands do not intersect. Consequently, the spectral lines in
x(i, j)
� (n,m) are separated into four groups each corresponding

to a subband signal. Here again, the model of the subband
signals is of the same form as in fullband, i.e.:

x′(n,m) ≈
K′∑

k=1

a′kz′k
nw′k

m + e′(n,m) (7)

2 ADAPTIVE DECOMPOSITION

The subband decomposition approach was shown to have
several advantages over a fullband estimation in the case of
high complexity signals [53] but it still strongly depends on
the right choice of the degree of decomposition. Indeed,
in practice, it is necessary to fix the total decimation fac-
tor, thus the number of subbands and their sizes. This
choice is depending on the signal at hand and requires
some a priori knowledge that is generally not available.
Theoretically, the smaller the size of the window, the bet-
ter the overall performances (numerical complexity, resolu-
tion, estimation and detection). But since the length of the
subband signals decreases with decreasing spectral window
size, it is very likely that the estimation variance and detec-
tion performances will degrade themselves beyond a certain
limit. Thus it is clear that an optimal degree of decom-
position is existing. The idea behind an adaptive subband



//
�

�

�

�

�

�

�

�

E.-H. Djermoune et al. / NMR Data Analysis: A Time-Domain Parametric Approach Using Adaptive Subband Decomposition 233

decomposition is to fully exploit the multi-level of the sub-
band decomposition by deciding at each node whether the
decimation should continue or stop. This scheme allows
the decomposition to adapt itself to the spectral content of
the analyzed signal generally resulting in a non-uniform
decomposition tree. The decision about pursuing or not
the decomposition has to be made according to some cri-
terion. For example, it is possible to test the content of
either the subband signal or the estimation error. It has
been observed [53] that residual-based stopping rules are
preferable because they tend to minimize the number of final
nodes while preserving good estimation conditions.

2.1 1-D Signals

The signal model at a given node is given in Equation (5).
Let ẑ′k, â

′
k and K̂′ be the parameters estimated in a given

subband, for k = 1, . . . , K̂′. The residual signal is then
defined by:

ε(n) = x′(n) − x̂′(n) := x′(n) −
K̂′∑

k=1

â′kẑ′k
n (8)

If the modes have been correctly estimated (i.e. K̂′ = K′,
ẑ′k ≈ z′k and â′k ≈ a′k), then the residual signal should
be close to white noise. So the whiteness of the residual
is the criterion to be used for the decomposition. A lot
of spectral flatness tests have been proposed among which
Fisher’s whiteness test [54] is the most popular. In the
case of damped complex exponentials signals, we found that
Drouiche’s test [55] is more appropriate because of a better
detection rate [56]. The latter is based on the so-called peri-
odogram estimate of the Power Spectral Density (PSD) of
ε(n) defined by:

P̂′(ω) =
1

N′

∣∣∣∣∣∣∣
N′−1∑
n=0

ε(n)e−ınω

∣∣∣∣∣∣∣
2

(9)

The spectral flatness measure, restricted to the interval
[−π/2,π/2], is given by the following quantity (2) [55]:

Ŵ′ = ln
1
π

∫ π
2

− π2
P̂′(ω)dω − 1

π

∫ π
2

− π2
ln P̂′(ω)dω − γ (10)

where γ is the Euler constant (γ ≈ 0.57721). In order to
decide whether or not P̂′(ω) is flat (or constant), the quantity
Ŵ′ is compared to a threshold λα which is fixed according to
the desired false alarm rate α by using the following relation:

λα =

√
2(π2/6 − 1)

N′
erf−1(1 − 2α) (11)

(2) In practice, the integrals are approximated by discrete sums. Thus
P̂′(ω) is evaluated at the Fourier bins using the fast Fourier transform.

where erf−1(x) is the inverse of the standard error function.
In this paper, it is fixed to 1%. The decision about stopping
or carrying on the decomposition is then taken according to
the following rule:

{
if Ŵ′ < λα then stop
if Ŵ′ � λα then continue

(12)

2.2 2-D Signals

For 2-D signals, the adaptive procedure is similar except the
fact that the spectral flatness is measured on the 2-D plane.
Let ε(n,m) be the residual signal in a given subband, then its
PSD is estimated by:

P̂′(ω1,ω2) =
1

N′M′

∣∣∣∣∣∣∣
N′−1∑
n=0

M′−1∑
m=0

ε(n,m)e−ınω1e−ımω2

∣∣∣∣∣∣∣
2

(13)

Then, we may apply the previous measure in Equation (10)
on the two marginals of P̂′(ω1,ω2) along the two dimensions
to obtain Ŵ′1 and Ŵ′2. Now, the signal ε(n,m) is a white noise
only if the two measures are less than a threshold λα.

3 IMPLEMENTATION

In this section, we discuss the implementation issues of the
proposed method and then we give the complete algorithms
for 1-D and 2-D NMR data analysis.

3.1 The Filter Bank

Generally, the subband decomposition is achieved through
wavelet packet-like filter banks [52]. Such filters are
designed to ensure perfect reconstruction of the signal,
which implies a slight overlapping between the two filters
as illustrated in Figure 3a. In the particular case of spectral
analysis in which we would estimate the spectral parame-
ters in subband without the need of signal reconstruction,
this type of filter bank is inappropriate because it causes
two undesirable effects. First, the filters attenuate all peaks
appearing in the vicinity of band edges (Fig. 3a: around nor-
malized frequencies−0.25 and+0.25). Hence, the estimated
modes lying in this spectral region will exhibit some distor-
sion. The second and more important effect is frequency
aliasing after decimation because the effective bandwidth (3)

of each filter is somewhat greater than 1/2. For example,
if some spectral lines with strong intensities appear around
the normalized frequency 0.25, they will be captured in two
distinct subbands [57]. This implies that a single fullband
frequency could have two distinct subband images. In other

(3) The filter’s bandwidth has several definitions including –3 dB and zero-
crossing bandwidths. In this paper, it is defined as the sum of the pass-
and transition band widths.
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Figure 3

Frequency responses of a) wavelet packet-like and b) com-
pletely overlapping filter banks. fmax is the frequency delimit-
ing the end of the transition band of the central filter.

words, the relation zk �→ z′k is not a bijection and thus it
will be difficult to map the subband modes to their fullband
counterparts [33]. Consequently, we rather use the oversam-
pled filter bank sketched in Figure 3b. In order to minimize
aliasing due to decimation by 2, the bandwidth (including
passband and transition bands) of each filter is less than or
equal to 1/2 (the attenuation in the stopband is assumed to
be strong enough to eliminate all out-of-band spectral lines).
As a result, the passbands of the filters are contiguous and
the transition bands of two successive filters are overlap-
ping. The simplest way to choose the adequate analysis
filter bank is to set the total passband width of each filter
to 1/4, which supposes the use of 4 similar filters as illus-
trated by Figure 3b. Moreover, to guarantee a one-to-one
correspondence between fullband and subband modes, only
those estimated in the central regions (passbands) should be
retained; this implies that the modes detected in the transi-
tion bands are simply discarded (if a mode appears in the
transition band of a given filter, it appears necessarily in the
passband of an adjacent one). Specifically, as in [31], we use
50% spectral overlap of the subbands, which allows a final
retention of the central half of each of them (4). Indeed, in
our case, the number of necessary filters is doubled compar-
atively to wavelet packet.

It is important to note that it is still possible to use
the classical cascade scheme illustrated in Figure 1 to per-
form subband decomposition based on the oversampled fil-
ter bank. As this scheme calls for only two filters, it is
necessary to perform two decompositions, each being asso-
ciated with half the spectral range [−0.5, 0.5]. Here, the

(4) This is also the reason why the measure of flatness in Equation (10) is
computed only in the central part of the spectral domain.

frequency bands [−0.5, 0] and [0, 0.5] of the original signal
are processed separately. This can be obtained using either
two decimation filters or a single lowpass filter and an ade-
quate modulation of the original signal [31]. From a practi-
cal point of view, the latter is preferable because the useful
spectral part always corresponds to the central half of the
resulting subbands, i.e. f ∈ [−0.25, 0.25]. Thus, concerning
the band [0, 0.5], the decomposition is obtained starting with
the signal:

x(0)
0 (n) := x(n) exp(ıΩn) (14)

where Ω = −π/2. This modulation will center the normal-
ized frequency band [0, 0.5] of x(n) around 0. Figure 4b
shows the effect of this operation on a synthetic signal. The
decomposition from level � to level � + 1 is then obtained as
follows:

x(2i)
�+1(n) =

∑
n′

h(n′)x(i)
� (2n − n′)e−ıΩ(2n−n′)/2 (15)

x(2i+1)
�+1 (n) =

∑
n′

h(n′)x(i)
� (2n − n′)e+ıΩ(2n−n′)/2 (16)

where h(n) is a real lowpass filter with passband [0, 0.125]
and transition band [0.125, fmax], where fmax � 0.25 (low-
pass filter in Fig. 3b). The spectra of the resulting signals
are illustrated in Figure 4c at level � = 1. Each subsignal
x(i)
�

(n), where i = 0, 1, . . . , 2� − 1, has its useful spectrum in
[−0.25, 0.25]. It is associated to the normalized frequency
interval [i/2�+1, (i + 1)/2�+1] of the original signal. The
decomposition of the band [−0.5, 0] is obtained in the same
manner with Ω = +π/2 in Equation (14) and using the same
Equations (15, 16) to generate the subband signals. In this
case, the resulting subsignals x(i)

�
(n) correspond to the fre-

quency interval [−(i + 1)/2�+1,−i/2�+1].
The extension of this discussion for multidimensional

signals is straightforward. For 2-D signals, the spectral
bands [−0.5, 0] × [−0.5, 0], [0, 0.5] × [−0.5, 0], [−0.5, 0] ×
[0, 0.5] and [0, 0.5] × [0, 0.5] may be processed separately.
Let Ω1,Ω2 ∈ {−π/2,+π/2} be two modulation frequencies,
then the four decomposition trees are obtained starting with:

x(0,0)
0 (n,m) := x(n,m) exp(ıΩ1n + ıΩ2m) (17)

and using the different combinations of Ω1 and Ω2. The
decomposition from level � to level � + 1 is obtained as
follows:

x(2i+i′ ,2 j+ j′)
�+1 (n,m) =

∑
n′ ,m′

h(n′,m′)x(i, j)
�

(2n − n′, 2m − m′)

×e(−1)i
′+1ıΩ1(2n−n′)/2e(−1) j′+1ıΩ2(2m−m′)/2

(18)

for i′, j′ ∈ {0, 1}. Here h(n,m) is a unique 2-D lowpass filter
having the same specifications as the 1-D filter discussed
before for each dimension.
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b)
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x(n)

x(0)
0 (n)

x(0)
1 (n) x(1)

1 (n) x(0)
1 (n) x(1)

1 (n)

,Ω = −π/2 x(0)
0 (n),Ω = +π/2

Figure 4

Spectral representation of the effect of modulation and filtering/decimation on a synthetic signal. a) Original signal; b) modulation with
Ω = −π/2 and Ω = +π/2; c) filtering and downsampling. (. . .) Indication of the targeted frequency interval which is always [−0.25, 0.25].
Modes estimated in the dashed ranges must be discarded.

Once the subband signals are obtained, the corresponding
parameters are estimated. Now these parameters have to be
mapped to their fullband values. The conversion formulae
are given in Appendix A for 1-D and 2-D signals.

3.2 The Free Parameters

A number of parameters have to be chosen by the user for
this method to work. This is discussed in the present section.

At first, the user has to choose the estimation method.
All spectral estimation methods may be used, especially
those cited in the introduction. We have implemented sev-
eral of them (LPSVD, HSVD, HOYWSVD [44], etc.) and
we have observed that the results achieved are very close
one to another. Generally, each method needs at least
one parameter to be tuned. It is related to the dimen-
sion of the estimation model and is often called “prediction
order”. It depends strongly on the number of samples and
components. The reader is referred to [39, 58] for more
details on this topic. Also, a theoretical study of the esti-
mation accuracy of eigenstructure-based model estimators
has shown that an optimal prediction order is existing for
damped complex exponential signals [59]. All estimation
free-parameters are included in vector p in the algorithms
presented in Tables 1, 2. Whatever the method used to
estimate the signal parameters, it is indeed necessary to
know the number of variables that have to be estimated,
i.e. the number of modes. The latter is generally unknown,

especially when considering subband signals. The solution
to this problem is to use so-called order estimation criteria
such as MDL and AIC [29, 60].

Concerning the decomposition scheme, three topics have
to be discussed, namely the decimation filter, the maximum
decimation depth �max and the significance level α for the
stopping rule:
– the decimation filter. A 1-D filter is generally designed

using two parameters: the order and the cut-off fre-
quency. These parameters can be obtained so as to meet
some specifications in terms of passband and transition
band widths and minimum attenuation in the stopband.
In our case, the passband spreads from 0 to 0.125 and the
transition band from 0.125 to 0.25. The attenuation of the
filter is fixed between −40 and −60 dB so as to eliminate
the out-of-band spectral lines. In order to obtain a 2-D
filter, the easiest way is to design two 1-D filters, say
h1(n) and h2(m), and compute the separable filter given
by h(n,m) = h1(n)h2(m);

– the maximum decimation level. The main constraint
behind the choice of the value of �max is the number of
samples in deep nodes which must be not too low in order
to preserve good estimation conditions. It is related to
the length of the fullband signal but also to the general
complexity of the signal;

– the false alarm rate. In the literature, it is generally set
between 1 and 10%. From our experience, this parameter
is far from being critical when chosen in the previous
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interval since it influences little the final decimation level
and not at all the estimation performances. In our simu-
lations, we always use α = 1%.

TABLE 1

Algorithm for subband estimation of 1-D NMR

– Input. A 1-D signal x(n) ∈ C, a low pass filter h(n) ∈ R, a maximum

decimation level �max, a false alarm rate α, and a set of estimation-

related parameters p.

– Output. Parameters K̂ and {ẑk , âk}K̂k=1.

1. Initialize. Set x(0)
0 (n) = x(n) exp(ıΩn),Ω = ±π/2, � = 0 and i = 0.

2. Decompose. Split x(i)
�

(n) into two subbands x(2i)
�+1(n) and x(2i+1)

�+1 (n),

using Equations (15, 16).

3. Estimate. Find the subband parameters of the resulting signals:

[K̂(2i+i′)
�+1 , ẑ(2i+i′ )

�+1 , â(2i+i′)
�+1 ] = Estimate_1D (x(2i+i′ )

�+1 (n), p)

for i′ ∈ {0, 1}.

4. Test. Estimate the spectral flatness of the residuals in the two sub-

bands using Equations (9) and (10), and mark each node as “decom-

posable” or “final”.

5. Iterate. Find a decomposable node (�, i) such that � < �max in the

whole tree and repeat 2-4. Exit if no node is decomposable.

6. Output. Return the fullband images of all subband parameters.

TABLE 2

Algorithm for subband estimation of 2-D NMR

– Input. A 2-D signal x(n,m) ∈ C, a low pass filter h(n,m) ∈ R, a

maximum decimation level �max, a false alarm rate α, and a set of

estimation-related parameters p.

– Output. Parameters K̂ and {ẑk , ŵk , âk}K̂k=1.

1. Initialize. Set x(0,0)
0 (n,m) = x(n,m) exp(ıΩ1n + ıΩ2m),Ω1,2 =

±π/2, � = 0, i = 0 and j = 0.

2. Decompose. Using Equation (18), split x(i, j)
�

(n,m) into four sub-

bands x(2i+i′ ,2 j+ j′)
�+1 (n,m), where i′ , j′ ∈ {0, 1}.

3. Estimate. Find the subband parameters of the resulting signals:

[K̂(2i+i′ ,2 j+ j′)
�+1 , ẑ(2i+i′ ,2 j+ j′)

�+1 , ŵ(2i+i′,2 j+ j′)
�+1 , â(2i+i′ ,2 j+ j′)

�+1 ]

= Estimate_2D (x(2i+i′ ,2 j+ j′)
�+1 (n,m), p),

for i′ , j′ ∈ {0, 1}.

4. Test. Estimate the spectral flatness of the residuals in the four sub-

bands using Equations (13) and (10), and mark each node as “decom-

posable” or “final”.

5. Iterate. Find a decomposable node (�, i, j) such that � < �max in the

whole tree and repeat 2-4. Exit if no node is decomposable.

6. Output. Return the fullband images of all subband parameters.

TABLE 3

Chemical composition corresponding to the 1-D NMR signal

Products Formulae Quantity (g)

Toluene C7H8 0.5322

Meta–ethyltoluene C9H12 0.3395

Ethylbenzene C8H10 0.3931

o-Xylene C8H10 0.2986

1,3–Dimethyl–5–ethylbenzene C10H14 0.2651

m-Xylene C8H10 0.3089

Tetraline C10H12 0.3312

Indane C9H10 0.2893

n–Propylbenzene C9H12 0.1593

p-Xylene C8H10 0.1208

1,2–Dimethyl–3–ethylbenzene C10H14 0.1150

1,3,5–Trimethylbenzene C9H12 0.0806

Naphthalene C10H8 0.0188

1,2,3–Trimethylbenzene C9H12 0.0488

Isobuthylbenzene C10H14 0.0132

Benzene C6H6 0.0765

2,4–Dimethylhexane C8H18 0.1012

2,3,4–Trimethylpentane C8H18 0.1489

TMS C4H12Si –

Dioxane C4H8O2 –

Chloroform CDCl3 –

3.3 Summary of the Algorithms

The complete algorithms for processing 1-D and 2-D NMR
data are summarized in Tables 1 and 2 respectively. It is
worth noting that a MATLAB implementation of the 1-D
algorithm, called SPENCER (5) for Subband Parameter Esti-
mation of Noisy Complex Exponential data Records, is
available for free download. It includes all the procedure
presented here, including adaptive subband decomposition
and parameter estimation. Moreover, it integrates other
functionalities such as baseline suppression, phase correc-
tion, line listing and graphic representations. Similarly,
a MATLAB implementation of the 2-D algorithm is also
available from the authors.

4 EXPERIMENTAL RESULTS

4.1 1-D NMR

The signal, made up of 131 072 points, was recorded on a
Bruker AM 400 spectrometer (13C frequency observation:
100.62 MHz). It results from quantitative experiments on a
synthesized mixture of nineteen compounds in CDCl3, with
TetraMethylSilane (TMS) as internal reference (see Tab. 3).
Hence the complete chemical composition and the chemical
shifts (δ/TMS) of the lines of the individual products are

(5) Download page: www.iris.cran.uhp-nancy.fr/spencer
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TABLE 4

Results achieved in some subbands of the 1-D NMR signal. The first part on the left gives the theoretical lines with corresponding chemical component,
chemical shifting (in ppm) and relative intensity (%) with respect to the toluene’s line (25th line). The central part sets out the results of the FT+DCONV

approach: estimated normalized frequencies, estimated relative intensities (directly calculated from estimated amplitudes). The right part reports the
results achieved by the proposed subband method

Band Theoretical FT+DCONV Proposed

(�, i) Line component δ (ppm) A (%) f A (%) f A (%)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

23 iso-BuBenzene 129.13 1.70 – – – –

24 Tetraline 129.11 43.37 0.14073 42.02 0.14072 40.20

(8, 72) 25 Toluene 129.06 100.00 0.14092 100.00 0.14092 100.00

26 p-Xylene 128.94 39.40 0.14124 40.16 0.14124 41.30

27 m-EtToluene 128.72 24.45 0.14181 25.25 0.14181 25.60

28 n-PrBenzene 128.47 22.98 0.14239 21.27 0.14239 23.96

29 Benzene 128.37 50.86 0.14267 51.20 0.14266 51.48

30 EthylBenzene 128.31 64.11 0.14275 66.86 0.14275 61.31

31 Toluene 128.25 100.00 0.14293 65.22 0.14293 82.66

32 n-PrBenzene 128.23 22.98 0.14297 75.81 0.14297 43.04

(8, 73) 33 m-EtToluene 128.23 24.45 0.14301 12.94 0.14301 35.55

34 m-Xylene 128.15 25.19 0.14315 23.62 0.14315 25.10

35 iso-BuBenzene 128.07 1.70 – – – –

36 Naphthalene 127.88 5.08 0.14382 8.24 0.14382 6.13

37 EthylBenzene 127.86 64.11 0.14392 64.67 0.14392 63.04
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0.27024 13.06

58 CDCl3 77.30 0.27064 1 923.5 0.27063 1 955.1

0.27077 39.98

(7, 69) 59 CDCl3 77.00 0.27143 1 914.9 0.27143 1 987.7

0.27173 26.96

60 CDCl3 76.70 0.27223 1 961.9 0.27223 1 934.1

0.27232 44.36
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

70 2,3,4-triMePentane 29.67 21.45 0.39087 23.72 0.39088 20.94

71 Tetraline 29.37 43.37 0.39158 38.83 0.39158 42.97

(6, 50) 72 EthylBenzene 28.89 32.05 0.39283 34.18 0.39282 36.42

73 m-EtToluene 28.85 24.45 0.39303 27.02 0.39303 26.71

74 1,3-diMe-5-EtBenzene 28.72 17.10 0.39326 19.20 0.39326 18.59

75 1,2-diMe-3-EtBenzene 26.98 7.42 0.39765 9.85 0.39764 8.94
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

83 2,3,4-triMePentane 21.75 21.45 0.41079 20.32 0.41079 21.15

84 Toluene 21.46 50.00 0.41151 48.17 0.41151 46.82

(8, 210) 85 m-EtToluene 21.41 24.45 0.41164 21.10 0.41164 20.58

86 m-Xylene 21.33 50.38 0.41182 49.78 0.41182 48.28

87 1,3-diMe-5-EtBenzene 21.27 34.20 0.41197 37.97 0.41197 33.25

88 1,3,5-triMeBenzene 21.20 17.42 0.41215 17.68 0.41215 15.92

(8, 211) 89 p-Xylene 20.99 19.70 0.41278 20.07 0.41278 21.12

90 1,2-diMe-3-EtBenzene 20.67 7.42 0.41351 5.89 0.41350 7.09

91 1,2,3-triMeBenzene 20.54 7.03 0.41382 5.38 0.41382 5.98
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

known. Some of them are shown in Table 4. Toluene being
the most concentrated compound, two lines (25 and 31) have
the maximum intensity. The latter is therefore set to 100%

and, from the theoretical composition, the intensities of the
other lines are expressed as a percentage of these reference
lines.
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Figure 5

a) spectrum of the 1-D NMR signal, b) decomposition tree, c) resulting line listing.

The decimation FIR (Finite Impulse Response) filter was
designed with an equiripple routine using fmax = 0.25, an
attenuation of −60 dB and a passband ripple of about 0.1 dB.
The maximum decomposition level is set to �max = 8. Con-
cerning the estimation method, we have tried several of
them and the results achieved are very close. We present
here those given by LPSVD [13] with parameter p = 60.
The Adaptive SubBand (ASB) decomposition associated to
LPSVD will be called ASB-LPSVD. The results are com-
pared to those given by a classical method which associates
a classical FT approach with a maximum likelihood decon-
volution algorithm (FT+DCONV) [10, 61]. The latter is
used in the best possible conditions, that is it makes use of
the entire signal and, during the deconvolution process, the
exact number of components K (which is perfectly known,
K = 104) is used. Hence, the FT+DCONV algorithm is
considered as the reference method for this signal. Note
that K being known, the use of adapted thresholds allowed
us to insist on the presence of some lines and to eliminate
all supplementary ones, which is generally not possible in
practice.

The decomposition achieved by ASB-LPSVD is repre-
sented in Figure 5. As expected, it can be seen that the
decomposition is carried on relatively to the complexity
of the subbands encountered. Hence the decomposition is
deeper where a lot of lines are present and/or they are hard
to estimate. For instance, the band (3, 0), i.e. obtained at
level � = 3 and with frequency shift i = 0, depicted in
Figure 6 corresponds to a case where the decomposition was
stopped at an early stage. This is because it does not con-
tain any significant line except an artifact around frequency

0 0.01 0.02 0.03 0.04 0.05 0.06
−400

−200

0

200

400

f
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ns
ity

Figure 6

Example of “empty band” in the 1-D NMR signal: subband
(3, 0).

0.028. The latter was rightly not detected because it does not
figure a damped mode. Globally, the ASB-LPSVD method
detects 100 lines among which 94 correspond to actual the-
oretical composition, and 6 “extra-lines” seems to have no
theoretical correspondent. Thus ten theoretical lines are not
detected. FT+DCONV made only 93 good detections and
missed 11 theoretical lines, despite of the use of the correct
number of modes. The results are partly presented in Table 4
together with the theoretical line spectrum.

Concerning the 10 lines not retrieved by the subband
approach, two different situations may be distinguished:
non-detection of peaks with very small amplitudes (<2%),
and non-separation of 2 lines. In the first case, the products
involved are in very small quantities, and the corresponding
peaks are almost invisible in the FT absorption spectrum
(that is the case, for example, for lines 23 and 35). In the
second case, two different products have almost the same
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c) Subband (7, 69)
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e) Subband (8, 210)
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Figure 7

Details obtained in some subbands of the 1-D NMR signal. Arrows point out spurious peaks.

resonance frequency (0.10286 and 0.10288) and thus could
not be separated by any method.

Concerning the 6 extra-lines, two different cases may be
distinguished. In the first case, the algorithm tends to fit
two different lines in place of a broad one. For example,
this can be observed in band (7, 69) (Tab. 4, Fig. 7) which

shows 4 false lines estimated close to the resonant frequen-
cies of the solvant. In fact, this is caused by a bad estimation
of the number of peaks and this kind of phenomenon often
occurs in the vicinity of peaks with strong intensities. In the
second case, some extra-lines may correspond to impurities
in the mixture considered. In any case, all extra-lines have
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generally very small amplitudes relatively to the neighbor
lines and may be eliminated by simple thresholding adapted
to the subband at hand.

Some subbands of interest obtained with ASB-LPSVD
are depicted in Figure 7. Each subfigure shows the FT
absorption spectrum together with the estimated line spec-
trum. It can be seen that there is a good correspondence
between the estimated lines and the signal spectrum. It is
worth noting that the subbands have different widths because
they were obtained at different levels, depending on their
complexity. Indeed, the algorithm may detect correctly all
modes and thus stop the decomposition before the maximum
level is attained, e.g. as in band (6, 50) in Figure 7d.

Generally speaking, note that the precision of frequency
estimates is quite irreproachable. Concerning more particu-
larly amplitude estimation, the mean relative errors observed
with the two methods are comparable. Note the important
errors made by the deconvolution method in the case of lines
31, 32 and 33, when the ASB-LPSVD method keeps a more
reasonable behaviour.

4.2 2-D NMR

We consider an experimental 2-D NMR signal of size
64 × 2048. The 2-D decimation filter is separable into two
1-D filters which are the same as in the 1-D case (ripple
amplitude 0.1 dB, stopband attenuation −60 dB). Since the
NMR data set has a large amount of samples in the sec-
ond dimension, we fixed the minimum decimation level
(without estimation) to �min = �1; 2� and the maximum
one to �max = �2; 4�. The notation �x; y� stands for col-
umn vectors, with x and y corresponding to the first and
second dimension, respectively. We used the TLS-Prony
method [24] with prediction orders set to p = �N′/2; M′/2�,
where N′ × M′ is the size of the subband signal.

The final subbands obtained with our algorithm in the
spectral region [−0.25, 0] × [−0.25,−0.25] are shown in
Figure 8. As it was the case in 1-D, one can observe that
the decomposition is generally deeper in the spectral regions
where several modes are located. On the other hand, for
remote modes, the decomposition is stopped at an early
level. This is the case for instance with the mode located
in the band [−0.250,−0.125]× [−0.0625, 0]. So here again
the method is able to adapt itself to the local complexity of a
signal, allowing one to reduce the calculation time, as com-
pared to a uniform decomposition in which several small
subbands need to be analysed. The results obtained in some
subbands are represented in Figure 9, where the estimated
modes are indicated with thick circles. For the subband in
Figure 9a, 13 modes have been detected among which 10
correspond to true peaks. We observe also in Figure 9b that
the approach tend to fit a very large peak by several small
ones. Finally, some very close modes have been resolved as
illustrated in Figures 9c,d.

1

13 1 5 1 1

5 4

3

2 2

−0.25 −0.20 −0.15 −0.10 −0.05 0 0.05 0.10 0.15 0.20 0.25
−0.25

−0.20

−0.15

−0.10

−0.05

0

f 1

f2

Figure 8

Spectral region [−0.25, 0] × [−0.25,−0.25] of the 2-D NMR
signal with the final subbands and the number of estimated
modes.

CONCLUSION

Subband decomposition is known to have several advan-
tages in terms of detection rate, frequency resolution,
and numerical complexity relatively to fullband estimators.
Moreover, this technique is able to handle with signals of
high complexity (i.e. long NMR signals with many modes).
The adaptive scheme proposed in the present paper, further
improves the performances of the subband decomposition in
the sense that there is no more need to select the decimation
depth. Indeed, the method automatically selects the signal-
bearing bands and decides whether or not a band should be
further decomposed. The adaptive subband decomposition
uses a stopping rule based on the spectral flatness of the
subband residuals: the decomposition is stopped on a given
subband only if the residuals are close to white noise. The
advantage of such a criterion is its ability to detect some
missed modes and to ensure that the parameters are correctly
estimated. More generally, this approach allows one to avoid
a manual selection of the frequency intervals in which the
estimation process is performed, as it would be the case with
classical subband methods.

The effectiveness of the proposed method is demon-
strated using real-world 1-D and 2-D NMR signals. When
dealing with intricate 1-D spectra, the results show that it
performs at least comparably to a classical FT+DCONV
procedure in terms of frequency and amplitude estimates.
But recall that, in practice, the deconvolution procedure
requires a prior determination of the number of peaks. Here,
the FT+DCONV algorithm was used with the assumption
of a perfectly known number of components. On the con-
trary, our approach is single-step, neither deconvolution nor
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Figure 9

Reconstructed contour plot in some subbands of the 2-D NMR signal. ( ) Position of the estimated modes. (. . .) coordinates of the modes.
Arrows point out spurious peaks.

numerical integration is necessary and the parameters are
given directly with moderate computation times. It is about
10 seconds on a standard PC for 1-D signals containing a
hundred modes and made up of 128k samples (as compared
to several minutes for FT+DCONV). In addition, its resolu-
tion capabilities are superior, thus it is able to increase the
number of correctly detected lines.

It is worth mentionning that the resulting adaptive sub-
band decomposition can be seen as a hierarchical oversam-
pled filter banks, implemented as packets. In that respect,
following [62], the proposed approach corresponds to an
adaptive tree structured processing in which each subband
can be seen as a dictionary element. In 2-D NMR appli-
cation, possible extensions of the proposed approach may
consist in the use of more adapted representation, using

dictionary elements, better accounting for the potential
anisotropy or obliquity of the 2-D NMR data.

Finally, the proposed decomposition is presented under
the Lorentzian shape assumption and the experimental
results were achieved using eigenanalysis-based methods.
Indeed, the proposed scheme may also be applied with other
lineshape models and/or any estimation algorithm.
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APPENDIX
FULLBAND IMAGES OF SUBBAND PARAMETERS

For 1-D signals, suppose that the modes estimated at node (�, i) are denoted ẑ′k. Then, the corresponding fullband modes can
be found as follows [39]:

ẑk = ẑ′k
1/2� exp

(
ıπ

2i + 1
2�+1

)
, for band [0, 0.5] (A.1)

ẑk = −ẑ′k
1/2� exp

(
ıπ

2i + 1
2�+1

)
, for band [−0.5, 0] (A.2)

Similarly, for 2-D signals, the fullband images of subband modes (ẑ′k, ŵ
′
k) at node (�, i, j) are:

ẑk = (−1)i′ ẑ′k
1/2� exp

(
ıπ

2i + 1
2�+1

)
(A.3)

ŵk = (−1) j′ŵ′k
1/2� exp

(
ıπ

2 j + 1
2�+1

)
(A.4)

for band [−0.5i′, 0.5(1−i′)]×[−0.5 j′, 0.5(1− j′)], where i′, j′ ∈ {0, 1}. The amplitudes may also be transformed from subband
to fullband (see [39]). But, since the calculation of amplitudes is a linear problem when the fullband modes are computed, it
is also possible to get their estimates directly from the fullband signal.




